896
Views
45
CrossRef citations to date
0
Altmetric
Original Articles

Placental Folate Transport during Pregnancy

, , , , , , & show all
Pages 2277-2284 | Received 22 Feb 2008, Accepted 22 May 2008, Published online: 22 May 2014

  • 1) Baumann, M. U., Deborde, S., and Illsley, N. P., Placental glucose transfer and fetal growth. Endocrine, 19, 13–22 (2002).
  • 2) Cetin, I., Placental transport of amino acids in normal and growth-restricted pregnancies. Eur. J. Obstet. Gynecol. Reprod. Biol., 110, S50–54 (2003).
  • 3) Young, A. M., Allen, C. E., and Audus, K. L., Efflux transporters of the human placenta. Adv. Drug Deliv. Rev., 55, 125–132 (2003).
  • 4) Shane, B., and Stokstad, E. L. R., Vitamin B12-folate interrelationships. Annu. Rev. Nutr., 5, 115–141 (1985).
  • 5) Blount, B. C., Mack, M. M., Wehr, C. M., MacGregor, J. T., Hiatt, R. A., Wang, G., Wickramasinghe, S. N., Everson, R. B., and Ames, B. N., Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. Proc. Natl. Acad. Sci. USA, 94, 3290–3295 (1997).
  • 6) Thenen, S. W., Gestational and neonatal folate deficiency in rats. Nutr. Res., 11, 105–116 (1991).
  • 7) Hibbard, B. M., The role of Folic acid in pregnancy; with particular reference to anaemia, abruption and absorption. J. Obstet. Gynaecol. Br. Commonw., 71, 529–542 (1964).
  • 8) Smithells, R. W., Sheppard, S., and Schorah, C. J., Vitamin deficiencies and neural tube defects. Arch. Dis. Child., 51, 944–950 (1976).
  • 9) Sirotnak, F. M., and Tolner, B., Carrier-mediated membrane transport of folates in mammalian cells. Annu. Rev. Nutr., 19, 91–122 (1999).
  • 10) Said, H. M., Recent advances in carrier-mediated intestinal absorption of water-soluble vitamins. Annu. Rev. Physiol., 66, 419–446 (2004).
  • 11) Sabharanjak, S., and Mayor, S., Folate receptor endocytosis and trafficking. Adv. Drug Deliv. Rev., 56, 1099–1109 (2004).
  • 12) Antony, A. C., Kane, M. A., Portillo, R. M., Elwood, P. C., and Kolhouse, J. F., Studies of the role of a particulate folate binding protein in the uptake of 5-methyl-tetrahydrofolate by cultured human KB cells. J. Biol. Chem., 260, 14911–14917 (1985).
  • 13) Ganapathy, V., Smith, S. B., and Prasad, P. D., SLC19: the folate/thiamine transporter family. Pflugers Arch., 447, 641–646 (2004).
  • 14) Ratnam, M., and Freisheim, J. H., Proteins involved in the transport of folates and antifolates by normal and neoplastic cells. In “Folate Metabolism in Health and Disease,” ed. Picriano, M. F., Wiley-Liss, New York, pp. 91–120 (1992).
  • 15) Damaraju, V. L., Hamilton, K. F., Seth-Smith, M. L., Cass, C. E., and Sawyer, M. B., Characterization of binding of folates and antifolates to brush-border membrane vesicles isolated from human kidney. Mol. Pharmacol., 67, 453–459 (2005).
  • 16) Rajgopal, A., Sierra, E. E., Zhao, R., and Goldman, I. D., Expression of the reduced folate carrier SLC19A1 in IEC-6 cells results in two distinct transport activities. Am. J. Physiol. Cell Physiol., 281, C1579–1586 (2001).
  • 17) Prasad, P. D., Ramamoorthy, S., Moe, A. J., Smith, C. H., Leibach, F. H., and Ganapathy, V., Selective expression of the high-affinity isoform of the folate receptor (FR-alpha) in the human placental syncytiotrophoblast and choriocarcinoma cells. Biochim. Biophys. Acta, 1223, 71–75 (1994).
  • 18) Assaraf, Y. G., The role of multidrug resistance efflux transporters in antifolate resistance and folate homeostasis. Drug Resist. Updat., 9, 227–246 (2006).
  • 19) Novak, D., Lehman, M., Bernstein, H., Beveridge, M., and Cramer, S., SNAT expression in rat placenta. Placenta, 27, 510–516 (2006).
  • 20) Yamaguchi, M., Sakata, M., Ogura, K., and Miyake, A., Gestational changes of glucose transporter gene expression in the mouse placenta and deciduas. J. Endocrinol. Invest., 19, 567–569 (1996).
  • 21) Mathias, A. A., Hitti, J., and Unadkat, J. D., P-glycoprotein and breast cancer resistance protein expression in human placentae of various gestational ages. Am. J. Physiol. Regul. Integr. Comp. Physiol., 289, R963–969 (2005).
  • 22) Qiu, A., Jansen, M., Sakaris, A., Min, S. H., Chattopadhyay, S., Tsai, E., Sandoval, C., Zhao, R., Akabas, M. H., and Goldman, I. D., Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell, 127, 917–928 (2006).
