324
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Enzymatic Characterization of 5-Methylthioribulose-1-phosphate Dehydratase of the Methionine Salvage Pathway in Bacillus subtilis

, , &
Pages 959-967 | Received 11 Oct 2007, Accepted 18 Dec 2007, Published online: 22 May 2014

  • 1) Grundy, F. J., and Henkin, T. M., “Bacillus subtilis and Its Closest Relatives,” eds. Sonenshein, A. L., Hoch, J. A., and Losick, R., Am. Soc. Microbiol., Washington, DC, pp. 245–254 (2002).
  • 2) Sekowska, A., Kung, H. F., and Danchin, A., Sulfur metabolism in Escherichia coli and related bacteria: facts and fiction. J. Mol. Microbiol. Biotechnol., 2, 145–177 (2000).
  • 3) Marchitto, K. S., and Ferro, J. A., The metabolism of 5′-methylthioadenosine and 5-methylthioribose-1-phosphate in Saccharomyces cerevisiae. J. Gen. Microbiol., 131, 2153–2164 (1985).
  • 4) Kushad, M. M., Orvos, A., and Ferro, A. J., 5′-methylthioadenosine nucleosidase and 5-methylthioribose kinase activities in relation to stress-induced ethylene biosynthesis. Physiol. Plant., 86, 532–538 (1992).
  • 5) Garcia-Castellano, J. M., Villanueva, A., Healey, J. H., Sowers, R., Cordon-Cardo, C., Huvos, A., Bertino, J. R., Meyers, P., and Gorlick, R., Methylthioadenosine phosphorylase gene deletions are common in osteosarcoma. Clin. Cancer Res., 8, 782–787 (2002).
  • 6) Wray, J. W., and Abeles, R. H., The methionine salvage pathway in Klebsiella pneumoniae and rat liver: identification and characterization of two novel dioxygenases. J. Biol. Chem., 270, 3147–3153 (1995).
  • 7) Negishi, T., Nakanishi, H., Yazaki, J., Kishimoto, N., Fujii, F., Shimbo, K., Yamamoto, K., Sakata, K., Sasaki, T., Kikuchi, S., Mori, S., and Nishizawa, N. K., cDNA microarray analysis of gene expression during Fe deficiency stress in barley suggests that polar transport of vesicles is implicated in phytosiderophore secretion in Fe-deficient barley roots. Plant J., 30, 83–94 (2002).
  • 8) Ashida, H., Saito, Y., Kojima, C., Kobayashi, K., Ogasawara, N., and Yokota, A., A functional link between RuBisCO-like protein of Bacillus and photosynthetic RuBisCO. Science, 302, 286–290 (2003).
  • 9) Sekowska, A., Dénervaud, V., Ashida, H., Michoud, K., Haas, D., Yokota, A., and Danchin, A., Bacterial variations on the methionine salvage pathway. BMC Microbiol., 4, 9 (2004).
  • 10) Ashida, H., Danchin, A., and Yokota, A., Was photosynthetic RuBisCO recruited by acquisitive evolution from RuBisCO-like proteins involved in sulfur metabolism? Res. Microbiol., 156, 611–618 (2005).
  • 11) Wang, H., Pang, H., Bartlam, M., and Rao, Z., Crystal structure of human E1 enzyme and its complex with a substrate analog reveals the mechanism of its phosphatase/enolase activity. J. Mol. Biol., 348, 917–926 (2005).
  • 12) Wang, H., Pang, H., Ding, Y., Li, Y., and Rao, Z., Purification, crystallization and preliminary X-ray diffraction analysis of human enolase-phosphatase E1. Acta Crystallograph. Sect. F Struct. Biol. Cryst. Commun., 61, 521–523 (2005).
  • 13) Dreyer, M. K., and Schulz, G. E., The spatial structure of the class II L-fuculose-1-phosphate aldolase from Echerichia coli. J. Mol. Biol., 231, 549–553 (1993).
