2,478
Views
72
CrossRef citations to date
0
Altmetric
Original Articles

Structure and Function of NAD Kinase and NADP Phosphatase: Key Enzymes That Regulate the Intracellular Balance of NAD(H) and NADP(H)

&
Pages 919-930 | Published online: 22 May 2014

  • 1) Ziegler, M., New functions of a long-known molecule. Emerging roles of NAD in cellular signaling. Eur. J. Biochem., 267, 1550–1564 (2000).
  • 2) Pollak, N., Dolle, C., and Ziegler, M., The power to reduce: pyridine nucleotides-small molecules with a multitude of functions. Biochem. J., 402, 205–218 (2007).
  • 3) Outten, C. E., and Culotta, V. C., A novel NADH kinase is the mitochondrial source of NADPH in Saccharomyces cerevisiae. EMBO J., 22, 2015–2024 (2003).
  • 4) Smith, J. S., Brachmann, C. B., Celic, I., Kenna, M. A., Muhammad, S., Starai, V. J., Avalos, J. L., Escalante-Semerena, J. C., Grubmeyer, C., Wolberger, C., and Boeke, J. D., A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc. Natl. Acad. Sci. USA, 97, 6658–6663 (2000).
  • 5) Yamasaki, M., Masgrau, R., Morgan, A. J., Churchill, G. C., Patel, S., Ashcroft, S. J., and Galione, A., Organelle selection determines agonist-specific Ca2+ signals in pancreatic acinar and beta cells. J. Biol. Chem., 279, 7234–7240 (2004).
  • 6) Kornberg, A., Enzymatic synthesis of triphosphopyridine nucleotide. J. Biol. Chem., 182, 805–813 (1950).
  • 7) Apps, D. K., Pigeon-liver NAD kinase. The structural and kinetic basis of regulation of NADPH. Eur. J. Biochem., 55, 475–483 (1975).
  • 8) Bulygina, E. R., and Telepneva, V. I., Isolation of NAD-kinase from pigeon heart. Biokhimiia, 45, 2019–2027 (1980).
  • 9) Tseng, Y. M., Harris, B. G., and Jacobson, M. K., Isolation and characterization of yeast nicotinamide adenine dinucleotide kinase. Biochim. Biophys. Acta, 568, 205–214 (1979).
  • 10) Butler, J. R., and McGuinness, E. T., Candida utilis NAD+ kinase: purification, properties and affinity gel studies. Int. J. Biochem., 14, 839–844 (1982).
  • 11) Magni, G., Amici, A., Emanuelli, M., Raffaelli, N., and Ruggieri, S., Enzymology of NAD+ synthesis. Adv. Enzymol. Relat. Areas Mol. Biol., 73, 135–182 (1999).
  • 12) McGuinness, E. T., and Butler, J. R., NAD+ kinase-a review. Int. J. Biochem., 17, 1–11 (1985).
  • 13) Murata, K., Uchida, T., Tani, K., Kato, J., and Chibata, I., Metaphosphate: a new phosphoryl donor for NAD phosphorylation. Agric. Biol. Chem., 44, 61–68 (1980).
  • 14) Kornberg, A., Rao, N. N., and Ault-Riche, D., Inorganic polyphosphate: a molecule of many functions. Annu. Rev. Biochem., 68, 89–125 (1999).
  • 15) Iwahashi, Y., Hitoshio, A., Tajima, N., and Nakamura, T., Characterization of NADH kinase from Saccharomyces cerevisiae. J. Biochem. (Tokyo), 105, 588–593 (1989).
  • 16) Richter, C., NADP+ phosphatase: a novel mitochondrial enzyme. Biochem. Biophys. Res. Commun., 146, 253–257 (1987).
  • 17) Kawai, S., Mori, S., Mukai, T., and Murata, K., Cytosolic NADP phosphatases I and II from Arthrobacter sp. strain KM: implication in regulation of NAD+/NADP+ balance. J. Basic Microbiol., 44, 185–196 (2004).
  • 18) Reidl, J., Schlor, S., Kraiss, A., Schmidt-Brauns, J., Kemmer, G., and Soleva, E., NADP and NAD utilization in Haemophilus influenzae. Mol. Microbiol., 35, 1573–1581 (2000).
  • 19) Laval-Martin, D. L., Carre, I. A., Barbera, S. J., and Edmunds, L. N., Jr., Rhythmic changes in the activities of NAD kinase and NADP phosphatase in the achlorophyllous ZC mutant of Euglena gracilis Klebs (strain Z). Arch. Biochem. Biophys., 276, 433–441 (1990).