  • 23) Yasuda, S., Hasui, S., Kobayashi, M., Itagaki, S., Hirano, T., and Iseki, K., The mechanism of carrier-mediated transport of folates in BeWo cells: the involvement of heme carrier protein 1 in placental folate transport. Biosci. Biotechnol. Biochem., 72, 329–334 (2008).
  • 24) Smith, C. H., Nelson, D. M., King, B. F., Donohue, T. M., Ruzycki, S., and Kelley, L. K., Characterization of a microvillous membrane preparation from human placental syncytiotrophoblast: a morphologic, biochemical, and physiologic study. Am. J. Obstet. Gynecol., 128, 190–196 (1997).
  • 25) Kobayashi, M., Saito, Y., Itagaki, S., Hirano, T., and Iseki, K., Nateglinide uptake by a ceftibuten transporter in the rat kidney brush-border membrane. Biochim. Biophys. Acta, 30, 19–24 (2005).
  • 26) Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J., Protein measurement with the folin phenol reagent. J. Biol. Chem., 193, 265–275 (1951).
  • 27) Luhrs, C. A., and Slomiany, B. L., A human membrane-associated folate binding protein is anchored by a glycosyl-phosphatidylinositol tail. J. Biol. Chem., 264, 21446–21449 (1989).
  • 28) Zhao, R., Gao, F., Wang, Y., Diaz, G. A., Gelb, B. D., and Goldman, I. D., Impact of the reduced folate carrier on the accumulation of active thiamin metabolites in murine leukemia cells. J. Biol. Chem., 276, 1114–1118 (2001).
  • 29) Fowden, A. L., Ward, J. W., Wooding, F. P., Forhead, A. J., and Constancia, M., Programming placental nutrient transport capacity. J. Physiol., 572, 5–15 (2006).
  • 30) Henriques, C., and Trugo, N. M., Partial characterization of folate uptake in microvillous membrane vesicles isolated from human placenta. Braz. J. Med. Biol. Res., 29, 1583–1591 (1996).
  • 31) Maddox, D. M., Manlapat, A., Roon, P., Prasad, P., Ganapathy, V., and Smith, S. B., Reduced-folate carrier (RFC) is expressed in placenta and yolk sac, as well as in cells of the developing forebrain, hindbrain, neural tube, craniofacial region, eye, limb buds and heart. BMC Dev. Biol., 3, 6 (2003).
  • 32) Chancy, C. D., Kekuda, R., Huang, W., Prasad, P. D., Kuhnel, J. M., Sirotnak, F. M., Roon, P., Ganapathy, V., and Smith, S. B., Expression and differential polarization of the reduced-folate transporter-1 and the folate receptor alpha in mammalian retinal pigment epithelium. J. Biol. Chem., 275, 20676–20684 (2000).
  • 33) Kamen, B. A., and Smith, A. K., A review of folate receptor alpha cycling and 5-methyltetrahydrofolate accumulation with an emphasis on cell models in vitro. Adv. Drug Deliv. Rev., 56, 1085–1097 (2005).
  • 34) Keating, E., Lemos, C., Azevedo, I., and Martel, F., Comparison of folic acid uptake characteristics by human placental choriocarcinoma cells at acidic and physiological pH. Can. J. Physiol. Pharmacol., 84, 247–255 (2006).
  • 35) Henderson, G. I., Perez, T., Schenker, S., Mackins, J., and Antony, A. C., Maternal-to-fetal transfer of 5-methyltetrahydrofolate by the perfused human placental cotyledon: evidence for a concentrative role by placental folate receptors in fetal folate delivery. J. Lab. Clin. Med., 126, 184–203 (1995).
  • 36) da Costa, M., Rothenberg, S. P., Sadasivan, E., Regec, A., and Qian, L., Folate deficiency reduces the GPI-anchored folate-binding protein in rat renal tubules. Am. J. Physiol. Cell Physiol., 278, C812–821 (2000).
  • 37) Kneuer, C., Honscha, K. U., and Honscha, W., Rat reduced-folate carrier-1 is localized basolaterally in MDCK kidney epithelial cells and contributes to the secretory transport of methotrexate and fluoresceinated methotrexate. Cell Tissue Res., 320, 517–524 (2005).
  • 38) Shayeghi, M., Latunde-Dada, G. O., Oakhill, J. S., Laftah, A. H., Takeuchi, K., Halliday, N., Khan, Y., Warley, A., McCann, F. E., Hider, R. C., Frazer, D. M., Anderson, G. J., Vulpe, C. D., Simpson, R. J., and McKie, A. T., Identification of an intestinal heme transporter. Cell, 122, 789–801 (2005).
  • 39) Yasuda, S., Itagaki, S., Hirano, T., and Iseki, K., Expression level of ABCG2 in the placenta decreases from the mid stage to the end of gestation. Biosci. Biotechnol. Biochem., 69, 1871–1876 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.