541
Views
33
CrossRef citations to date
0
Altmetric
Original Articles

Effect of Bovine Lactoferrin on Extracellular Matrix Calcification by Human Osteoblast-Like Cells

&
Pages 226-230 | Received 23 Jul 2007, Accepted 03 Oct 2007, Published online: 22 May 2014

  • 1) Lönnerdal, B., Nutritional and physiologic significance of human milk proteins. Am. J. Clin. Nutr., 77, 1537–1543 (2003).
  • 2) Toba, Y., Takada, Y., Yamamura, J., Tanaka, M., Matsuoka, Y., Kawakami, H., Itabashi, A., Aoe, S., and Kumegawa, M., Milk basic protein: a novel protective function of milk against osteoporosis. Bone, 27, 403–408 (2000).
  • 3) Brock, J. H., The physiology of lactoferrin. Biochem. Cell Biol., 80, 1–6 (2002).
  • 4) Naot, D., Grey, A., Reid, I. R., and Cornish, J., Lactoferrin — a novel bone growth factor. Clin. Med. Res., 3, 93–101 (2005).
  • 5) Weiner, S., and Wagner, H. D., The material bone; structure-mechanical function relations. Ann. Rev. Mater. Sci., 28, 271–298 (1998).
  • 6) Mackie, E. J., Osteoblasts: novel roles in orchestration of skeletal architecture. Int. J. Biochem. Cell Biol., 35, 1301–1305 (2003).
  • 7) Takagishi, Y., Kawakami, T., Hara, Y., Shinkai, M., Takezawa, T., and Nagamune, T., Bone-like tissue formation by three-dimensional culture of MG63 osteosarcoma cells in gelatin hydrogels using calcium-enriched medium. Tissue Eng., 12, 927–937 (2006).
  • 8) Bonewald, L. F., Kester, M. B., Schwartz, Z., Swain, L. D., Khare, A., Johnson, T. L., Leach, R. J., and Boyan, B. D., Effects of combining transforming growth factor beta and 1,25-dihydroxyvitamin D3 on differentiation of a human osteosarcoma (MG-63). J. Biol. Chem., 267, 8943–8949 (1992).
  • 9) Morris, C., Thorpe, J., Ambrosio, L., and Santin, M., The soybean isoflavone genistein induces differentiation of MG63 human osteosarcoma osteoblasts. J. Nutr., 136, 1166–1170 (2006).
  • 10) Stein, G. S., Lian, J. B., Stein, J. L., Van Wijnen, A. J., and Montecino, M., Transcriptional control of osteoblast growth and differentiation. Physiol. Rev., 76, 593–629 (1996).
  • 11) Narisawa, S., Frohlander, N., and Millan, J. L., Inactivation of two mouse alkaline phosphatase genes and establishment of a model of infantile hypophosphatasia. Dev. Dyn., 208, 432–446 (1997).
  • 12) Uchimura, E., Machida, H., Kotobuki, N., Kihara, T., Kitamura, S., Ikeuchi, M., Hirose, M., Miyake, J., and Ohgushi, H., In-situ visualization and quantification of mineralization of cultured osteogenetic cells. Calcif. Tissue Int., 73, 575 (2003).
  • 13) Van Hoof, V. O., and De Broe, M. E., Interpretation and clinical significance of alkaline phosphatase isoenzyme patterns. Crit. Rev. Clin. Lab. Sci., 31, 197–293 (1994).
  • 14) Meyer, U., Buchter, A., Wiesmann, H. P., Joos, U., and Jones, D. B., Basic reactions of osteoblasts on structured material surfaces. Eur. Cell Mater., 26, 39–49 (2005).
  • 15) Garcia, A. J., and Reyes, C. D., Bio-adhesive surfaces to promote osteoblast differentiation and bone formation. J. Dent. Res., 84, 407–413 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.