  • 20) Gallais, S., de Crescenzo, M. A., and Laval-Martin, D. L., Evidence of active NADP+ phosphatase in dormant seeds of Avena sativa L. J. Exp. Bot., 51, 1389–1394 (2000).
  • 21) Kawai, S., Mori, S., Mukai, T., Suzuki, S., Yamada, T., Hashimoto, W., and Murata, K., Inorganic polyphosphate/ATP-NAD kinase of Micrococcus flavus and Mycobacterium tuberculosis H37Rv. Biochem. Biophys. Res. Commun., 276, 57–63 (2000).
  • 22) Kawai, S., Mori, S., and Murata, K., Primary structure of inorganic polyphosphate/ATP-NAD kinase from Micrococcus flavus, and occurrence of substrate inorganic polyphosphate for the enzyme. Biosci. Biotechnol. Biochem., 67, 1751–1760 (2003).
  • 23) Mori, S., Kawai, S., Mikami, B., and Murata, K., Crystallization and preliminary X-ray analysis of NAD kinase from Mycobacterium tuberculosis H37Rv. Acta Crystallogr. D Biol. Crystallogr., 57, 1319–1320 (2001).
  • 24) Mori, S., Yamasaki, M., Maruyama, Y., Momma, K., Kawai, S., Hashimoto, W., Mikami, B., and Murata, K., Crystallographic studies of Mycobacterium tuberculosis polyphosphate/ATP-NAD kinase complexed with NAD. J. Biosci. Bioeng., 98, 391–393 (2004).
  • 25) Mori, S., Yamasaki, M., Maruyama, Y., Momma, K., Kawai, S., Hashimoto, W., Mikami, B., and Murata, K., NAD-binding mode and the significance of intersubunit contact revealed by the crystal structure of Mycobacterium tuberculosis NAD kinase-NAD complex. Biochem. Biophys. Res. Commun., 327, 500–508 (2005).
  • 26) Mori, S., Kawai, S., Shi, F., Mikami, B., and Murata, K., Molecular conversion of NAD kinase to NADH kinase through single amino acid residue substitution. J. Biol. Chem., 280, 24104–24112 (2005).
  • 27) Garavaglia, S., Raffaelli, N., Finaurini, L., Magni, G., and Rizzi, M., A novel fold revealed by Mycobacterium tuberculosis NAD kinase, a key allosteric enzyme in NADP biosynthesis. J. Biol. Chem., 279, 40980–40986 (2004).
  • 28) Raffaelli, N., Finaurini, L., Mazzola, F., Pucci, L., Sorci, L., Amici, A., and Magni, G., Characterization of Mycobacterium tuberculosis NAD kinase: functional analysis of the full-length enzyme by site-directed mutagenesis. Biochemistry, 43, 7610–7617 (2004).
  • 29) Grose, J. H., Joss, L., Velick, S. F., and Roth, J. R., Evidence that feedback inhibition of NAD kinase controls responses to oxidative stress. Proc. Natl. Acad. Sci. USA, 103, 7601–7606 (2006).
  • 30) Kawai, S., Fukuda, C., Mukai, T., and Murata, K., MJ0917 in archaeon Methanococcus jannaschii is a novel NADP phosphatase/NAD kinase. J. Biol. Chem., 280, 39200–39207 (2005).
  • 31) Kawai, S., Mori, S., Mukai, T., Hashimoto, W., and Murata, K., Molecular characterization of Escherichia coli NAD kinase. Eur. J. Biochem., 268, 4359–4365 (2001).
  • 32) Ochiai, A., Mori, S., Kawai, S., and Murata, K., Overexpression, purification, and characterization of ATP-NAD kinase of Sphingomonas sp. A1. Protein Expr. Purif., 36, 124–130 (2004).
  • 33) Shi, F., Kawai, S., Mori, S., Kono, E., and Murata, K., Identification of ATP-NADH kinase isozymes and their contribution to supply of NADP(H) in Saccharomyces cerevisiae. FEBS J., 272, 3337–3349 (2005).
  • 34) Kawai, S., Suzuki, S., Mori, S., and Murata, K., Molecular cloning and identification of UTR1 of a yeast Saccharomyces cerevisiae as a gene encoding an NAD kinase. FEMS Microbiol. Lett., 200, 181–184 (2001).
  • 35) Sakuraba, H., Kawakami, R., and Ohshima, T., First archaeal inorganic polyphosphate/ATP-dependent NAD kinase, from hyperthermophilic archaeon Pyrococcus horikoshii: cloning, expression, and characterization. Appl. Environ. Microbiol., 71, 4352–4358 (2005).
