1,374
Views
32
CrossRef citations to date
0
Altmetric
Original Articles

Identification of Two Major Ammonia-Releasing Reactions Involved in Secondary Natto Fermentation

, , , &
Pages 1869-1876 | Received 29 Feb 2008, Accepted 22 Apr 2008, Published online: 22 May 2014

  • 1) Kiuchi, K., and Watanabe, S., Industrialization of Japanese natto. In “Industrialization of Indigenous Fermented Foods” 2nd ed., ed. Steinkraus, K. H., Marcel Dekker, New York, pp. 193–246 (2004).
  • 2) Sugawara, E., Itoh, T., Odagiri, S., Kubota, K., and Kobayashi, A., Comparison of compositions of odor components of Natto and cooked soybeans. Agric. Biol. Chem., 49, 311–317 (1985).
  • 3) Yamaguchi, M., Kakuda, H., Gao, Y. H., and Tsukamoto, Y., Prolonged intake of fermented soybean natto diets containing vitamin K2 (menaquinone-7) prevents bone loss in ovariectomized rats. J. Bone Miner. Metab., 18, 71–76 (2000).
  • 4) Goto, A., and Kunioka, M., Biosynthesis and hydrolysis of poly(γ-glutamate) from Bacillus subtilis IFO3335. Biosci. Biotechnol. Biochem., 567, 1031–1035 (1992).
  • 5) Ito, Y., Tanaka, T., Ohmachi, T., and Asada, Y., Glutamate independent production of Bacillus subtilis TAM-4. Biosci. Biotechnol. Biochem., 60, 1239–1243 (1996).
  • 6) Kubota, H., Matsunobu, T., Uotani, K., Takebe, H., Satoh, A., Tanaka, T., and Taniguchi, M., Production of poly(γ-glutamate) by Bacillus subtilis F-2-01. Biosci. Biotechnol. Biochem., 57, 1212–1213 (1993).
  • 7) Ashiuchi, M., Shimanouchi, K., Nakamura, H., Kamei, T., Soda, K., Park, C., Sung, M. H., and Misono, H., Enzymatic synthesis of high-molecular-mass poly-γ-glutamate and regulation of its stereochemistry. Appl. Environ. Microbiol., 70, 4249–4255 (2004).
  • 8) Kada, S., Nanamiya, H., Kawamura, F., and Horinouchi, H., Glr, a glutamate racemase, supplies D-glutamate to both peptidoglycan synthesis and poly-γ-glutamate production in γ-PGA-producing Bacillus subtilis. FEMS Microbiol. Lett., 236, 13–20 (2004).
  • 9) Itaya, M., and Matsui, K., Conversion of Bacillus subtilis 168: natto producing Bacillus subtilis with mosaic genomes. Biosci. Biotechnol. Biochem., 63, 2034–2037 (1999).
  • 10) Tanaka, T., Muramatsu, K., Kim, H., Watanabe, T., Takeyasu, M., Kanai, Y., and Kiuchi, K., Comparison of volatile compounds from chungkuk-jang and itohiki natto. Biosci. Biotechnol. Biochem., 67, 1440–1444 (1998).
  • 11) Takemura, H., Ando, N., and Tsukamoto, Y., Breeding of branched short-chain fatty acids non-producing natto bacteria and its application to production of natto with light smells. Nippon Shokuhin Kagaku Kogaku Kaishi (in Japanese), 47, 773–779 (2000).
  • 12) Koguchi, K., Miyama, K., Kikuchi, K., and Ito, S., Breeding of B. natto for making low flavor natto (part 2). Tochigi Syokuhin Kougyou Shidousyo Kennkyuu Houkoku (in Japanese), 10, 1–3 (1996).
  • 13) Miller, S. M., and Magasanik, B., Role of NAD-linked glutamate dehydrogenase in nitrogen metabolism in Saccharomyces cerevisiae. J. Bacteriol., 172, 4927–4935 (1990).
  • 14) Belitsky, B. R., and Sonenshein, A. L., Role and regulation of Bacillus subtilis glutamate dehydrogenase genes. J. Bacteriol., 180, 6298–6305 (1998).
  • 15) Satomura, T., Shimura, D., Asai, K., Sadaie, Y., Hirooka, K., and Fujita, Y., Enhancement of glutamine utilization in Bacillus subtilis through the GlnK-GlnL two-component regulatory system. J. Bacteriol., 187, 4813–4821 (2005).
  • 16) Cruz Ramos, H., Glaser, P., Wray, L. V., Jr., and Fisher, S. H., The Bacillus subtilis ureABC operon. J. Bacteriol., 179, 3371–3373 (1997).
  • 17) Sun, D. X., and Setlow, P., Cloning, nucleotide sequence, and expression of the Bacillus subtilis ans operon, which codes for L-asparaginase and L-aspartase. J. Bacteriol., 172, 3831–3845 (1991).
  • 18) Ashikaga, S., Nanamiya, H., Ohashi, Y., and Kawamura, F., Natural genetic competence in Bacillus subtilis natto OK2. J. Bacteriol., 182, 2411–2415 (2000).
