294
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

In Vivo and in Vitro Complementation Study Comparing the Function of DnaK Chaperone Systems from Halophilic Lactic Acid Bacterium Tetragenococcus halophilus and Escherichia coli

, , , , , & show all
Pages 811-822 | Received 25 Oct 2007, Accepted 17 Dec 2007, Published online: 22 May 2014

  • 1) Gething, M. J., and Sambrook, J., Protein folding in the cell. Nature, 355, 33–45 (1992).
  • 2) Hartl, F. U., and Hayer-Hartl, M., Molecular chaperone in the cytosol: from nascent chain to folded protein. Science, 295, 1852–1858 (2002).
  • 3) Martin, J., and Hartl, F. U., Chaperone-assisted protein folding. Curr. Opin. Struct. Biol., 7, 41–52 (1997).
  • 4) Lindquist, S., and Craig, E. A., The heat-shock proteins. Annu. Rev. Genet., 22, 631–677 (1988).
  • 5) Brehmer, D., Gässler, C., Rist, W., Mayer, M. P., and Bukau, B., Influence of GrpE on DnaK-substrate interactions. J. Biol. Chem., 279, 27957–27964 (2004).
  • 6) Mayer, M. P., Schröder, H., Rudiger, S., Paal, K., Laufen, T., and Bukau, B., Multistep mechanism of substrate binding determines chaperone activity of Hsp70. Nat. Struct. Biol., 7, 586–593 (2000).
  • 7) McCarty, J. S., Buchberger, A., Reinstein, J., and Bukau, B., The role of ATP in the functional cycle of the DnaK chaperone system. J. Mol. Biol., 249, 126–137 (1995).
  • 8) Russell, R., Jordan, R., and McMacken, R., Kinetic characterization of the ATPase cycle of the DnaK molecular chaperone. Biochemistry, 37, 596–607 (1998).
  • 9) Suh, W. C., Lu, C. Z., and Gross, C. A., Structural features required for the interaction of the Hsp70 molecular chaperone DnaK with its cochaperone DnaJ. J. Biol. Chem., 274, 30534–30539 (1999).
  • 10) Szabo, A., Langer, T., Schröder, H., Flanagan, J., Bukau, B., and Hartl, F. U., The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system DnaK, DnaJ and GrpE. Proc. Natl. Acad. Sci. USA, 91, 10345–10349 (1994).
  • 11) Harrison, C., GrpE, a nucleotide exchange factor for DnaK. Cell Stress Chaperones, 8, 218–224 (2003).
  • 12) Harrison, C. J., Hayer-Hartl, M., Liberto, M. D., Hartl, F. U., and Kuriyan, J., Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Science, 276, 431–435 (1997).
  • 13) Pellecchia, M., Montgomery, D. L., Stevens, S. Y., Vander Kooi, C. W., Feng, H. P., Gierasch, L. M., and Zuiderweg, E. R., Structural insights into substrate binding by the molecular chaperone DnaK. Nat. Struct. Biol., 7, 298–303 (2000).
  • 14) Zhu, X., Zhao, X., Burkholder, W. F., Gragerov, A., Ogata, C. M., Gottesman, M. E., and Hendrickson, W. A., Structural analysis of substrate binding by the molecular chaperone DnaK. Science, 272, 1606–1614 (1996).
  • 15) Brehmer, D., Rudiger, S., Gässler, C., Klostermeier, D., Packschies, L., Reinstein, J., Mayer, M. P., and Bukau, B., Tuning of chaperone activity of Hsp70 proteins by modulation of nucleotide exchange. Nat. Struct. Biol., 8, 427–432 (2001).
  • 16) Bukau, B., and Horwich, A. L., The Hsp70 and Hsp60 chaperone machines. Cell, 92, 351–366 (1998).
  • 17) Liberek, K., Marszalek, J., Ang, D., Georgopoulos, C., and Zylicz, M., Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc. Natl. Acad. Sci. USA, 88, 2874–2878 (1991).
  • 18) Schröder, H., Langer, T., Hartl, F. U., and Bukau, B., DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO J., 12, 4137–4144 (1993).
  • 19) Boshoff, A., Hennessy, F., and Blatch, G. L., The in vivo and in vitro characterization of DnaK from Agrobacterium tumefaciens RUOR. Protein Expr. Purif., 38, 161–169 (2004).
  • 20) Cellier, M. F., Teyssier, J., Nicolas, M., Liautard, J. P., Marti, J., and Sri. Widada, J., Cloning and characterization of the Brucella ovis heat shock protein DnaK functionally expressed in Escherichia coli. J. Bacteirol., 174, 8036–8042 (1992).
  • 21) Michel, G. P., Cloning and expression in Escherichia coli of the dnaK gene of Zymomonas mobilis. J. Bacteriol., 175, 3228–3231 (1993).
