737
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Glucosylation of Acetic Acid by Sucrose Phosphorylase

, , , , , & show all
Pages 82-87 | Received 06 Jul 2007, Accepted 18 Sep 2007, Published online: 22 May 2014

  • 1) Mieyal, J. J., and Ables, R. H., “Enzymes” 3rd ed. Vol. 7, ed. Boyer, P. D., Academic Press, New York, pp. 515–532 (1972).
  • 2) Kitao, S., Ariga, T., Matsudo, T., and Sekine, H., The synthesis of catechin-glucosides by transglycosylation with Leuconostoc mesenteroides sucrose phosphorylase. Biosci. Biotechnol. Biochem., 57, 2010–2015 (1993).
  • 3) Kitao, S., and Sekine, H., α-D-Glucosyl transfer to phenolic compounds by sucrose phosphorylase from Leuconostoc mesenteroides and production of α-arbutin. Biosci. Biotechnol. Biochem., 58, 38–42 (1994).
  • 4) Kitao, S., Matsudo, T., Sasaki, T., Koga, T., and Kawamura, M., Enzymatic synthesis of stable, odorless, and powdered furanone glucosides by sucrose phosphorylase. Biosci. Biotechnol. Biochem., 64, 134–141 (2000).
  • 5) Kitao, S., and Sekine, H., Syntheses of two kojic acid glucosides with sucrose phosphorylase from Leuconostoc mesenteroides. Biosci. Biotechnol. Biochem., 58, 419–420 (1994).
  • 6) Kitao, S., and Sekine, H., Transglucosylation catalyzed by sucrose phosphorylase from Leuconostoc mesenteroides and production of glucosyl-xylitol. Biosci. Biotechnol. Biochem., 56, 2011–2014 (1992).
  • 7) Suzuki, Y., and Suzuki, K., Enzymatic formation of 4G-α-D-glucopyranosyl-rutin. Agric. Biol. Chem., 55, 181–187 (1991).
  • 8) Kometani, T., Nishimura, T., Nakae, T., Takii, H., and Okada, S., Synthesis of neohesperidin glycosides by cyclodextrin glucanotransferase from an alkalophilic Bacillus species. Biosci. Biotechnol. Biochem., 60, 645–649 (1996).
  • 9) Kometani, T., Tanimoto, H., Nishimura, T., Kanbara, I., and Okada, S., Glucosylation of capsaicin by cell suspension cultures of Coffea Arabica. Biosci. Biotechnol. Biochem., 57, 2192–2193 (1993).
  • 10) Takenaka, F., and Uchiyama, H., Synthesis of α-D-glucosylglycerol by α-glucosidase and some of its characteristics. Biosci. Biotechnol. Biochem., 64, 1821–1826 (2000).
  • 11) Nishimura, T., Kometani, T., Takii, H., Terada, Y., and Okada, S., Purification and some properties of α-Amylase from Bacillus subtilis X-23 that glucosylates phenolic compounds such as hydroquinone. J. Ferment. Bioeng., 78, 31–36 (1994).
  • 12) Nishimura, T., Kometani, T., Takii, H., Terada, Y., and Okada, S., Accepter specificity in the glucosylation reaction of Bacillus subtilis X-23 α-Amylase towards various phenolic compounds and the structure of kojic acid glucoside. J. Ferment. Bioeng., 78, 37–41 (1994).
  • 13) Takata, H., Kuriki, T., Okada, S., Takesada, Y., Iizuka, M., Minamiura, N., and Imanaka, T., Action of neopullulanase. J. Biol. Chem., 267, 18447–18452 (1992).
  • 14) Nakano, H., Kiso, T., Okamoto, K., Tomita, T., Manan, M. B., and Kitahata, S., Synthesis of glycosyl glycerol by cyclodextrin glucanotransferases. J. Biosci. Bioeng., 95, 583–588 (2003).
  • 15) Sugimoto, K., Nomura, K., Nishiura, H., Nishimura, T., Hayashi, H., and Kuriki, T., Novel transglucosylating reaction of sucrose phosphorylase to carboxylic compounds such as benzoic acid. J. Biosci. Bioeng., 104, 22–29 (2007).
  • 16) Fujii, K., Iibosi, M., Yanase, M., Takaha, T., and Kuriki, T., Enhancing the thermal stability of sucrose phosphorylase from Streptococcus mutans by random mutagenesis. J. Appl. Glycosci., 53, 91–97 (2006).
  • 17) Silverstein, R., Voet, J., Reed, D., and Abeles, R. H., Purification and mechanism of action of sucrose phosphorylase. J. Biol. Chem., 242, 1338–1346 (1967).
  • 18) Mirza, O., Skov, L. K., Sprogøe, D., van den Broek, L. A., Beldman, G., Kastrup, J. S., and Gajhede, M., Structural rearrangements of sucrose phosphorylase from Bifidobacterium adolescentis during sucrose conversion. J. Biol. Chem., 281, 35576–35584 (2006).
  • 19) Kishi, M., Fukaya, M., Tsukamoto, Y., Nagasawa, T., Takehana, K., and Nishizawa, N., Enhancing effect of dietary vinegar on the intestinal absorption of calcium in ovariectomized rats. Biosci. Biotechnol. Biochem., 63, 905–910 (1999).
  • 20) Fushimi, T., Tayama, K., Fukaya, M., Kitakoshi, K., Nakai, N., Tsukamoto, Y., and Sato, Y., Acetic acid feeding enhances glycogen repletion in liver and skeletal muscle of rats. J. Nutr., 131, 1973–1977 (2001).
  • 21) Kondo, S., Tayama, K., Tsukamoto, Y., Ikeda, K., and Yamori, Y., Antihypertensive effects of acetic acid and vinegar on spontaneously hypertensive rats. Biosci. Biotechnol. Biochem., 65, 2690–2694 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.