433
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

The Screening, Characterization, and Use of ω-Laurolactam Hydrolase: A New Enzymatic Synthesis of 12-Aminolauric Acid

, , &
Pages 2141-2150 | Received 02 Apr 2008, Accepted 01 May 2008, Published online: 22 May 2014

  • 1) Isobe, N., Hirano, T., Kurachi, K., and Ogawa, N., U. S. Patent 6294644 (Sep. 25, 2001).
  • 2) Kawakami, A., Shimada, T., Tsumiyama, T., and Yamaguchi, H., U. S. Patent 5283315 (Feb. 1, 1994).
  • 3) Nishimura, K., Furusaki, S., and Hashimoto, K., U. S. Patent 3970677 (July 20, 1976).
  • 4) Nishimura, K., Furusaki, S., and Kuniyoshi, K., U. S. Patent 3987071 (Oct. 19, 1976).
  • 5) Nishimura, K., Furusaki, S., and Kuniyoshi, K., U. S. Patent 3994942 (Nov. 30, 1976).
  • 6) Nishimura, K., Miyazaki, H., Kuniyasu, K., and Ono, S., U. S. Patent 4165328 (Aug. 21, 1979).
  • 7) Asano, Y., Tachibana, M., Tani, Y., and Yamada, H., Purification and characterization of amidase which participates in nitrile degradation. Agric. Biol. Chem., 46, 1175–1182 (1982).
  • 8) Albler, R. P., Auffret, A. D., and Clarke, P. H., The amino acid sequence of the aliphatic amidase from Pseudomonas aeruginosa. FEBS Lett., 215, 285–290 (1987).
  • 9) Soubrier, F., Lévy-Schil, S., Mayaux, J. F., Pétré, D., Arnaud, A., and Crouzet, J., Cloning and primary structure of the wide-spectrum amidases from Brevibacterium sp. R312: high homology to the amiE product from Pseudomonas aeruginosa. Gene, 116, 99–104 (1992).
  • 10) Skouloubris, S., Labigne, A., and Reuse, H. D., Identification and characterization of aliphatic amidase in Helicobacter pylori. Mol. Microbiol., 25, 989–998 (1997).
  • 11) Cheong, T. K., and Oriel, P. J., Cloning of a wide-spectrum amidase from Bacillus stearothermophilus BR388 in Escherichia coli and marked enhancement of amidase expression using directed evolution. Enzyme Microb. Technol., 26, 152–158 (2000).
  • 12) Fernandez-Lafuente, R., Rosell, C. M., and Guisan, J. M., Enzyme reaction engineering: synthesis of antibiotics catalyzed by stabilized penicillin G acylase in the presence of organic solvents. Enzyme Microb. Technol., 13, 898–905 (1991).
  • 13) Wakayama, M., Yoshimune, K., Hirose, Y., and Moriguchi, M., Production of D-amino acids by N-acyl-D-amino acid amidehydrolase and its structure and function. J. Mol. Cat. B: Enzymatic, 23, 71–85 (2003).
  • 14) Asano, Y., Nakazawa, A., Kato, Y., and Kondo, K., Properties of a novel D-stereospecific aminopeptidase from Ochrobactrum anthropi. J. Biol. Chem., 264, 14233–14239 (1989).
  • 15) Asano, Y., Ito, H., Dairi, T., and Kato, Y., An alkaline D-stereospecific endopeptidase with β-lactamase activity from Bacillus cereus. J. Biol. Chem., 271, 30256–30262 (1996).
  • 16) Komeda, H., and Asano, Y., Gene cloning, nucleotide sequencing, and purification and characterization of the D-stereospecific amino acid amidase from Ochrobactrum anthropi SV3. Eur. J. Biochem., 267, 2028–2036 (2000).
  • 17) Livermore, M. D., β-Lactamases in the laboratory and clinical resistance. Clin. Microbiol. Rev., 8, 557–584 (1995).
  • 18) Taylor, S. J. C., McCague, R., Wisdom, R., Lee, C., Dickson, K., Ruecroft, G., O’Brien, F., Littlechild, J., Bevan, J., Roberts, S. M., and Evans, C. T., Development of the biocatalytic resolution of 2-azabicyclo[2.2.1]-hept-5-en-3-one as an entry to single enantiomer carbocyclic nucleosides. Tetrahedron Assym., 4, 1117–1128 (1993).
  • 19) Brabban, A. D., Littlechild, J. A., and Wisdom, R., Stereospecific γ-lactamase activity on Pseudomonas fluorescens sp. J. Ind. Microbiol., 16, 8–14 (1996).
  • 20) Taylor, S. J. C., Brown, R. C., Keene, P. A., and Taylor, I. N., Novel screening methods: the key to cloning commercially successful biocatalysis. Bioorg. Med. Chem., 7, 2163–2168 (1999).
