672
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Improvement of L-Lysine Production by Methylophilus methylotrophus from Methanol via the Entner-Doudoroff Pathway, Originating in Escherichia coli

, , &
Pages 2535-2542 | Received 19 Mar 2008, Accepted 26 Jun 2008, Published online: 22 May 2014

  • 1) Jenkins, O., Byrom, D., and Jones, D., Methylophilus: a new genus of methanol-utilizing bacteria. Int. J. Syst. Bacteriol., 37, 446–448 (1987).
  • 2) Senior, P. J., and Windass, J., The ICI single cell protein process. Biotechnol. Lett., 2, 205–210 (1980).
  • 3) Anthony, C., The commercial exploitation of methylotrophs. “The Biochemistry of the Methylotrophus,” Academic Press, London, pp. 328–378 (1982).
  • 4) Windass, J. D., Worsey, M. J., Pioli, E. M., Barth, P. T., Atherton, K. T., Dart, E. C., Byrom, D., Powell, K., and Senior, P. J., Improved conversion of methanol to single-cell protein by Methylophilus methylotrophus. Nature, 287, 396–401 (1980).
  • 5) Corby, J., and Zatman, L. J., Enzymological aspects of the pathways for trimethylamine oxidation and C1 assimilation in obligate methylotrophs and restricted facultative methylotrophs. Biochem. J., 148, 513–520 (1975).
  • 6) Linton, J. D., Watts, P. D., Austin, R. M., Haugh, D. E., and Niekus, H. G. D., The energetics and kinetics of extracellular polysaccharide production from methanol by micro-organisms possessing different pathways of C1 assimilation. J. Gen. Microbiol., 132, 779–788 (1986).
  • 7) Beardsmore, A. J., Aperghis, P. N. G., and Quayle, J. R., Characterization of the assimilatory and dissimilatory pathways of carbon metabolism during the growth of Methylophilus methylotrophus on methanol. J. Gen. Microbiol., 128, 1423–1429 (1982).
  • 8) Lloyd, A., Weitzman, P., and Soll, D., Incomplete citric acid cycle obliges aminolevulinic aced synthesis via the C4 pathway in a methylotroph. J. Gen. Microbiol., 139, 2931–2938 (1993).
  • 9) Goldberg, I., and Rokem, J. S., “Biology of Methylotrophs,” Butterworth-Heinemann, London, pp. 87–98 (1991).
  • 10) Southgate, G., and Goodwin, P. M., The regulation of exopolysaccharide production and of enzymes involved in C1 assimilation in Methylophilus methylotrophus. J. Gen. Microbiol., 135, 2859–2867 (1989).
  • 11) Gunji, Y., Tsujimoto, N., Shimaoka, M., Ogawa-Miyata, Y., Sugimoto, S., and Yasueda, H., Characterization of the L-lysine biosynthetic pathway in an obligate methylotroph, Methylophilus methylotrophus. Biosci. Biotechnol. Biochem., 68, 1449–1460 (2004).
  • 12) Tsujimoto, N., Gunji, Y., Ogawa-Miyata, Y., Shimaoka, S., and Yasueda, H., L-lysine biosynthetic pathway of Methylophilus methylotrophus and construction of an L-lysine producer. J. Biotechnol., 124, 327–337 (2006).
  • 13) Tosaka, O., Hirakawa, H., Takinami, K., and Hirose, Y., Regulation of lysine biosynthesis by leucine in Brevibacterium lactofermentum. Agric. Biol. Chem., 42, 1501–1506 (1978).
  • 14) Kabus, A., Georgi, T., Wendisch, V. F., and Bott, M., Expression of the E. coli pntAB genes encoding a membrane bound transhydrogenase in Corynebacterium glutamicum improves L-lysine formation. Appl. Microbiol. Biotechnol., 75, 47–53 (2007).
  • 15) Becker, J., Klopprogge, C., Herold, A., Zelder, O., Bolten, C. J., and Wittmann, C., Metabolic flux engineering of L-lysine production in Corynebacterium glutamicum overexpression and modification of G6P dehydrogenase. J. Biotechnol., 132, 99–109 (2007).
  • 16) Cremer, J., Eggeling, L., and Sahm, H., Control of the lysine biosynthesis sequence in Corynebacterium glutamicum as analyzed by overexpression of the individual corresponding genes. Appl. Environ. Microbiol., 57, 1746–1752 (1991).
  • 17) Eggeling, L., Oberle, S., and Sahm, H., Improved L-lysine yield with Corynebacterium glutamicum: use of dapA resulting in increased flux combined with growth limitation. Appl. Microbiol. Biotechnol., 49, 24–30 (1998).
  • 18) Gunji, Y., and Yasueda, H., Enhancement of L-lysine production in methylotroph Methylophilus methylotrophus by introducing a mutant LysE exporter. J. Biotechnol., 127, 1–13 (2006).
  • 19) Ishikawa, K., Asahara, T., Gunji, Y., Yasueda, H., and Asano, K., Disruption of metF increased L-lysine production by Methylophilus methylotrophus from methanol. Biosci. Biotechnol. Biochem., 72, 1317–1324 (2008).
  • 20) Sambrook, J., and Russell, D., “Molecular Cloning, a Laboratory Manual” 3rd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor (2001).
  • 21) Gliesche, C. G., Transformation of methylotrophic bacteria by electroporation. Can. J. Microbiol., 43, 197–201 (1996).
  • 22) Bachmann, B. J., Linkage map of Escherichia coli K-12, edition 8. Microbiol. Rev., 54, 130–197 (1990).
  • 23) Antoine, R., and Locht, C., Isolation and molecular characterization of a novel broad-host-range plasmid from Bordetella bronchiseptica with sequence similarities to plasmids from Gram-positive organisms. Mol. Microbiol., 6, 1785–1799 (1992).
  • 24) Labes, M., Puhler, A., and Simon, R., A new family of RSF1010-derived expression and lac-fusion broad-host-range vectors for Gram-negative bacteria. Gene, 89, 37–46 (1990).
  • 25) Bausch, C., Peekhaus, N., Utz, C., Blais, T., Murray, E., Lowary, T., and Conway, T., Sequence analysis of the GntII (subsidiary) system for gluconate metabolism reveals a novel pathway for L-idonic acid catabolism in Escherichia coli. J. Bacteriol., 180, 3704–3710 (1998).
  • 26) Fraenkel, D. G., and Horecker, B. L., Pathways of D-glucose metabolism in Salmonella typhimurium: a study of a mutant lacking phosphoglucose isomerase. J. Biol. Chem., 239, 2765–2771 (1964).
  • 27) Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J., Protein determination with the Folin phenol reagent. J. Biol. Chem., 193, 265–275 (1951).
  • 28) Herbert, D., Phipps, P. J., and Strange, R. E., Chemical analysis of microbial cells. Methods Microbiol., 5B, 210–344 (1971).
  • 29) Soga, T., Ohashi, Y., Ueno, Y., Naraoka, H., Tomita, M., and Nishioka, T., Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J. Proteome Res., 463, 488–494 (2003).
  • 30) Goldberg, I., Rock, R. S., Ben-Bassat, A., and Mateles, R. I., Bacterial yields on methanol, methylamine, formaldehyde, and formate. Biotechnol. Bioeng., 18, 1657–1668 (1976).
  • 31) Peters-Wendisch, P. G., Schiel, B., Wendisch, V. F., Katsoulidis, E., Möckel, B., Sahm, H., and Eikmanns, B. J., Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum. J. Mol. Microbiol. Biotechnol., 3, 295–300 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.