205
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

The Expression Pattern of NAD(P)H Oxidases and the Cyclic Electron Transport Pathway around Photosystem I of Synechocystis sp. PCC6803 Depend on Growth Conditions

, , , &
Pages 3180-3188 | Received 02 Jun 2008, Accepted 25 Aug 2008, Published online: 22 May 2014

  • 1) Kallas, T., The cytochrome b 6 f complex. In “The Molcular Biology Cyanobacteria,” ed. Bryant, D. A., Kluwer Academic Publishers, Dordrecht, pp. 259–317 (1994).
  • 2) Nixon, P. J., and Mullineaux, C. W., Regulation of photosynthetic electron transport. In “Regulation of Photosynthesis,” eds. Aro, E.-M., and Anderson, B., Kluwer Academic Publishers, Dordrecht, pp. 533–555 (2001).
  • 3) Bendall, D. S., and Manasse, R. S., Cyclic photophosphorylation and electron transport. Biochim. Biophys. Acta, 1229, 23–38 (1995).
  • 4) Ogawa, T., A gene homologous to the subunit-2 gene of NADH dehydrogenase is essential to inorganic carbon transport of Synechocystis PCC6803. Proc. Natl. Acad. Sci. USA, 88, 4275–4279 (1991).
  • 5) Tanaka, Y., Katada, S., Ishikawa, H., Ogawa, T., and Takabe, T., Electron flow from NAD(P)H dehydrogenase to photosystem I is required for adaptation to salt shock in the cyanobacterium Synechocystis sp. PCC6803. Plant Cell Physiol., 38, 1311–1318 (1997).
  • 6) Mi, H., Endo, T., Schreiber, U., Ogawa, T., and Asada, K., Electron donation from cyclic and respiratory flow to the photosynthetic intersystem chain is mediated by pyridine nucleotide dehydrogenase in the cyanobacterium Synechocystis PCC6803. Plant Cell Physiol., 33, 1233–1237 (1992).
  • 7) Manasse, R. S., and Bendall, D. S., Characteristics of cyclic electron transport in the cyanobacterium Phormidium laminosum. Biochim. Biophys. Acta, 1183, 361–368 (1993).
  • 8) Munekage, Y., Honjo, M., Meuer, J., Endo, T., Tasaka, M., and Shikanai, T., PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell, 110, 361–371 (2002).
  • 9) Yaremenko, N., Jeanjean, R., Prommeenate, P., Krasikov, V., Nixon, P. J., Vermaas, W. F. J., Havaux, M., and Matthijs, H. C. P., Open reading frame ssr2016 is required for antimycin A-sensitive photosystem I-driven cyclic electron flow in the cyanobacterium Synechocystis sp. PCC6803. Plant Cell Physiol., 46, 1433–1436 (2005).
  • 10) van Thor, J. J., Jeanjean, R., Havaux, M., Sjollema, K. A., Joset, F., Hellingwerf, K. J., and Matthijs, H. C. P., Salt shock-inducible photosystem I cyclic electron transfer in Synechocystis PCC6803 relies on binding of ferredoxin:NADP+ reductase to the thylakoid membranes via its CpcD phycobilisome-linker homologous N-terminal domain. Biochim. Biophys. Acta, 1457, 129–144 (2000).
  • 11) Ooyabu, J., Ootsuka, M., Kashino, Y., Satoh, K., and Koike, H., Changes in cyclic electron transport pathway of Synechocystis 6803 under various growth conditions. In “Photosynthesis: Fundamental Aspects of Global Perspectives,” eds. van der Est, A., and Bruce, D., Allen Press, Lawrense, pp. 18–20 (2005).
  • 12) Ogawa, T., Miyano, A., and Inoue, Y., Photosystem-I-driven inorganic carbon transport in the cyanobacterium, Anacystis nidulans. Biochim. Biophys. Acta, 808, 77–84 (1985).
  • 13) Ohkawa, H., Price, G. D., Badger, M. R., and Ogawa, T., Mutation of ndh genes leads to inhibition of CO2 uptake rather than HCO3 − uptake in Synechocystis sp. PCC6803. J. Bacteriol., 182, 2591–2596 (2000).
  • 14) Shibata, M., Ohkawa, H., Kaneko, T., Fukuzawa, H., Tabata, S., Kaplan, A., and Ogawa, T., Distinct constitutive and low-CO2-induced CO2 uptake systems in cyanobacteria: genes involved and their phylogenetic relationship with homologous genes in other organisms. Proc. Natl. Acad. Sci. USA, 98, 11789–11794 (2001).
  • 15) Ohtsuka, M., Oyabu, J., Kashino, Y., Satoh, K., and Koike, H., Inactivation of ycf33 results in an altered cyclic electron transport pathway around photosystem I in Synechocystis sp. PCC6803. Plant Cell Physiol., 45, 1243–1251 (2004).
  • 16) Satoh, K., Hirai, M., Nishino, J., Yamaji, T., Kashino, Y., and Koike, H., Recovery of photosynthetic systems during rewetting is quite rapid in a terrestrial cyanobacterium, Nostoc commune. Plant Cell Physiol., 43, 170–176 (2002).
  • 17) de Vries, S., and Grivell, L. A., Purification and characterization of a rotenone-insensitive NADH:Q6 oxidoreductase from mitochondria of Saccharomyces cerevisiae. Eur. J. Biochem., 176, 377–384 (1988).
  • 18) Honeycutt, R. C., and Krogmann, D. W., Inhibition of chloroplast reactions with phenylmercuric acetate. Plant Physiol., 49, 376–380 (1972).
  • 19) Havaux, M., Guedeny, G., He, Q., and Grossman, A. R., Elimination of high-light inducible polypeptides related to eukaryotic chlorophyll a/b-binding protein results in aberrant photoacclimation in Synechocystis PCC 6803. Biochim. Biophys. Acta, 1557, 21–33 (2003).
  • 20) Nakajima, M., Sakamoto, T., and Wada, K., The complete purification and characterization of three forms of ferredoxin-NADP+ oxidoreductase from a thermophilic cyanobacterium Synechococcus elongatus. Plant Cell Physiol., 43, 484–493 (2002).
  • 21) O’donnell, V. B., Tew, D. G., Jones, O. T. G., and England, P. J., Studies on the inhibitory mechanism of iodonium compounds with special reference to neutrophil NADPH oxidase. Biochem. J., 290, 41–49 (1993).
  • 22) Hosler, J. P., and Yocum, C. F., Heparin inhibition of ferredoxin-NADP reductase in chloroplast thylakoid membranes. Arch. Biochem. Biophys., 236, 473–478 (1995).
  • 23) Sazanov, L. A., Burrows, P. A., and Nixon, P. J., The plastid ndh genes code for an NADH-specific dehydrogenase: isolation of a complex I analogue from pea thylakoid membranes. Proc. Natl. Acad. Sci. USA, 95, 1319–1324 (1998).
  • 24) Nishino, T., Kashino, Y., Koike, H., and Satoh, K., Involvement of NADH and peripheral NADH dehydrogenase in the cyclic electron flow in higher plants. In “Photosynthesis: Fundamental Aspects of Global Perspectives,” eds. van der Est, A., and Bruce, D., Allen Press, Lawrense, pp. 20–22 (2005).
  • 25) Yu, L., Zhao, J., Mühlenhoff, U., Bryant, D. A., and Golbeck, J. H., PsaE is required for in vivo cyclic electron flow around photosystem I in the cyanobacterium Synechococcus sp. PCC7002. Plant Physiol., 103, 171–180 (1993).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.