315
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Thermodynamic Redox Properties Governing the Half-Reduction Characteristics of Histamine Dehydrogenase from Nocardioides simplex

, , , &
Pages 786-796 | Received 17 Oct 2007, Accepted 06 Dec 2007, Published online: 22 May 2014

  • 1) Taylor, S. L., Histamine food poisoning: toxicology and clinical aspects. Crit. Rev. Toxicol., 17, 91–128 (1986).
  • 2) Taylor, S. L., Stratton, J. E., and Nordlee, J. A., Histamine poisoning (scombroid fish poisoning): an allergy-like intoxication. J. Toxicol. Clin. Toxicol., 27, 225–240 (1989).
  • 3) López-Sabater, E. I., Rodrígues-Jezz, J. J., Roig-Sagues, A. X., and Mora-Ventuna, M. T., Determination of histamine in fish using an enzymatic method. Food Addit. Contam., 10, 593–602 (1993).
  • 4) Lehane, L., and Olley, J., Histamine fish poisoning revisited. Int. J. Food Microbiol., 58, 1–37 (2000).
  • 5) Siddiqui, J. A., Shoeb, S. M., Takayama, S., Shimizu, E., and Yorifuji, T., Histamine dehydrogenase of Nocardioides simplex: a second bacterial enzyme for histamine degradation. J. Biochem. Mol. Biol. Biophys., 5, 37–43 (2000).
  • 6) Sato, T., Horiuchi, T., and Nishimura, I., Simple and rapid determination of histamine in food using a new histamine dehydrogenase from Rhizobium sp. Anal. Biochem., 346, 320–326 (2005).
  • 7) Bakke, M., Sato, T., Ichikawa, K., and Nishimura, I., Histamine dehydrogenase from Rhizobium sp.: gene cloning, expression in Escherichia coli, characterization and application to histamine determination. J. Biotechnol., 119, 260–271 (2005).
  • 8) Suddiqui, J. A., Shoeb, S. M., Takayama, S., Shimizu, E., and Yorifuji, T., Purification and characterization of histamine dehydrogenase from Nocardioides simplex IFO 12069. FEMS Microbiol. Lett., 189, 183–187 (2000).
  • 9) Takagi, K., and Shikata, S., Flow injection determination of histamine dehydrogenase-based electrode. Anal. Chim. Acta, 505, 189–193 (2004).
  • 10) Fujieda, N., Satoh, A., Tsuse, N., Kano, K., and Ikeda, T., 6-S-Cysteinyl flavin mononucleotide-containing histamine dehydrogenase from Nocardioides simplex: molecular cloning, sequencing, overexpression, and characterization of redox centers of enzyme. Biochemistry, 43, 10800–10808 (2004).
  • 11) Limburg, J., Mure, M., and Klinman, J. P., Cloning and characterization of histamine dehydrogenase from Nocardioides simplex. Arch. Biochem. Biophys., 436, 8–22 (2005).
  • 12) Fujieda, N., Tsuse, N., Satoh, A., Ikeda, T., and Kano, K., Production of completely flavinylated histamine dehydrogenase, unique covalently bound flavin, and iron-sulfur cluster-containing enzyme of Nocardioides simplex in Escherichia coli, and its properties. Biosci. Biotechnol. Biochem., 69, 2459–2462 (2005).
  • 13) Steenkamp, D. J., and Mallison, J., Trimethylamine dehydrogenase from a methylotrophic bacterium. I. Isolation and steady-state kinetics. Biochem. Biophys. Acta, 429, 705–719 (1976).
  • 14) Steenkamp, D. J., and Gallup, M., The natural flavorprotein electron acceptor of trimethylamine dehydrogenase. J. Biol. Chem., 253, 4086–4089 (1978).
  • 15) Chen, D. W., and Swenson, R. P., Cloning, sequence analysis, and expression of the genes encoding the two subunits of the methylotrophic bacterium W3A1 electron transfer flavoprotein. J. Biol. Chem., 269, 32120–32130 (1994).
  • 16) Steenkamp, D. J., and Beinert, H., Mechanistic studies on the dehydrogenases of methylotrophic bacteria. 2. Kinetic studies on the intramolecular electron transfer in trimethylamine and dimethylamine dehydrogenase. Biochem. J., 207, 241–252 (1982).
  • 17) Byron, C. M., Stankovich, M. T., Husain, M., and Davidson, V. L., Unusual redox properties of electron-transfer flavoprotein from Methylophilus methylotrophus. Biochemistry, 28, 8582–8587 (1989).
  • 18) Jang, M.-H., Scrutton, N. S., and Hille, R., Formation of W3A1 electron-transferring flavoprotein (ETF) hydroquinone in the trimethylamine dehydrogenase·ETF protein complex. J. Biol. Chem., 275, 12546–12552 (2000).
  • 19) Steenkamp, D. J., and Beinert, H., Mechanistic studies on the dehydrogenases of methylotrophic bacteria. 1. The influence of substrate binding to reduced trimethylamine dehydrogenase on the intramolecular electron transfer between its prosthetic groups. Biochem. J., 207, 233–239 (1982).
