1,283
Views
56
CrossRef citations to date
0
Altmetric
Original Articles

Garcinia cambogia Extract Ameliorates Visceral Adiposity in C57BL/6J Mice Fed on a High-Fat Diet

, , &
Pages 1772-1780 | Received 01 Feb 2008, Accepted 10 Mar 2008, Published online: 22 May 2014

  • 1) Nakamura, T., Tokunaga, K., Shimomura, I., Nishida, M., Yoshida, S., Kotani, K., Islam, A. H. M. W., Keno, Y., Kobatake, T., Nagai, Y., Fujioka, S., Tarui, S., and Matuzawa, Y., Contribution of visceral fat accumulation to the development of coronary artery disease in non-obese men. Atherosclerosis, 107, 239–246 (1994).
  • 2) Uauy, R., and Dias, E., Consequences of food energy excess and positive energy balance. Public Health Nutr., 8, 1077–1099 (2005).
  • 3) Hansen, P. A., Han, D. H., Nolte, L. A., Chen, M., and Holloszy, J. O., DHEA protects against visceral obesity and muscle insulin resistance in rats fed a high-fat diet. Am. J. Physiol., 273, 1704–1708 (1997).
  • 4) Katagiri, K., Arakawa, S., Kurahashi, R., and Hatano, Y., Impaired contact hypersensitivity in diet-induced obese mice. Dermatol. Sci., 46, 117–126 (2007).
  • 5) Levin, B. E., Triscari, J., and Sullivan, A. C., Metabolic features of diet-induced obesity without hyperphagia in young rats. Am. J. Physiol. Regul. Integr. Comp. Physiol., 251, 433–440 (1986).
  • 6) Velasquez, M. T., and Bhathena, S. J., Role of dietary soy protein in obesity. Int. J. Med. Sci., 26, 72–82 (2007).
  • 7) Kishino, E., Ito, T., Fujita, K., and Kiuchi, Y., A mixture of the Salacia reticulata (Kotala himbutu) aqueous extract and cyclodextrin reduces the accumulation of visceral fat mass in mice and rats with high-fat diet-induced obesity. J. Nutr., 136, 433–439 (2006).
  • 8) Saito, M., Ueno, M., Ogino, S., Kubo, K., Nagata, J., and Takeuchi, M., High dose of Garcinia cambogia is effective in suppressing fat accumulation in developing male Zucker obese rats, but highly toxic to the testis. Food Chem. Toxicol., 43, 411–419 (2005).
  • 9) Attele, A. S., Zhou, Y. P., Xie, J. T., Wu, J. A., Zhang, L., Dey, L., Pugh, W., Rue, P. A., Polonsky, K. S., and Yuan, C. S., Anti-diabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes, 51, 1851–1858 (2002).
  • 10) Han, L. K., Gong, X. J., Kawano, S., Saito, M., Kimura, Y., and Okuda, H., Antiobesity actions of Zingiber officinale Roscoe. Yakugaku Zasshi, 125, 213–217 (2005).
  • 11) Han, L. K., Xu, B. J., Kimura, Y., Zheng, Y., and Okuda, H., Platycodi radix affects lipid metabolism in mice with high-fat diet-induced obesity. J. Nutr., 130, 2760–2764 (2000).
  • 12) Bank, M. S., “Physicians’ Desk Reference for Herbal Medicines,” Medical Economics Company, New Jersey (2000).
  • 13) Sullivan, A. C., and Triscari, J., Metabolic regulation as a control for lipid disorders. I. Influence of (−)-hydroxycitrate on experimentally induced obesity in the rodent. Am. J. Clin. Nutr., 30, 767–776 (1977).
  • 14) Ohia, S. E., Opere, C. A., LeDay, A. M., Bagchi, M., Bagchi, D., and Stohs, S. J., Safety and mechanism of appetite suppression by a novel hydroxycitric acid extract (HCA-SX). Mol. Cell. Biochem., 238, 89–103 (2002).
  • 15) Heymsfield, S. B., Allison, D. B., Vasselli, J. R., Pietrobelli, A., Greenfield, D., and Nunez, C., Garcinia cambogia (hydroxycitric acid) as a potential antiobesity agent: a randomized controlled trial. JAMA, 280, 1596–1600 (1998).