  • 36) Garavaglia, S., Galizzi, A., and Rizzi, M., Allosteric regulation of Bacillus subtilis NAD kinase by quinolinic acid. J. Bacteriol., 185, 4844–4850 (2003).
  • 37) Strand, M. K., Stuart, G. R., Longley, M. J., Graziewicz, M. A., Dominick, O. C., and Copeland, W. C., POS5 gene of Saccharomyces cerevisiae encodes a mitochondrial NADH kinase required for stability of mitochondrial DNA. Eukaryot. Cell, 2, 809–820 (2003).
  • 38) Chai, M. F., Chen, Q. J., An, R., Chen, Y. M., Chen, J., and Wang, X. C., NADK2, an Arabidopsis chloroplastic NAD kinase, plays a vital role in both chlorophyll synthesis and chloroplast protection. Plant Mol. Biol., 59, 553–564 (2005).
  • 39) Berrin, J. G., Pierrugues, O., Brutesco, C., Alonso, B., Montillet, J. L., Roby, D., and Kazmaier, M., Stress induces the expression of AtNADK-1, a gene encoding a NAD(H) kinase in Arabidopsis thaliana. Mol. Genet. Genomics, 273, 10–19 (2005).
  • 40) Turner, W. L., Waller, J. C., and Snedden, W. A., Identification, molecular cloning and functional characterization of a novel NADH kinase from Arabidopsis thaliana (thale cress). Biochem. J., 385, 217–223 (2005).
  • 41) Turner, W. L., Waller, J. C., Vanderbeld, B., and Snedden, W. A., Cloning and characterization of two NAD kinases from Arabidopsis. Identification of a calmodulin binding isoform. Plant Physiol., 135, 1243–1255 (2004).
  • 42) Lerner, F., Niere, M., Ludwig, A., and Ziegler, M., Structural and functional characterization of human NAD kinase. Biochem. Biophys. Res. Commun., 288, 69–74 (2001).
  • 43) Sassetti, C. M., Boyd, D. H., and Rubin, E. J., Genes required for mycobacterial growth defined by high density mutagenesis. Mol. Microbiol., 48, 77–84 (2003).
  • 44) Shianna, K. V., Marchuk, D. A., and Strand, M. K., Genomic characterization of POS5, the Saccharomyces cerevisiae mitochondrial NADH kinase. Mitochondrion, 6, 94–101 (2006).
  • 45) Bieganowski, P., Seidle, H. F., Wojcik, M., and Brenner, C., Synthetic lethal and biochemical analyses of NAD and NADH kinases in Saccharomyces cerevisiae establish separation of cellular functions. J. Biol. Chem., 281, 22439–22445 (2006).
  • 46) Pollak, N., Niere, M., and Ziegler, M., NAD kinase levels control the NADPH concentration in human cells. J. Biol. Chem., 282, 33562–33571 (2007).
  • 47) Huh, W. K., Falvo, J. V., Gerke, L. C., Carroll, A. S., Howson, R. W., Weissman, J. S., and O’Shea, E. K., Global analysis of protein localization in budding yeast. Nature, 425, 686–691 (2003).
  • 48) Jo, S. H., Son, M. K., Koh, H. J., Lee, S. M., Song, I. H., Kim, Y. O., Lee, Y. S., Jeong, K. S., Kim, W. B., Park, J. W., Song, B. J., and Huh, T. L., Control of mitochondrial redox balance and cellular defense against oxidative damage by mitochondrial NADP+-dependent isocitrate dehydrogenase. J. Biol. Chem., 276, 16168–16176 (2001).
  • 49) Matsushita, H., Yokoyama, S., and Obayashi, A., NADP+ production using thermostable NAD+ kinase of Corynebacterium flaccumfaciens AHU-1622. Can. J. Microbiol., 32, 585–590 (1986).
  • 50) Kawai, S., Mori, S., Mukai, T., Matsukawa, H., Matuo, Y., and Murata, K., Establishment of a mass-production system for NADP using bacterial inorganic polyphosphate/ATP-NAD kinase. J. Biosci. Bioeng., 92, 447–452 (2001).
  • 51) Mukai, T., Kawai, S., Matsukawa, H., Matuo, Y., and Murata, K., Characterization and molecular cloning of a novel enzyme, inorganic polyphosphate/ATP-glucomannokinase, of Arthrobacter sp. strain KM. Appl. Environ. Microbiol., 69, 3849–3857 (2003).
  • 52) Mukai, T., Kawai, S., Mori, S., Mikami, B., and Murata, K., Crystal structure of bacterial inorganic polyphosphate/ATP-glucomannokinase. Insights into kinase evolution. J. Biol. Chem., 279, 50591–50600 (2004).
