196
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Epoxyquinol B, a Naturally Occurring Pentaketide Dimer, Inhibits NF-κB Signaling by Crosslinking TAK1

, , , , , & show all
Pages 1894-1900 | Received 06 Mar 2008, Accepted 14 Apr 2008, Published online: 22 May 2014

  • 1) Bremner, P., and Heinrich, M., Natural products as targeted modulators of the nuclear factor-κB pathway. J. Pharm. Pharmacol., 54, 453–472 (2002).
  • 2) Ariga, A., Namekawa, J., Matsumoto, N., Inoue, J., and Umezawa, K., Inhibition of tumor necrosis factor-α-induced nuclear translocation and activation of NF-κB by dehydroxymethylepoxyquinomicin. J. Biol. Chem., 277, 24625–24630 (2002).
  • 3) Liang, M., Bardhan, S., Li, C., Pace, E. A., Porco, J. A., Jr., and Gilmore, T. D., Jesterone dimer, a synthetic derivative of the fungal metabolite jesterone, blocks activation of transcription factor nuclear factor κB by inhibiting the inhibitor of κB kinase. Mol. Pharmacol., 64, 123–131 (2003).
  • 4) Kwok, B. H., Koh, B., Ndubuisi, M. I., Elofsson, M., and Crews, C. M., The anti-inflammatory natural product parthenolide from the medical herb feverfew directly binds to and inhibits IκB kinase. Chem. Biol., 8, 759–766 (2001).
  • 5) Bernier, M., Kwon, Y. K., Pandey, S. K., Zhu, T. N., Zhao, R. J., Maciuk, A., He, H. J., DeCabo, R., and Kole, S., Binding of manumycin A inhibits IκB kinase β activity. J. Biol. Chem., 281, 2551–2561 (2006).
  • 6) Liang, M., Bardhan, S., Pace, E. M., Rosman, D., Beutler, J. A., Porco, J. A., Jr., and Gilmore, T. D., Inhibition of transcription factor NF-κB signaling proteins IKKβ and p65 through specific cysteine residues by epoxyquinone A monomer: correlation with its anti-cancer cell growth activity. Biochem. Pharmacol., 71, 634–645 (2006).
  • 7) Byun, M. S., Choi, J., and Jue, D. M., Cysteine-179 of IkappaB kinase beta plays a critical role in enzyme activation by promoting phosphorylation of activation loop serines. Exp. Mol. Med., 38, 546–552 (2006).
  • 8) Kamiyama, H., Kakeya, H., Usui, T., Nishikawa, K., Shoji, M., Hayashi, Y., and Osada, H., Epoxyquinol B shows antiangiogenic and antitumor effects by inhibiting VEGFR2, EGFR, FGFR, and PDGFR. Oncol. Res., 17, 11–21 (2008).
  • 9) Kamiyama, H., Usui, T., Uramoto, M., Takagi, H., Shoji, M., Hayashi, Y., Kakeya, H., and Osada, H., A fungal metabolite, Epoxyquinol B, crosslinks proteins by epoxy-thiol conjugation. J. Antibiotics, 61, 94–97 (2008).
  • 10) Shoji, M., Yamaguchi, J., Kakeya, H., Osada, H., and Hayashi, Y., Total synthesis of (+)-epoxyquinols A and B. Angew. Chem. Int. Ed. Engl., 41, 3192–3194 (2002).
  • 11) Sakurai, H., Miyoshi, H., Toriumi, W., and Sugita, T., Functional interactions of transforming growth factor beta-activated kinase 1 with IkappaB kinases to stimulate NF-κB activation. J. Biol. Chem., 274, 10641–10648 (1999).
  • 12) Singhirunnusorn, P., Suzuki, S., Kawasaki, N., Saiki, I., and Sakurai, H., Critical roles of threonine 187 phosphorylation in cellular stress induced rapid and transient activation of transforming growth factor-β-activated kinase 1 (TAK1) in a signaling complex containing TAK1-binding protein TAB1 and TAB2. J. Biol. Chem., 280, 7359–7368 (2005).
  • 13) Chen, Z. J., Ubiquitin signaling in the NF-κB pathway. Nat. Cell Biol., 8, 758–765 (2005).
  • 14) Kanayama, A., Seth, R. B., Sun, L., Ea, C. K., Hong, M., Shaito, A., Chiu, Y. H., Deng, L., and Chen, Z. J., TAB2 and TAB3 activate the NF-κ B pathway through binding to polyubiquitin chains. Mol. Cell, 15, 535–548 (2004).
  • 15) Hoffmann, J. A., Kafatos, F. C., Janeway, C. A., and Ezekowitz, R. A. B., Phylogenetic perspectives in innate immunity. Science, 284, 1313–1318 (1999).
  • 16) Ghosh, S., May, M. J., and Kopp, E. B., NF-κB and REL proteins: evolutionary conserved mediators of immune responses. Annu. Rev. Immunol., 16, 225–260 (1998).
  • 17) Calzado, M. A., Bacher, S., and Schmitz, M. L., NF-κB inhibitors for the treatment of inflammatory diseases and cancer. Curr. Med. Chem., 14, 367–376 (2007).
  • 18) Shirakabe, K., Yamaguchi, K., Shibuya, H., Irie, K., Matsuda, S., Moriguchi, T., Gotoh, Y., Matsumoto, K., and Nishida, E., TAK1 mediates the ceramide signaling to stress-activated protein kinase/c-Jun N-terminal kinase. J. Biol. Chem., 272, 8141–8144 (1997).
  • 19) Ninomiya-Tsuji, J., Kishimoto, K., Hiyama, A., Inoue, J., Cao, Z., and Matsumoto, K., The kinase TAK1 can activate the NIK-I κ B as well as the MAP kinase cascade in the IL-1 signaling pathway. Nature, 398, 252–256 (1999).
  • 20) Ninomiya-Tsuji, J., Kajino, T., Ono, K., Ohtomo, T., Matsumoto, M., Shiina, M., Mihara, M., Tsuchiya, M., and Matsumoto, K., A resorcylic acid lactone, 5Z-7-oxozeaenol, prevents inflammation by inhibiting the catalytic activity of TAK1 MAPK kinase. J. Biol. Chem., 278, 18485–18490 (2003).
  • 21) Guido, L., Knorre, A., Schmidt, T. J., Pahl, H. L., and Merfort, I., The anti-inflammatory sesquiterpene lactone helenalin inhibits the transcription factor NF-κB by directly targeting p65. J. Biol. Chem., 273, 33508–33516 (1998).
  • 22) Brown, K. B., Vial, S. C., Dedi, N., Long, J. M., Dunster, N. J., and Cheetham, G. M. T., Structural basis for the interaction of TAK1 kinase with its activating protein TAB1. J. Mol. Biol., 354, 1013–1020 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.