253
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Anti-Histone Acetyltransferase Activity from Allspice Extracts Inhibits Androgen Receptor-Dependent Prostate Cancer Cell Growth

, , , , , , , , & show all
Pages 2712-2719 | Received 17 May 2007, Accepted 23 Jul 2007, Published online: 22 May 2014

  • 1) Burd, C. J., Morey, L. M., and Knudsen, K. E., Androgen receptor corepressors and prostate cancer. Endocr. Relat. Cancer, 13, 979–994 (2006).
  • 2) Powell, S. M., Brooke, G. N., Whitaker, H. C., Reebye, V., Gamble, S. C., Chotai, D., Dart, D. A., Belandia, B., and Bevan, C. L., Mechanisms of androgen receptor repression in prostate cancer. Biochem. Soc. Trans., 34, 1124–1127 (2006).
  • 3) Yoon, H. G., and Wong, J., The corepressor silencing mediator of retinoid and thyroid hormone receptor and nuclear receptor corepressor are involved in agonist- and antagonist-regulated transcription by androgen receptor. Mol. Endocrinol., 20, 1048–1060 (2006).
  • 4) Mantoni, T. S., Reid, G., and Garrett, M. D., Androgen receptor activity is inhibited in response to genotoxic agents in a p53-independent manner. Oncogene, 25, 3139–3149 (2006).
  • 5) Davis, C. D., and Ross, S. A., Dietary components impact histone modifications and cancer risk. Nutr. Rev., 65, 88–94 (2007).
  • 6) Fu, M., Wang, C., Zhang, X., and Pestell, R. G., Acetylation of nuclear receptor incellular growth and apoptosis. Biochem. Pharmacol., 68, 1199–1208 (2004).
  • 7) Manoharan, M., Ramachandran, K., Soloway, M. S., and Singal, R., Epigenetic targets in the diagnosis and treatment of prostate cancer. Int. Braz. J. Urol., 33, 11–18 (2007).
  • 8) Saha, R. N., and Pahan, K., HATs and HDACs in neurodegeneration: a tale of disconcerted acetylation homeostasis. Cell Death Differ., 13, 539–550 (2006).
  • 9) Yoon, H. G., Chan, D. W., Huang, Z. Q., Li, J., Fondell, J. D., Qin, J., and Wong, J., Purification and functional characterization of the human N-CoR complex: the roles of HDAC3, TBL1 and TBLR1. EMBO J., 22, 1336–1346 (2003).
  • 10) Inche, A. G., and La Thangue, N. B., Chromatin control and cancer-drug discovery: realizing the promise. Drug Discov. Today, 11, 97–109 (2006).
  • 11) Stimson, L., Rowlands, M. G., Newbatt, Y. M., Smith, N. F., Raynaud, F. I., Rogers, P., Bavetsias, V., Gorsuch, S., Jarman, M., Bannister, A., Kouzarides, T., McDonald, E., Workman, P., and Aherne, G. W., Isothiazolones as inhibitors of PCAF and p300 histone acetyltransferase activity. Mol. Cancer Ther., 4, 1521–1532 (2005).
  • 12) Archer, S. Y., and Hodin, R. A., Histone acetylation and cancer. Curr. Opin. Genet. Dev., 9, 171–174 (1999).
  • 13) Balasubramanyam, K., Swaminathan, V., Ranganathan, A., and Kundu, T. K., Small molecule modulators of histone acetyltransferase p300. J. Biol. Chem., 278, 19134–19140 (2003).
  • 14) Balasubramanyam, K., Altaf, M., Varier, R. A., Swaminathan, V., Ravindran, A., Sadhale, P. P., and Kundu, T. K., Polyisoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expression. J. Biol. Chem., 279, 33716–33726 (2004).
  • 15) Lau, O. D., Kundu, T. K., Soccio, R. E., Ait-Si-Ali, S., Khalil, E. M., Vassilev, A., Wolffe, A. P., Nakatani, Y., Roeder, R. G., and Cole, P. A., HATs off: selective synthetic inhibitors of the histone acetyltransferases p300 and PCAF. Mol. Cell, 5, 589–595 (2000).
  • 16) Balasubramanyam, K., Varier, R. A., Altaf, M., Swaminathan, V., Siddappa, N. B., Ranga, U., and Kundu, T. K., Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J. Biol. Chem., 279, 51163–51171 (2004).
  • 17) Sun, Y., Jiang, X., Chen, S., and Price, B. D., Inhibition of histone acetyltransferase activity by anacardic acid sensitizes tumor cells to ionizing radiation. FEBS Lett., 580, 4353–4356 (2006).