  • 19) Anagnostopoulos, C., and Spizizen, J., Requirements for transformation in Bacillus subtilis. J. Bacteriol., 81, 741–746 (1961).
  • 20) Sambrook, J., Fritsch, E. F., and Maniatis, T., “Molecular Cloning, a Laboratory Manual” 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor (1989).
  • 21) Yamada, K., Characterization of spoII genes of Bacillus subtilis. Ph.D. thesis, Hiroshima University (1989).
  • 22) Dartois, V., Djavakhishvili, T., and Hoch, J. A., Identification of a membrane protein involved in activation of the KinB pathway to sporulation in Bacillus subtilis. J. Bacteriol., 178, 1178–1186 (1996).
  • 23) Ishiwa, H., and Shibahara-Sone, H., New shuttle vectors for Escherichia coli and Bacillus subtilis. IV. The nucleotide sequence of pHY300PLK and some properties in relation to transformation. Jpn. J. Genet., 61, 515–528 (1985).
  • 24) Nakamura, T., Yamagata, Y., and Ichishima, E., Nucleotide sequence of the subtilisin NAT gene, aprN, of Bacillus subtilis (natto). Biosci. Biotechnol. Biochem., 56, 1869–1871 (1992).
  • 25) Baker, P. J., Britton, K. L., Engel, P. C., Farrants, G. W., Lilley, K. S., Rice, D. W., and Stillman, T. J., Subunit assembly and active site location in the structure of glutamate dehydrogenase. Proteins Struct. Funct. Genet., 12, 75–86 (1992).
  • 26) Yip, K. S. P., Stillman, T. J., Britton, K. L., Artymiuk, P. J., Baker, P. J., Sedelnikova, S. E., Engel, P. C., Pasquo, A., Chiaraluce, R., Consalvi, V., Scandurra, R., and Rice, D. W., The structure of Pyrococcus furiosus glutamate dehydrogenase reveals a key role for non-pair networks in maintaining enzymatic stability at extreme temperatures. Structure, 3, 1147–1158 (1995).
  • 27) Kagawa, Y., “Standard Tables of Food Composition in Japan” 5th revised and enlarged ed. (in Japanese), Kagawa Education Institute of Nutrition, Tokyo (2006).
  • 28) Yoshida, K., Kobayashi, K., Miwa, Y., Kang, C.-M., Matunaga, M., Yamaguchi, H., Tojo, S., Yamamoto, M., Nishi, R., Ogasawara, N., Nakayama, T., and Fujita, Y., Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in Bacillus subtilis. Nucleic Acids Res., 29, 683–692 (2001).
  • 29) Commichau, F. M., Herzberg, C., Tripal, P., Valerius, O., and Stülke, J. A., Regulatory protein-protein interaction governs glutamate biosynthesis in Bacillus subtilis: the glutamate dehydrogenase RocG moonlights in controlling the transcription factor GltC. Mol. Microbiol., 65, 642–654 (2007).
  • 30) Molle, V., Nakamura, Y., Shivers, R. P., Yamaguchi, H., Rosick, R., Fujita, Y., and Sonenshein, A. L., Additional targets of the Bacillus subtilis global regulator CodY identified by chromatin immunoprecipitation and genome-wide transcript analysis. J. Bacteriol., 185, 1911–1922 (2003).
  • 31) Wray, L. V., Jr., Ferson, A. E., and Fisher, S. H., Expression of the Bacillus subtilis ureABC operon is controlled by multiple regulatory factors including CodY, GlnR, TnrA, and Spo0H. J. Bacteriol., 179, 5494–5501 (1997).
  • 32) Le Marrec, C., Bon, E., and Lonvaud-Funel, A., Tolerance to high osmolarity of the lactic acid bacterium Oenococcus oeni and identification of potential osmoprotectants. Int. J. Food Microbiol., 115, 335–342 (2007).
  • 33) Ozcan, N., Ejsing, C. S., Shevchenko, A., Lipski, A., Morbach, S., and Kramer, R., Osmolarity, temperature, and membrane lipid composition modulate the activity of betaine transporter BetP in Corynebacterium glutamicum. J. Bacteriol., 189, 7485–7496 (2007).
  • 34) Shimizu, K., Nakamura, H., and Ashiuchi, M., Salt-inducible bionylon polymer from Bacillus megaterium. Appl. Environ. Microbiol., 73, 2378–2379 (2007).
  • 35) Yanisch-Perron, C., Vieira, J., and Messing, J., Improved M13 phage cloning vectors and host strains: nucleotide sequences of M13mp18 and pUC19 vectors. Gene, 33, 103–119 (1985).
  • 36) Merck Biosciences, Novagen PCR Tools Brochure, Merck Bioscience, Darmstadt (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.