585
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Purification and Characterization of Chitinase A of Streptomyces cyaneus SP-27: An Enzyme Participates in Protoplast Formation from Schizophyllum commune Mycelia

, , , , , & show all
Pages 54-61 | Received 01 Jun 2007, Accepted 12 Oct 2007, Published online: 22 May 2014

  • 1) Fernando, T., Bumpus, J. A., and Aust, S. D., Biodegradation of TNT (2,4,6-trinitrotoluene) by Phanerochaete chrysosporium. Appl. Environ. Microbiol., 56, 1666–1671 (1990).
  • 2) Rajarathnam, S., and Bano, Z., Biological utilization of edible fruiting fungi. In “Handbook of Applied Mycology, Vol. 3, Foods and Feeds,” eds. Arora, D. K., Mukerji, K. G., and Marth, E. H., Marcel Dekker, New York, pp. 241–292 (1991).
  • 3) Bumpus, J. A., and Aust, S. D., Biodegradation of environmental pollutants by the white rot fungus Phanerochaete chrysosporium: involvement of the lignin degrading system. BioEssays, 6, 166–170 (1987).
  • 4) Yamada, O., Magae, Y., Kashiwagi, Y., and Sasaki, T., Preparation and regeneration of mycelial protoplasts of Collybia veltipes and Pleurotus ostreatus. Eur. J. Appl. Microbiol. Biotechnol., 17, 298–300 (1983).
  • 5) Wakabayashi, S., Magae, Y., Kashiwagi, Y., and Sasaki, T., Formation of giant protoplasts from protoplasts of Pleurotus cornucopiae by the cell wall lytic enzyme. Appl. Microbiol. Biotechnol., 21, 328–330 (1985).
  • 6) Yanagi, S. O., Monma, M., Kawasumi, T., Hino, A., Kito, M., and Takebe, I., Conditions for isolation of and colony formation by mycelial protoplasts of Coprinus macrorhizus. Agric. Biol. Chem., 49, 171–179 (1985).
  • 7) Peng, M., Lemke, P. A., and Shaw, J. J., Improved conditions for protoplast formation and transformation of Pleurotus ostreatus. Appl. Microbiol. Biotechnol., 40, 101–106 (1993).
  • 8) Mizuno, K., Kimura, O., and Tachiki, T., Protoplast formation from Schizophyllum commune by a culture filtrate of Bacillus circulans KA-304 grown on a cell-wall preparation of S. commune as a carbon source. Biosci. Biotechnol. Biochem., 61, 852–857 (1997).
  • 9) Yano, S., Yamamoto, S., Toge, T., Wakayama, M., and Tachiki, T., Occurrence of a specific protein in basidiomycete-lytic enzyme preparation produced by Bacillus circulans KA-304 inductively with a cell-wall preparation of Schizophyllum commune. Biosci. Biotechnol. Biochem., 67, 1976–1982 (2003).
  • 10) Yano, S., Rattanakit, N., Wakayama, M., and Tachiki, T., A chitinase indispensable for formation of protoplast of Schizophyllum commune in basidiomycete-lytic enzyme preparation produced by Bacillus circulans KA-304. Biosci. Biotechnol. Biochem., 68, 1299–1305 (2004).
  • 11) Yano, S., Wakayama, M., and Tachiki, T., Cloning and expression of an α-1,3-glucanase gene from Bacillus circulans KA-304: the enzyme participates in protoplast formation of Schizophyllum commune. Biosci. Biotechnol. Biochem., 70, 1754–1763 (2006).
  • 12) Kikawa, H., Shimotuura, I., and Yokobori, Y., Patent JP 1998201483-A 1 (Aug. 4, 1998).
  • 13) Yano, S., Rattanakit, N., Wakayama, M., and Tachiki, T., Cloning and expression of a Bacillus circulans KA-304 gene encoding chitinase I, which participates in protoplast formation of Schizophyllum commune. Biosci. Biotechnol. Biochem., 69, 602–609 (2005).
  • 14) Watanabe, T., Ito, Y., Yamada, T., Hashimoto, M., Sekine, S., and Tanaka, H., The roles of the C-terminal domain and type III domains of chitinase A1 from Bacillus circulans WL-12 in chitin degradation. J. Bacteriol., 176, 4465–4472 (1994).