  • 16) Sullivan, A. C., Triscari, J., Hamilton, J. G., Miller, O. N., and Wheatley, V. R., Effect of (−)-hydroxycitrate upon the accumulation of lipid in the rat. I. Lipogenesis. Lipids, 9, 121–128 (1974).
  • 17) Sullivan, A. C., Triscari, J., Hamilton, J. G., and Miller, O. N., Effect of (−)-hydroxycitrate upon the accumulation of lipid in the rat. II. Appetite. Lipids, 9, 129–134 (1973).
  • 18) Leonhardt, M., and Langhans, W., Hydroxycitrate has long-term effects on feeding behavior, body weight regain and metabolism after body weight loss in male rats. J. Nutr., 132, 1977–1982 (2002).
  • 19) Folch, J., Lees, M., and Sloane-Stanley, G. H., A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem., 226, 497–509 (1957).
  • 20) Preuss, H. G., Bagchi, D., Bagchi, M., Rao, C. V. S., Dey, D. K., and Satayanarayana, S., Effects of natural extract of (−)-hydroxycitric acid (HCA-SX) and a combination of HCA-SX plus niacine-bound chromium and Gymnema sylvestre extract in weight loss. Diabetes Obes. Metab., 24, 45–58 (2004).
  • 21) Asghar, M., Zeyssig, R., Monjok, E., Kouamou, G., Ohia, S. E., Lokhandwala, M. F., and Bagchi, D., Hydroxycitric acid (HCA-SX) decreases oxidative stress and insulin resistance and increases brain serotonin levels in obese Zucker rats. Exp. Biol. Meet., 20, 655 (2006).
  • 22) Sullivan, A. C., Singh, M., Srere, P. A., and Glusker, J. P., Reactivity and inhibitor potential of hydroxycitrate isomers with citrate synthase, citrate lyase, and ATP citrate lyase. J. Biol. Chem., 252, 7583–7590 (1977).
  • 23) Saha, A. K., Vavvas, D., Kurowshi, T. G., Apanidis, A., Witters, L. A., Shafrir, E., and Ruderman, N. B., Malonyl-CoA regulation in skeletal muscles, its link to cell citrate and the glucose-fatty acid cycle. Am. J. Physiol., 272, 641–648 (1997).
  • 24) Asghar, M., Monjok, E., Kouamou, G., Ohia, S. E., Bagchi, D., and Lokhandwala, M. F., Super CitriMax (HCA-SX) attenuates increases in oxidative stress, inflammation, insulin resistance, and body weight in developing obese Zucker rats. Mol. Cell. Biochem., 304, 93–99 (2007).
  • 25) Staiger, H., Tschritter, O., Machann, J., Thamer, C., Fritsche, A., Maerker, E., Schick, F., Haring, H. U., and Stumvoll, M., Relationship of serum adiponectin and leptin concentrations with body fat distribution in humans. Obes. Res., 11, 368–372 (2003).
  • 26) Maffei, M., Halaas, J., Ravussin, E., Pratley, R. E., Lee, G. H., Zhang, Y., Fei, H., Kim, S., Lallone, R., and Ranganathan, S., Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat. Med., 1, 1155–1161 (1995).
  • 27) Naderali, E. K., Estadella, D., and Rocha, M., A fat-enriched, glucose-enriched diet markedly attenuates adiponectin mRNA levels in rat epididymal adipose tissue. Clin. Sci. (Lond), 105, 403–408 (2003).
  • 28) Barnea, M., Shamay, A., Stark, A. H., and Madar, Z., A high-fat diet has a tissue-specific effect on adiponectin and related enzyme expression. Obesity, 14, 2145–2153 (2006).
  • 29) Park, J., Rho, H. K., Kim, K. H., Choe, S. S., Lee, Y. S., and Kim, J. B., Overexpression of glucose-6-phosphate dehydrogenase is associated with lipid dysregulation and insulin resistance in obesity. Mol. Cell. Biol., 25, 5146–5157 (2005).