  • 22) Yoshida, A., Nakano, Y., Yamashita, Y., Oho, T., Shibata, Y., Ohishi, M., and Koga, T., A novel dnaK operon from Porphyromonas gingivalis. FEBS Lett., 446, 287–291 (1999).
  • 23) Kadri, R., Devine, D., and Ashraf, W., Purification and functional analysis of the DnaK homologue from Prevotella intermedia OMZ 326. FEMS Microbiol. Lett., 167, 63–68 (1998).
  • 24) Mogk, A., Bukau, B., Lutz, R., and Schumann, W., Construction and analysis of hybrid Escherichia coli-Bacillus subtilis dnaK genes. J. Bacteriol., 181, 1971–1974 (1999).
  • 25) Sussman, M. D., and Setlow, P., Nucleotide sequence of Bacillus megaterium gene homologous to the dnaK gene of Escherichia coli. Nucleic Acids Res., 15, 3923 (1987).
  • 26) Röling, W. F., and van Verseveld, H. W., Characterization of Tetragenococcus halophila populations in Indonesian soy mash (kecap) fermentation. Appl. Environ. Microbiol., 62, 1203–1207 (1996).
  • 27) Fukuda, D., Watanabe, M., Sonezaki, S., Sugimoto, S., Sonomoto, K., and Ishizaki, A., Molecular characterization and regulatory analysis of dnaK operon of halophilic lactic acid bacterium Tetragenococcus halophila. J. Biosci. Bioeng., 93, 388–394 (2002).
  • 28) Sugimoto, S., Nakayama, J., Fukuda, D., Sonezaki, S., Watanabe, M., Tosukhowong, A., and Sonomoto, K., Effect of heterologous expression of molecular chaperone DnaK from Tetragenococcus halophilus on salinity adaptation of Escherichia coli. J. Biosci. Bioeng., 96, 129–133 (2003).
  • 29) Sugimoto, S., Higashi, C., Saruwatari, K., Nakayama, J., and Sonomoto, K., A gram-negative characteristic segment in Escherichia coli DnaK is essential for the ATP-dependent cooperative function with the co-chaperones DnaJ and GrpE. FEBS Lett., 581, 2993–2999 (2007).
  • 30) Tomoyasu, T., Mogk, A., Langen, H., Goloubinoff, P., and Bukau, B., Genetic dissection of the roles of chaperones and proteases in protein folding and degradation in the Escherichia coli cytosol. Mol. Microbiol., 40, 397–413 (2001).
  • 31) Rial, D. V., and Ceccarelli, E. A., Removal of DnaK contamination during fusion protein purifications. Protein Expr. Purif., 25, 503–507 (2002).
  • 32) Zylicz, M., Ang, D., and Georgopoulos, C., The grpE protein of Escherichia coli. J. Biol. Chem., 262, 17437–17442 (1987).
  • 33) Bradford, M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248–254 (1976).
  • 34) Lanzetta, P. A., Alvarez, L. J., Reinach, P. S., and Candia, O. A., An improved assay for nanomole amounts of inorganic phosphate. Anal. Biochem., 100, 95–97 (1997).
  • 35) Silberg, J. J., Hoff, K. G., and Vickery, L. E., The Hsc66-Hsc20 chaperone system in Escherichia coli: chaperone activity and interactions with the DnaK-DnaJ-GrpE system. J. Bacteriol., 180, 6617–6624 (1998).
  • 36) Levy, J. E., McCarty, J., Bukau, B., and Chirico, W. J., Conserved ATPase and luciferase refolding activities between bacteria and yeast Hsp70 chaperones and modulators. FEBS Lett., 368, 435–440 (1995).
  • 37) Motohashi, K., Yohda, M., Endo, I., and Yoshida, M., A novel factor required for the assembly of the DnaK and DnaJ chaperones of Thermus thermophilus. J. Biol. Chem., 271, 17343–17348 (1996).
  • 38) Gassler, C. S., Buchberger, A., Laufen, T., Mayer, M. P., Schröder, H., Valencia, A., and Bukau, B., Mutations in the DnaK chaperone affecting interaction with the DnaJ cochaperone. Proc. Natl. Acad. Sci. USA, 95, 15229–15234 (1998).
  • 39) Schonfeld, H. J., Schmidt, D., Schröder, H., and Bukau, B., The DnaK chaperone system of E. coli: quaternary structures and interactions of the DnaK and GrpE components. J. Biol. Chem., 270, 2183–2189 (1995).
  • 40) Genevaux, P., Schwager, F., Georgopoulos, C., and Kelly, W. L., Scanning mutagenesis identifies amino acid residues essential for the in vivo activity of the Escherichia coli DnaJ (Hsp40) J-domain. Genes, 162, 1045–1053 (2002).
  • 41) Groemping, Y., Seidel, R., and Reinstein, J., Balance of ATPase stimulation and nucleotide exchange is not required for efficient refolding activity of the DnaK chaperone. FEBS Lett., 579, 5713–5717 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.