  • 21) Line, K., Isupov, M., and Littlechild, J., The crystal structure of a (−) γ-lactamase from an Aureobacterium sp. reveals a tetrahedral intermediate in the active site. J. Mol. Biol., 338, 519–532 (2004).
  • 22) Fukumura, T., Hydrolysis of L-α-amino-ε-caprolactam by yeasts. Agric. Biol. Chem., 40, 1695–1698 (1976).
  • 23) Fukumura, T., Talbot, G., Misono, H., Teramura, Y., Kato, K., and Soda, K., Purification and properties of a novel enzyme, L-α-amino-ε-caprolactamase from Cryptococcus laurentii. FEBS Lett., 89, 298–300 (1978).
  • 24) Kinoshita, S., Kageyama, S., Iba, K., Yamada, Y., and Okada, H., Utilization of a cyclic dimer and linear oligomers of ε-amino-caproic acid by Achromobacter guttatus KI72. Agric. Biol. Chem., 39, 1219–1223 (1975).
  • 25) Kinoshita, S., Negoro, S., Muramatsu, M., Bisaria, V. S., Sawada, S., and Okada, H., 6-Aminohexanoic acid cyclic dimer hydrolase: a new cyclic amide hydrolase produced by Achromobacter guttatus KI72. Eur. J. Biochem., 80, 489–495 (1977).
  • 26) Fawcett, J. K., and Scott, J. E., A rapid and precise method for the determination of urea. J. Clin. Pathol., 13, 156–159 (1960).
  • 27) Laemmli, U. K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685 (1970).
  • 28) Tsuchiya, K., Fukuyama, S., Kanzaki, N., Kanagawa, K., Negoro, S., and Okada, H., High homology between 6-aminohexanoate-cyclic-dimer hydrolases of Flavobacterium and Pseudomonas strains. J. Bacteriol., 171, 3187–3191 (1989).
  • 29) Saito, H., and Miura, K., Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim. Biophys. Acta, 72, 619–629 (1963).
  • 30) Vandamme, P., and Coenye, T., Taxonomy of the genus Cupriavidus: a tale of lost and found. Int. J. Syst. Evol. Microbiol., 54, 2285–2289 (2004).
  • 31) Willems, A., Falsen, E., Pot, B., Jantzen, E., Hoste, B., Vandamme, P., Gillis, M., Kersters, K., and De Ley, J., Acidovorax, a new genus for Pseudomonas facilis, Pseudomonas delafieldii, E. Falsen (EF) group 13, EF group 16, and several clinical isolates, with the species Acidovorax facilis comb. nov., Acidovorax delafieldii comb. nov., and Acidovorax temperans sp. nov. Int. J. Syst. Evol. Microbiol., 40, 384–398 (1990).
  • 32) Makkar, N. S., and Casida, L. E. Jr., Cupriavidus necator gen. nov., sp. nov.: a nonobligate bacterial predator of bacteria in soil. Int. J. Syst. Evol. Microbiol., 37, 323–326 (1987).
  • 33) Goodfellow, M., Chun, J., Stackebrandt, E., and Kroppenstedt, R. M., Transfer of Tsukamurella wratislaviensis Goodfellow et al. 1995 to the genus Rhodococcus as Rhodococcus wratislaviensis comb. nov. Int. J. Syst. Evol. Microbiol., 52, 749–755 (2002).
  • 34) Nohynek, L. J., Nurmiaho-lassila, E. L., Suhonen, E. L., Busse, H. J., Mohammadi, M., Hantula, J., Rainey, F., and Salkinoja-salonen, M. S., Description of chlorophenol-degrading Pseudomonas sp. strains KF1T, KF3 and NKF1 as a new species of the genus Sphingomonas, Sphingomonas subarctica sp. nov. Int. J. Syst. Evol. Microbiol., 46, 1042–1055 (1996).
  • 35) Kinoshita, S., Terada, T., Taniguchi, T., Takene, Y., Masuda, S., Matsunaga, N., and Okada, H., Purification and characterization of 6-aminohexanoic acid oligomer hydrolase of Flavobacterium sp. KI72. Eur. J. Biochem., 116, 547–551 (1981).
  • 36) Negoro, S., Kakudo, S., Urabe, I., and Okada, H., A new nylon oligomer degradation gene (nylC) on plasmid pOAD2 from Flavobacterium sp. J. Bacteriol., 174, 7948–7953 (1992).
  • 37) Negoro, S., Taniguchi, T., Kanaoka, M., Kimura, H., and Okada, H., Plasmid-determined enzymatic degradation of nylon oligomers. J. Bacteriol., 155, 22–31 (1983).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.