180
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Glycosphingolipids as a Possible Signature of Microbial Communities in Activated Sludge and the Potential Contribution of Fungi to Wastewater Treatment under Cold Conditions

, , , &
Pages 2667-2674 | Received 13 May 2008, Accepted 03 Jul 2008, Published online: 22 May 2014

  • 1) Okabe, S., Satoh, H., and Watanabe, Y., In situ analysis of nitrifying biofilms as determined by in situ hybridization and the use of microelectrodes. Appl. Environ. Microbiol., 65, 3182–3191 (1999).
  • 2) Juretschko, S., Timmermann, G., Schmid, M., Shleifer, K.-H., Pommerening-Röser, A., Koops, H.-P., and Wagner, M., Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl. Environ. Microbiol., 64, 3042–3051 (1998).
  • 3) Criado, C., and Bécares, E., Characterization of bacterial communities of a constructed wetland in cold conditions. J. Gen. Appl. Microbiol., 51, 197–201 (2005).
  • 4) Werker, A. G., Becker, J., and Huitema, C., Assessment of activated sludge microbial community analysis in full-scale biological wastewater treatment plants using patterns of fatty acid isopropyl esters (FAPEs). Water Res., 37, 2162–2172 (2003).
  • 5) Werker, A. G., An evaluation of full-scale activated sludge dynamics using microbial fatty acid analysis. Water Sci. Technol., 54, 11–19 (2006).
  • 6) Smith, C. A., Phiefer, C. B., Macnaughton, S. J., Peacock, A., Burkhalter, R. S., Kirkegaard, R., and White, D. C., Quantitative lipid biomarker detection of unculturable microbes and chlorine exposure in water distribution system biofilms. Water Res., 34, 2683–2688 (2000).
  • 7) Rajendran, N., Matsuda, O., Rajendran, R., and Urushigawa, Y., Comparative description of microbial community structure in surface sediments of eutrophic bays. Marine Pol. Bull., 34, 26–33 (1997).
  • 8) Hiraishi, A., Ueda, Y., and Ishihara, J., Quinone profiling of bacterial communities in natural and synthetic sewage activated sludge for enhanced phosphate removal. Appl. Environ. Microbiol., 64, 992–998 (1998).
  • 9) Hiraishi, A., Yamanaka, Y., and Narihiro, T., Seasonal microbial community dynamics in a flowerpot-using personal composting system for disposal of household biowaste. J. Gen. Appl. Microbial., 46, 133–146 (2000).
  • 10) Tang, J.-C., Shibata, A., Zhou, Q., and Katayama, A., Effect of temperature on reaction rate and microbial community in composting of cattle manure with rice straw. J. Biosci. Bioeng., 104, 321–328 (2007).
  • 11) Hiraishi, A., and Kato, K., Quinone profiles in lake sediments: implications for microbial diversity and community structures. J. Gen. Appl. Microbiol., 45, 221–227 (1999).
  • 12) Kunihiro, T., Hu, H.-Y., Lim, B.-R., Goto, N., and Fujie, K., Analysis of the differences in microbial community structures between suspended and sessile microorganisms in rivers based on quinone profile. J. Gen. Appl. Microbiol., 48, 35–41 (2002).
  • 13) Hakomori, S., Structure and function of sphingoglycolipids in transmembrane signalling and cell-cell interactions. Biochem. Soc. Trans., 21, 583–595 (1993).
  • 14) Cowart, L. A., and Obeid, L. M., Yeast sphingolipids: recent developments in understanding biosynthesis, regulation, and function. Biochim. Biophys. Acta, 1771, 421–431 (2007).
  • 15) Jimenez-Lucho, V., Ginsburg, V., and Krivan, H. C., Cryptococcus neoformans, Candida albicans and other fungi bind specifically to glycosphingolipid lactosylceramide (Galβ1-4Glcβ1-1Cer), a possible adhesion receptor for yeasts. Infect. Immun., 58, 2085–2090 (1990).
  • 16) Folch, J., Lees, M., and Stanley, G. H. S., A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem., 226, 497–509 (1957).
  • 17) Aoki, K., Uchiyama, R., Itonori, S., Sugita, M., Che, F.-S., Isogai, A., Hada, N., Hada, J., Takeda, T., Kumagai, H., and Yamamoto, K., Structural elucidation of novel phosphocholine-containing glycosylinositol-phosphoceramides in filamentous fungi and their induction of cell death of cultured rice cells. Biochem. J., 378, 461–472 (2004).
