334
Views
33
CrossRef citations to date
0
Altmetric
Original Articles

Interaction of Tea Catechins with Lipid Bilayers Investigated by a Quartz-Crystal Microbalance Analysis

, , , , &
Pages 1372-1375 | Received 05 Dec 2007, Accepted 21 Jan 2008, Published online: 22 May 2014

  • 1) Yokozawa, T., Cho, E. J., Hara, Y., and Kitani, K., Antioxidative activity of green tea treated with radical initiator 2,2′-azobis(2-amidinopropane) dihydrochloride. J. Agric. Food Chem., 48, 5068–5073 (2000).
  • 2) Liu, Z., Ma, L. P., Zhou, B., Yang, L., and Liu, Z. L., Antioxidative effects of green tea polyphenols on free radical initiated and photosensitized peroxidation of human low density lipoprotein. Chem. Phys. Lipids, 106, 53–63 (2000).
  • 3) Van Dyke, K., McConnell, P., and Marquardt, L., Green tea extract and its polyphenols markedly inhibit luminol-dependent chemiluminescence activated by peroxynitrite or SIN-1. Luminescence, 15, 37–43 (2000).
  • 4) Cai, Y. J., Ma, L. P., Hou, L. F., Zhou, B., Yang, L., and Liu, Z. L., Antioxidant effects of green tea polyphenols on free radical initiated peroxidation of rat liver microsomes. Chem. Phys. Lipids, 120, 109–117 (2002).
  • 5) Krul, C., Luiten-Schuite, A., Tenfelde, A., van Ommen, B., Verhagen, H., and Havenaar, R., Antimutagenic activity of green tea and black tea extracts studied in a dynamic in vitro gastrointestinal model. Mutat. Res., 474, 71–85 (2001).
  • 6) Mabe, K., Yamada, M., Oguni, I., and Takahashi, T., In vitro and in vivo activities of tea catechins against Helicobacter pylori. Antimicrob. Agents Chemother., 43, 1788–1791 (1999).
  • 7) Amarowicz, R., Pegg, R. B., and Bautista, D. A., Antibacterial activity of green tea polyphenols against Escherichia coli K 12. Nahrung, 44, 60–62 (2000).
  • 8) Caturla, N., Vera-Samper, E., Villalain, J., Mateo, C. R., and Micol, V., The relationship between the antioxidant and the antibacterial properties of galloylated catechins and the structure of phospholipid model membranes. Free Radic. Biol. Med., 34, 648–662 (2003).
  • 9) Okabe, S., Suganuma, M., Hayashi, M., Sueoka, E., Komori, A., and Fujiki, H., Mechanisms of growth inhibition of human lung cancer cell line, PC-9, by tea polyphenols. Jpn. J. Cancer Res., 88, 639–643 (1997).
  • 10) Hashimoto, T., Kumazawa, S., Nanjo, F., Hara, Y., and Nakayama, T., Interaction of tea catechins with lipid bilayers investigated with liposome systems. Biosci. Biotechnol. Biochem., 63, 2252–2255 (1999).
  • 11) Nakayama, T., Hashimoto, T., Kajiya, K., and Kumazawa, S., Affinity of polyphenols for lipid bilayers. Biofactors, 13, 147–151 (2000).
  • 12) Kajiya, K., Kumazawa, S., and Nakayama, T., Steric effects on interaction of tea catechins with lipid bilayers. Biosci. Biotechnol. Biochem., 65, 2638–2643 (2001).
  • 13) Kajiya, K., Kumazawa, S., and Nakayama, T., Effects of external factors on the interaction of tea catechins with lipid bilayers. Biosci. Biotechnol. Biochem., 66, 2330–2335 (2002).
  • 14) Kajiya, K., Hojo, H., Suzuki, M., Nanjo, F., Kumazawa, S., and Nakayama, T., Relationship between antibacterial activity of (+)-catechin derivatives and their interaction with a model membrane. J. Agric. Food Chem., 52, 1514–1519 (2004).