  • 15) Ohno, T., Armand, S., Hata, T., Nikaidou, N., Henrissat, B., Mitsutomi, M., and Watanabe, T., A modular family 19 chitinase found in the prokaryotic organism Streptomyces griseus HUT 6037. J. Bacteriol., 178, 5065–5070 (1996).
  • 16) Saito, A., Fujii, T., Yoneyama, T., Redenbach, M., Ohno, T., Watanabe, T., and Miyashita, K., High-multiplicity of chitinase genes in Streptomyces coelicolor A3(2). Biosci. Biotechnol. Biochem., 63, 710–718 (1999).
  • 17) Tsujibo, H., Okamoto, T., Hatano, N., Miyamoto, K., Watanabe, T., Mitsutomi, M., and Inamori, Y., Family 19 chitinases from Streptomyces thermoviolaceus OPC-520: molecular cloning and characterization. Biosci. Biotechnol. Biochem., 64, 2445–2453 (2000).
  • 18) Ueda, M., Kojima, M., Yoshikawa, T., Mitsuda, N., Araki, K., Kawaguchi, T., Miyatake, K., Arai, M., and Fukamizo, T., A novel type of family 19 chitinase from Aeromonas sp. No. 10S-24: cloning, sequence, expression, and enzymatic properties. Eur. J. Biochem., 270, 2513–2520 (2003).
  • 19) Shimosaka, M., Fukumori, Y., Narita, T., Zhang, X., Kodaira, R., Nogawa, M., and Okazaki, M., The bacterium Burkholderia gladioli strain CHB101 produces two different kinds of chitinases belonging to families 18 and 19 of the glycosyl hydrolases. J. Biosci. Bioeng., 91, 103–105 (2001).
  • 20) Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D., Basic local alignment search tool. J. Mol. Biol., 215, 403–410 (1990).
  • 21) Imoto, T., and Yagishita, K., A simple activity measurement of lysozyme. Agric. Biol. Chem., 34, 1154–1156 (1971).
  • 22) Ressing, J. L., Strominger, J. L., and Leloir, L. F., Modified colorimetric method for the estimation of N-acetylamino sugars. J. Biol. Chem., 217, 959–966 (1955).
  • 23) Koga, D., Yoshioka, T., and Arakane, Y., HPLC analysis of anomeric formation and cleavage pattern by chitinolytic enzyme. Biosci. Biotechnol. Biochem., 62, 1643–1646 (1998).
  • 24) Lowry, O. H., Rosebrought, N. J., Farr, A. L., and Randall, R. J., Protein measurement with the folin phenol reagent. J. Biol. Chem., 193, 265–275 (1951).
  • 25) Laemmli, U. K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685 (1970).
  • 26) Berger, L. R., and Reynolds, D. M., The chitinase system of a strain of Streptomyces griseus. Biochim. Biophys. Acta, 29, 522–534 (1958).
  • 27) Li, H., Plattner, H., Meens, J., and Diekmann, H., DDBJ, EMBL, and GenBank accession no. AJ133186 (1999).
  • 28) Watanabe, T., Kanai, R., Kawase, T., Tanabe, T., Mitsutomi, M., Sakuda, S., and Miyashita, K., Family 19 chitinases of Streptomyces species: characterization and distribution. Microbiology, 145, 3353–3363 (1999).
  • 29) Kawase, T., Yokokawa, S., Saito, A., Fujii, T., Nikaidou, N., Miyashita, K., and Watanabe, T., Comparison of enzymatic and antifungal properties between family 18 and 19 chitinases from S. coelicolor A3(2). Biosci. Biotechnol. Biochem., 70, 988–998 (2006).
  • 30) Fukamizo, T., Koga, D., and Goto, S., Comparative biochemistry of chitinases: anomeric form of the reaction product. Biosci. Biotechnol. Biochem., 59, 311–313 (1995).
  • 31) Brameld, K. A., and Goddard, W. A. III, The role of enzyme distortion in the single displacement mechanism of family 19 chitinases. Proc. Natl. Acad. Sci. USA, 95, 4276–4281 (1998).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.