  • 18) Ohnishi, M., and Fujino, Y., Sphingolipids in immature and mature soybeans. Lipids, 17, 803–810 (1982).
  • 19) Svennerholm, L., The quantitative estimation of cerebrosides in nervous tissue. J. Neurochem., 1, 42–53 (1956).
  • 20) Neef, A., Witzenberger, R., and Kämpfer, P., Detection of sphingomonads and in situ identification in activated sludge using 16s rRNA-targeted oligonucleotide probes. J. Ind. Microbiol. Biotechnol., 23, 261–267 (1999).
  • 21) Kämpfer, P., Witzenberger, R., Denner, E. B. M., Busse, H.-J., and Neef, A., Sphingopyxis witflariensis sp. nov., isolated from activated sludge. Int. J. Syst. Evol. Microbiol., 52, 2029–2034 (2002).
  • 22) White, D. C., Sutton, S. D., and Ringelberg, D. B., The genus Sphingomonas: physiology and ecology. Curr. Opin. Biotechnol., 7, 301–306 (1996).
  • 23) Naka, T., Fujiwara, N., Yabuuchi, E., Doe, M., Kobayashi, K., Kato, Y., and Yano, I., A novel sphingoglycolipid containing galacturonic acid and 2-hydroxy fatty acid in cellular lipids of Sphingomonas yanoikuyae. J. Bacteriol., 182, 2660–2663 (2000).
  • 24) Kawahara, K., Sato, N., Tsuge, K., and Seto, Y., Confirmation of the anomeric structure of galacturonic acid in the galacturonosyl-ceramide of Sphingomonas yanoikuyae. Microbiol. Immunol., 50, 67–71 (2006).
  • 25) Kawahara, K., Moll, H., Knirel, Y. A., Seydel, U., and Zähringer, U., Structural analysis of two glycosphingolipids from the lipopolysaccharide-lacking bacterium Sphingomonas capsulata. Eur. J. Biochem., 267, 1837–1846 (2000).
  • 26) Rodrigues, M. L., Travassos, L. R., Miranda, K. R., Franzen, A. J., Rozental, S., de Souza, W., Alviano, C. S., and Barreto-Bergter, E., Human antibodies against a purified glucosylceramide from Cryptococcus neoformans inhibit cell budding and fungal growth. Infect. Immun., 68, 7049–7060 (2000).
  • 27) Takakuwa, N., Kinoshita, M., Oda, Y., and Ohnishi, M., Existence of cerebroside in Saccharomyces kluyveri and its related species. FEMS Yeast Res., 2, 533–538 (2002).
  • 28) Tanji, M., Namimatsu, K., Kinoshita, M., Motoshima, H., Oda, Y., and Ohnishi, M., Content and chemical compositions of cerebrosides in lactose-assimilating yeasts. Biosci. Biotechnol. Biochem., 68, 2205–2208 (2004).
  • 29) Nimrichter, L., Cerqueira, M. D., Leitão, E. A., Miranda, K., Nakayasu, E. S., Almeida, S. R., Almeida, I. C., Alviano, C. S., Barreto-Bergter, E., and Rodrigues, L., Structure, cellular distribution, antigenicity, and biological functions of Fonsecaea pedrosoi ceramide monohexosides. Infect. Immun., 73, 7860–7868 (2005).
  • 30) Tolendo, M. S., Levery, S. B., Straus, A. H., and Takahashi, H. K., Dimorphic expression of cerebrosides in the mycopathogen Sporothrix schenckii. J. Lipid Res., 41, 797–806 (2000).
  • 31) Tolendo, M. S., Levery, S. B., Suzuki, E., Straus, A. H., and Takahashi, H. K., Characterization of cerebrosides from the thermally dimorphic mycopathogen Histoplasma capsulatum: expression of 2-hydroxy fatty N-acyl (E)-Δ3-unsaturation correlates with the yeast-mycelium phase transition. Glycobiology, 11, 113–124 (2001).
  • 32) Aoki, K., Uchiyama, R., Yamauchi, S., Katayama, T., Itonori, S., Sugita, M., Hada, N., Yamada-Hada, J., Takeda, T., Kumagai, H., and Yamamoto, K., Newly discovered neutral glycosphingolipids in Aureobasidin A-resistant Zygomycetes. J. Biol. Chem., 279, 32028–32034 (2004).
  • 33) Tago, Y., and Yokota, A., Comamonas badia sp. nov., a floc-forming bacterium isolated from activated sludge. J. Gen. Appl. Microbiol., 50, 243–248 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.