  • 15) Kumazawa, S., Kajiya, K., Naito, A., Saito, H., Tuzi, S., Tanio, M., Suzuki, M., Nanjo, F., Suzuki, E., and Nakayama, T., Direct evidence of interaction of a green tea polyphenol, epigallocatechin gallate, with lipid bilayers by solid-state nuclear magnetic resonance. Biosci. Biotechnol. Biochem., 68, 1743–1747 (2004).
  • 16) Uekusa, Y., Kamihira, M., and Nakayama, T., Dynamic behavior of tea catechins interacted with lipid membrane as determined by NMR spectroscopy. J. Agric. Food Chem., 55, 9986–9992 (2007).
  • 17) Okahata, Y., Niikura, K., Sugiura, Y., Sawada, M., and Morii, T., Kinetic studies of sequence-specific binding of GCN4-bZIP peptides to DNA strands immobilized on a 27-MHz quartz-crystal microbalance. Biochemistry, 37, 5666–5672 (1998).
  • 18) Sauerbrey, G., Verwendung von schwingquarzen zur wägung dünner schichten und zur mikrowägung. Z. Phys., 155, 206–222 (1959).
  • 19) Matsuno, H., Niikura, K., and Okahata, Y., Design and characterization of asparagine- and lysine-containing alanine-based helical peptides that bind selectively to AT base pairs of oligonucleotides immobilized on a 27-MHz quartz crystal microbalance. Biochemistry, 40, 3615–3622 (2001).
  • 20) Matsuno, H., Furusawa, H., and Okahata, Y., Kinetic studies of DNA cleavage reactions catalyzed by an ATP-dependent deoxyribonuclease on a 27-MHz quartz-crystal microbalance. Biochemistry, 44, 2262–2270 (2005).
  • 21) Takahashi, S., Matsuno, H., Furusawa, H., and Okahata, Y., Kinetic analyses of divalent cation-dependent EcoRV digestions on a DNA-immobilized quartz crystal microbalance. Anal. Biochem., 361, 210–217 (2007).
  • 22) Okahata, Y., and Ebato, H., Detection of bioactive compounds using a lipid-coated quartz-crystal microbalance. Trends Anal. Chem., 11, 344–354 (1992).
  • 23) Umeyama, M., Kira, A., Nishimura, K., and Naito, A., Interactions of bovine lactoferricin with acidic phospholipid bilayers and its antimicrobial activity as studied by solid-state NMR. Biochim. Biophys. Acta, 1758, 1523–1528 (2006).
  • 24) Nakashima, N., Ando, R., and Kunitake, T., Casting of synthetic bilayer membranes on glass and spectral variation of membrane-bound cyanine and merocyanine dyes. Chem. Lett., 12, 1577–1580 (1983).
  • 25) Nakashima, N., Kunitake, M., Kunitake, T., Tone, S., and Kajiyama, T., Ordered cast films of polymerized bilayer membranes. Macromolecules, 18, 1515–1516 (1985).
  • 26) Hübner, W., and Mantsch, H. H., Orientation of specifically 13C=O labeled phosphatidylcholine multilayers from polarized attenuated total reflection FT-IR spectroscopy. Biophys. J., 59, 1261–1272 (1991).
  • 27) Spangenberg, T., de Mello, N. F., Creczynski-Pasa, T. B., Pasa, A. A., and Niehus, H., AFM in-situ characterization of supported phospholipid layers formed by solution spreading. Phys. Stat. Sol., 201, 857–860 (2004).
  • 28) Tezuka, M., Suzuki, H., Suzuki, Y., Hara, Y., and Okada, S., Inactivation effect of tea leaf catechins on human type-A influenza virus. Jpn. J. Toxicol. Environ. Health (in Japanese), 43, 311–315 (1997).
  • 29) Hara, Y., and Watanabe, M., Antibacterial activity of tea polyphenols against Clostridium botulinum. Nippon Shokuhin Kogyo Gakkaishi (in Japanese), 36, 951–955 (1989).
  • 30) Verkman, A. S., and Solomon, A. K., Kinetics of phloretin binding to phosphatidylcholine vesicle membranes. J. Gen. Physiol., 75, 673–692 (1980).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.