  • 30) Rosen, E. D., Walkey, C. J., Puigserver, P., and Spiegelman, B. M., Transcriptional regulation of adipogenesis. Genes Dev., 14, 1293–1307 (2000).
  • 31) Xu, H. E., Lambert, M. H., Montana, V. G., Parks, D. J., Blanchard, S. G., Brown, P. J., Sternbach, D. D., Lehmann, J. M., Wisely, G. B., Willson, T. M., Kliewer, S. A., and Milburn, M. V., Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Mol. Cell, 3, 397–403 (1999).
  • 32) Rosen, E. D., Hsu, C. H., Wang, X., Sakai, S., Freeman, M. W., Gonzalez, F. J., and Spiegelman, B. M., C/EBPα induces adipogenesis through PPARγ: a unified pathway. Genes Dev., 16, 22–26 (2002).
  • 33) Kim, J. B., Wright, H. M., Wright, M., and Spiegelman, B. M., ADD1/SREBP1 activates PPARγ through the production of endogenous ligand. Proc. Natl. Acad. Sci. USA, 95, 4333–4337 (1998).
  • 34) Tontonoz, P., Hu, E., Graves, R. A., Budavari, A. I., and Spiegelman, B. M., mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev., 8, 1224–1234 (1994).
  • 35) Diraison, F., Dusserre, E., Vidal, H., Sothier, M., and Beylot, M., Increased hepatic lipogenesis but decreased expression of lipogenic gene in adipose tissue in human obesity. Am. J. Physiol., 282, 46–51 (2002).
  • 36) Nadler, S., Stoehr, J., Schueler, K., Tanimoto, G., Yandell, B., and Attie, A., The expression of adipogenic genes is decreased in obesity and diabetes mellitus. Proc. Natl. Acad. Sci. USA, 97, 11371–11376 (2000).
  • 37) Ron, D., Brasier, A. R., McGehee, R. E. Jr., and Habener, J. F., Tumor necrosis factor-induced reversal of adipocytic phenotype of 3T3-L1 cells is preceded by a loss of nuclear CCAAT/enhancer binding protein (C/EBP). J. Clin. Invest., 89, 223–233 (1992).
  • 38) Schmid, G. M., Converset, V., and Walter, N., Effect of high-fat diet on the expression of proteins in muscle, adipose tissues, and liver of C57BL/6 mice. Proteomics, 4, 2270–2282 (2004).
  • 39) Hammarstedt, A., Andersson, C. X., Rotter-Sopasakis, V., and Smith, U., The effect of PPARγ ligands on the adipose tissue in insulin resistance. Prostaglandins Leukot. Essent. Fatty Acids, 73, 65–75 (2005).
  • 40) Hotamisligil, G. S., Shargill, N. S., and Spiegelman, B. M., Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science, 259, 87–91 (1993).
  • 41) Stephens, J. M., and Pekala, P. H., Transcriptional repression of the C/EBPα and GLUT4 genes in 3T3-L1 adipocytes by tumor necrosis factor-alpha. Regulations is coordinate and independent of protein synthesis. J. Biol. Chem., 267, 13580–13584 (1992).
  • 42) Xing, H., Northrop, J. P., Grove, J. R., Kilpatrick, K. E., Su, J. L., and Ringold, G. M., TNFα-mediated inhibition and reversal of adipocyte differentiation is accompanied by suppressed expression of PPARγ without effects on Pref-1 expression. Endocrinology, 138, 2776–2783 (1997).
  • 43) Chapman, A. B., Knight, D. M., Dieckman, B. S., and Ringold, G. M., Analysis of gene expression during differentiation of adipogenic cells in culture and hormonal control of the developmental program. J. Biol. Chem., 259, 15548–15555 (1984).
  • 44) Torti, F. M., Torti, S. V., Larrick, J. W., and Ringold, G. M., Modulation of adipocyte differentiation by tumor necrosis factor and transforming growth factor beta. J. Cell Biol., 108, 1105–1113 (1989).
  • 45) Kim, M. S., Kim, J. K., Kwon, D. Y., and Park, R., Anti-adipogenic effects of Garcinia extract on the lipid droplet accumulation and the expression of transcription factor. BioFactors, 22, 193–196 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.