  • 53) Kawai, S., Mukai, T., Mori, S., Mikami, B., and Murata, K., Hypothesis: structures, evolution, and ancestor of glucose kinases in the hexokinase family. J. Biosci. Bioeng., 99, 320–330 (2005).
  • 54) Liu, J., Lou, Y., Yokota, H., Adams, P. D., Kim, R., and Kim, S. H., Crystal structures of an NAD kinase from Archaeoglobus fulgidus in complex with ATP, NAD, or NADP. J. Mol. Biol., 354, 289–303 (2005).
  • 55) Poncet-Montange, G., Assairi, L., Arold, S., Pochet, S., and Labesse, G., NAD kinases use substrate-assisted catalysis for specific recognition of NAD. J. Biol. Chem., 282, 33925–33934 (2007).
  • 56) Oganesyan, V., Huang, C., Adams, P. D., Jancarik, J., Yokota, H. A., Kim, R., and Kim, S. H., Structure of a NAD kinase from Thermotoga maritima at 2.3 Å resolution. Acta Crystallograph. Sect. F Struct. Biol. Cryst. Commun., 61, 640–646 (2005).
  • 57) Fukuda, C., Kawai, S., and Murata, K., NADP(H) phosphatase activities of archaeal inositol monophosphatase and eubacterial 3′-phosphoadenosine 5′-phosphate phosphatase. Appl. Environ. Microbiol., 73, 5447–5452 (2007).
  • 58) Stieglitz, K. A., Johnson, K. A., Yang, H., Roberts, M. F., Seaton, B. A., Head, J. F., and Stec, B., Crystal structure of a dual activity IMPase/FBPase (AF2372) from Archaeoglobus fulgidus. The story of a mobile loop. J. Biol. Chem., 277, 22863–22874 (2002).
  • 59) Stec, B., Yang, H., Johnson, K. A., Chen, L., and Roberts, M. F., MJ0109 is an enzyme that is both an inositol monophosphatase and the ‘missing’ archaeal fructose-1,6-bisphosphatase. Nat. Struct. Biol., 7, 1046–1050 (2000).
  • 60) Lopez-Coronado, J. M., Belles, J. M., Lesage, F., Serrano, R., and Rodriguez, P. L., A novel mammalian lithium-sensitive enzyme with a dual enzymatic activity, 3′-phosphoadenosine 5′-phosphate phosphatase and inositol-polyphosphate 1-phosphatase. J. Biol. Chem., 274, 16034–16039 (1999).
  • 61) Spiegelberg, B. D., Xiong, J. P., Smith, J. J., Gu, R. F., and York, J. D., Cloning and characterization of a mammalian lithium-sensitive bisphosphate 3′-nucleotidase inhibited by inositol 1,4-bisphosphate. J. Biol. Chem., 274, 13619–13628 (1999).
  • 62) Johnson, K. A., Chen, L., Yang, H., Roberts, M. F., and Stec, B., Crystal structure and catalytic mechanism of the MJ0109 gene product: a bifunctional enzyme with inositol monophosphatase and fructose 1,6-bisphosphatase activities. Biochemistry, 40, 618–630 (2001).
  • 63) York, J. D., Ponder, J. W., and Majerus, P. W., Definition of a metal-dependent/Li+-inhibited phosphomonoesterase protein family based upon a conserved three-dimensional core structure. Proc. Natl. Acad. Sci. USA, 92, 5149–5153 (1995).
  • 64) Andreeva, A., Howorth, D., Brenner, S. E., Hubbard, T. J., Chothia, C., and Murzin, A. G., SCOP database in 2004: refinements integrate structure and sequence family data. Nucleic Acids Res., 32, D226–229 (2004).
  • 65) Anderson, R. M., Bitterman, K. J., Wood, J. G., Medvedik, O., Cohen, H., Lin, S. S., Manchester, J. K., Gordon, J. I., and Sinclair, D. A., Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels. J. Biol. Chem., 277, 18881–18890 (2002).
  • 66) Todisco, S., Agrimi, G., Castegna, A., and Palmieri, F., Identification of the mitochondrial NAD+ transporter in Saccharomyces cerevisiae. J. Biol. Chem., 281, 1524–1531 (2006).
  • 67) Epel, D., Patton, C., Wallace, R. W., and Cheung, W. Y., Calmodulin activates NAD kinase of sea urchin eggs: an early event of fertilization. Cell, 23, 543–549 (1981).
  • 68) Williams, M. B., and Jones, H. P., Calmodulin-dependent NAD kinase of human neutrophils. Arch. Biochem. Biophys., 237, 80–87 (1985).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.