  • 18) Nakatani, N., Phenolic antioxidants from herbs and spices. Biofactors, 13, 141–146 (2000).
  • 19) Kluth, D., Banning, A., Paur, I., Blomhoff, R., and Brigelius-Flohe, R., Modulation of pregnane X receptor- and electrophile responsive element-mediated gene expression by dietary polyphenolic compounds. Free Radic. Biol. Med., 42, 315–325 (2007).
  • 20) Dignam, J. D., Lebovitz, R. M., and Roeder, R. G., Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res., 11, 1475–1489 (1983).
  • 21) Yoon, H. G., Chan, D. W., Reynolds, A. B., Qin, J., and Wong, J., N-CoR mediates DNA methylation-dependent repression through a methyl CpG binding protein Kaiso. Mol. Cell, 12, 723–734 (2003).
  • 22) Shang, Y., Hu, X., DiRenzo, J., Lazar, M. A., and Brown, M., Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell, 103, 843–852 (2000).
  • 23) Fu, M., Wang, C., Reutens, A. T., Wang, J., Angeletti, R. H., Siconolfi-Baez, L., Ogryzko, V., Avantaggiati, M. L., and Pestell, R. G., p300 and p300/cAMP-response element-binding protein-associated factor acetylate the androgen receptor at sites governing hormone-dependent transactivation. J. Biol. Chem., 275, 20853–20860 (2000).
  • 24) Agarwal, C., Singh, R. P., and Agarwal, R., Grape seed extract induced apoptotic death of human prostate carcinoma DU145 cells via caspase activation accompanied by dissipation of mitochondrial membrane potential and cytochrome c release. Carcinogenesis, 23, 1869–1878 (2002).
  • 25) Singh, R. P., Tyagi, A. K., Dhanalakshmi, S., Agarwal, R., and Agarwal, C., Grape seed extract inhibits advanced human prostate tumor growth and angiogenesis and upregulates insulin-like growth factor binding protein-3. Int. J. Cancer, 108, 733–740 (2004).
  • 26) Dhanalakshmi, S., Agarwal, R., and Agarwal, C., Inhibition of NF-kappa B pathway in grape seed extract-induced apoptotic death of human prostate carcinoma DU145 cells. Int. J. Oncol., 23, 721–727 (2003).
  • 27) Lee, H. H., Ho, C. T., and Lin, J. K., Theaflavin-3, 3′-digallate and penta-O-galloyl-beta-D-glucose inhibit rat liver microsomal 5-alpha-reductase activity and the expression of androgen receptor in LNCaP prostate cancer cells. Carcinogenesis, 22, 409–414 (2001).
  • 28) Schmidt, B. M., Erdman Jr., J. W., and Lila, M. A., Differential effects of blueberry proantocyanidins on androgen sensitive and insensitive human prostate cancer cell lines. Cancer Lett., 231, 240–246 (2006).
  • 29) Kikuzaki, H., Hara, S., Kawai, Y., and Nakatani, N., Antioxidant phenylpropanoids from berries of Pimenta dioica. Phytochemistry, 52, 1307–1312 (1999).
  • 30) Fu, M., Wang, C., Wang, J., Zhang, X., Sakamaki, T., Yeung, Y. G., Chang, C., Hopp, T., Fuqua, S. A., Jaffray, E., Hay, R. T., Palvimo, J. J., Janne, O. A., and Pestell, R. G., Androgen receptor acetylation governs transactivation and MEKK1-induced apoptosis without affecting in vitro sumoylation and trans-repression function. Mol. Cell. Biol., 22, 3373–3388 (2002).
  • 31) Fu, M., Rao, M., Wang, C., Sakamaki, T., Wang, J., Vizio, D. D., Zhang, X., Albanese, C., Balk, S., Chang, C., Fan, S., Rosen, E., Palvimo, J. J., Janne, O. A., Muratoglu, S., Avantaggiati, M. L., and Pestell, R. G., Acetylation of androgen receptor enhances coactivator binding and promotes prostate cancer cell growth. Mol. Cell. Biol., 23, 8563–8575 (2003).
  • 32) Kang, S. K., Cha, S. H., and Jeon, H. G., Curcumin-induced histone hypoacetylation enhances caspase-3-dependent glioma cell death and neurogenesis of neural progenitor cells. Stem Cells Dev., 15, 165–174 (2006).
  • 33) Gong, J., Zhu, J., Goodman, O. B. Jr., Pestell, R. G., Schlegel, P. N., Nanus, D. M., and Shen, R., Activation of p300 histone acetyltransferase activity and acetylation of the androgen receptor by bombesin in prostate cancer cells. Oncogene, 25, 2011–2021 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.