  • 14) Johnson, A. E., and Tanner, M. E., Epimerization via carbon-carbon bond cleavage. L-Ribulose-5-phosphate 4-epimerase as a masked class II aldolase. Biochemistry, 37, 5746–5754 (1998).
  • 15) Lee, L. V., Poyner, R. R., Vu, M. V., and Cleland, W. W., Role of metal ions in the reaction catalyzed by L-ribulose-5-phosphate 4-epimerase. Biochemistry, 39, 4821–4830 (2000).
  • 16) Luo, Y., Samuel, J., Mosimann, S. C., Lee, J. E., Tanner, M. E., and Strynadka, N. C. J., The structure of L-ribulose-5-phosphate 4-epimerase: an aldolase-like platform for epimerization. Biochemistry, 40, 14763–14771 (2001).
  • 17) Samuel, J., Luo, Y., Morgan, P. M., Strynadka, N. C. J., and Tanner, M. E., Catalysis and binding in L-ribulose-5-phosphate 4-epimerase: a comparison with L-fuculose-1-phosphate aldolase. Biochemistry, 40, 14772–14780 (2001).
  • 18) Kroemer, M., Merkel, I., and Schulz, G. E., Structure and catalytic mechanism of L-rhamnulose-1-phosphate aldolase. Biochemistry, 42, 10560–10568 (2003).
  • 19) Saunders, C., Schmidt, B., Morot, M., Thompson, L., and Guyer, M., Use of chromosomal integration in the establishment and expression of blaZ, a Staphylococcus aureus β-lactamase gene, in Bacillus subtilis. J. Bacteriol., 157, 718–726 (1984).
  • 20) Saito, Y., Ashida, H., Kojima, C., Tamura, H., Matsumura, H., Kai, Y., and Yokota, A., Enzymatic characterization of 5-methylthioribose 1-phosphate isomerase from Bacillus subtilis. Biosci. Biotechnol. Biochem., 71, 2021–2028 (2007).
  • 21) Horecker, B. L., Tsolas, O., and Lai, C. Y., “The Enzymes,” ed, Boyer, P. D., Academic Press, New York, pp. 213–258 (1972).
  • 22) Fessner, W. D., Schneider, A., Held, H., Sinerius, G., Walter, C., Hixon, M., and Schloss, J. V., The mechanism of class II, metal dependent aldolases. Angew. Chem., Int. Ed. Engl., 35, 2219–2221 (1996).
  • 23) Lee, L. V., Vu, M. V., and Cleland, W. W., 13C and deuterium isotope effects suggest an aldol cleavage mechanism for L-ribulose-5-phosphate 4-epimerase. Biochemistry, 39, 4808–4820 (2000).
  • 24) Joerger, A. C., Mueller-Dieckmann, C., and Schulz, G. E., Structures of L-fuculose-1-phosphate aldolase mutants outlining motions during catalysis. J. Mol. Biol., 303, 531–543 (2000).
  • 25) Furfine, E. S., and Abeles, R. H., Intermediates in the conversion of 5′-S-methylthioadenosine to methionine in Klebsiella pneumoniae. J. Biol. Chem., 263, 9598–9606 (1988).
  • 26) Hixon, M., Sinerius, G., Schneider, A., Walter, C., Wolf-Dieter, F., and Schloss, J. V., Quo vadis photorespiration: a tale of two aldolases. FEBS Lett., 392, 281–284 (1996).
  • 27) Li, M., Suzuki, E., and Kurata, T., Effect of 2,3-diketo-L-gulonic acid on the oxidation of yolk lipoprotein. Biosci. Biotechnol. Biochem., 65, 599–604 (2001).
  • 28) Nishikawa, Y., Toyoshima, Y., and Kurata, T., Identification of 3, 4-Dihydroxy-2-oxo-butanal (L-threosone) as an intermediate compound in oxidative degradation of dehydro-L-ascorbic acid and 2,3-diketo-L-gulonic acid in a deuterium oxide phosphate buffer. Biosci. Biotechnol. Biochem., 65, 1707–1712 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.