  • 20) Rohlfs, R. J., Huang, L., and Hille, R., Prototropic control of intramolecular electron transfer in trimethylamine dehydrogenase. J. Biol. Chem., 270, 22196–22207 (1995).
  • 21) Rohlfs, R. J., and Hille, R., Intramolecular electron transfer in trimethylamine dehydrogenase from bacterium W3A1. J. Biol. Chem., 266, 15244–15252 (1991).
  • 22) Barber, M. J., Pollock, V., and Spence, J. T., Microcoulometric analysis of trimethylamine dehydrogenase. Biochem. J., 256, 657–659 (1988).
  • 23) Vitamin and coenzyme. In “Biochemical Data Book” Vol. 1, Japan Biochemical Society, Tokyo Kagaku Dojiin, Tokyo, p. 1177 (1979).
  • 24) Tsujimura, S., Kuriyama, A., Fujieda, N., Kano, K., and Ikeda, T., Mediated spectroelectrochemical titration of proteins for redox potential measurements by a separator-less one-component bulk electrolysis method. Anal. Biochem., 337, 325–331 (2005).
  • 25) Nagabayashi, Y., Omayu, A., Yagi, S., Nakamura, K., and Motonaka, J., Evaluation of osmium (II) complexes as electron transfer mediators accessible for amperometric glucose sensors. Anal. Sci., 17, 945–950 (2001).
  • 26) Taniguchi, I., Watanabe, K., and Tominaga, M., Direct electron transfer of horse heart myoglobin at an indium oxide electrode. J. Electroanal. Chem., 333, 331–338 (1992).
  • 27) Anderson, R. F., Jang, M.-H., and Hille, R., Radiolytic studies of trimethylamine dehydrogenase. J. Biol. Chem., 275, 30781–30786 (2000).
  • 28) Iwasaki, T., Wakagi, T., Isogai, Y., Tanaka, K., Iizuka, T., and Oshima, T., Functional and evolutionary implications of a [3Fe-4S] cluster of the dicluster-type ferredoxin from the thermoasidphilic archaeon, Sulfolobus sp. stain 7. J. Biol. Chem., 269, 29444–29450 (1994).
  • 29) Torimura, M., Mochizuki, M., Kano, K., Ikeda, T., and Ueda, T., Mediator-assisted continuous-flow column electrolytic spectroelectrochemical technique for the measurement of protein redox potentials. Application to peroxidase. Anal. Chem., 70, 4690–4695 (1998).
  • 30) Laviron, E., Voltammetric methods for the study of adsorbed species. In “Electroanalytical Chemistry, a Series of Advance” Vol. 12, ed. Bard, A. J., Marcel Dekker, Inc., New York, Basel, pp. 54–69 (1966).
  • 31) Kano, K., and Uno, B., Surface-redox reaction mechanism of quinone adsorbed on basal-plane pyrolytic electrodes. Anal. Chem., 65, 1088–1093 (1993).
  • 32) Taniguchi, I., Hayashi, K., Tominaga, M., Muraguchi, R., and Hirose, A., Electron-transfer of ferredoxins at an indium oxide electrode in the presence of poly-L-lysine. Denki Kagaku (in Japanese), 61, 774–775 (1993).
  • 33) Taniguchi, I., Hirakawa, Y., Iwakiri, K., Tominaga, M., and Nishiyama, K., Polypeptide-modified indium oxide electrodes for direct electron-transfer of ferredoxin. J. Chem. Soc., Chem. Commun., 953–954 (1994).
  • 34) Nishiyama, K., Ishida, H., and Taniguchi, I., Aminosilane modified indium oxide electrodes for direct electron transfer of ferredoxin. J. Electroanal. Chem., 373, 255–258 (1994).
  • 35) Magliozzo, R. S., McIntosh, B. A., and Sweeney, W. V., Origin of the pH dependence of the midpoint reduction potential in Clostridium pasteurianum ferredoxin: oxidation state-dependent hydrogen iron association. J. Biol. Chem., 257, 3506–3509 (1981).
  • 36) Stombaugh, N. A., Sundquist, J. E., Burris, R. H., and Orme-Johnson, W. H., Oxidation-reduction properties of several low potential iron-sulfur proteins and of methylviologen. Biochemistry, 15, 2633–2641 (1976).
  • 37) Lode, E. T., Murray, C. L., and Rabinowitz, J. C., Apparent oxidation-reduction potential of Clostridium acidi-urici ferredoxin. J. Biol. Chem., 251, 1683–1687 (1976).
  • 38) Mizrahi, I. A., Wood, F. E., and Cusanovich, M. A., Oxidation-reduction properties of Chromatium vinosum high potential iron-sulfur protein. Biochemistry, 15, 343–348 (1976).
  • 39) Ingledew, W. J., and Ohnishi, T., An analysis of some thermodynamic properties of iron-sulphur centres in site I of mitochondria. Biochem. J., 186, 111–117 (1980).
  • 40) Chen, K., Bonague, C. A., Tilley, G. J., McEvoy, J. P., Jung, Y. S., Armstrong, F. A., Stout, C. D., and Burgess, B. K., Crystal structures of ferredoxin variants exhibiting large changes in [Fe-S] reduction potential. Nat. Struct. Biol., 9, 188–192 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.