644
Views
64
CrossRef citations to date
0
Altmetric
Original Articles

Cloning and Characterization of the 2-C-Methyl-D-erythritol 4-Phosphate (MEP) Pathway Genes of a Natural-Rubber Producing Plant, Hevea brasiliensis

, , , , , , , , & show all
Pages 2903-2917 | Received 10 Jun 2008, Accepted 15 Jul 2008, Published online: 22 May 2014

  • 1) Kuzuyama, T., Mevalonate and nonmevalonate pathway for the biosynthesis of isoprene units. Biosci. Biotechnol. Biochem., 66, 1619–1627 (2002).
  • 2) Kuzuyama, T., and Seto, H., Diversity of the biosynthesis of the isoprene units. Nat. Prod. Rep., 20, 171–183 (2003).
  • 3) Lichtenthaler, H. K., 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 50, 47–65 (1998).
  • 4) Rohmer, M., The discovery of a mevalonate independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat. Prod. Rep., 16, 565–574 (1999).
  • 5) Bandurski, R. S., and Teas, H. J., Rubber biosynthesis in latex of Hevea brasiliensis. Plant Physiol., 32, 643–648 (1957).
  • 6) Lynen, F., Biochemical problems of rubber synthesis. J. Rubb. Res. Inst. Malaya, 21, 389–406 (1969).
  • 7) Sando, T., Takaoka, C., Mukai, Y., Yamashita, A., Hattori, M., Ogasawara, N., Fukusaki, E., and Kobayashi, A., Cloning and characterization of mevalonate pathway genes in natural rubber producing plant, Hevea brasiliensis. Biosci. Biotechnol. Biochem., 72, 2049–2060 (2008).
  • 8) Chow, K. S., Wan, K. L., Isa, M. N. M., Bahari, A., Tan, S. H., Harikrishna, K., and Yeang, H. Y., Insights into rubber biosynthesis from transcriptome analysis of Hevea brasiliensis latex. J. Exp. Bot., 58, 2429–2440 (2007).
  • 9) Kush, A., Goyvaerts, E., Chye, M. L., and Chua, N. H., Laticifer-specific gene expression in Hevea brasiliensis (rubber tree). Proc. Natl. Acad. Sci. USA, 87, 1787–1790 (1990).
  • 10) Chang, S., Puryear, J., and Cairney, J., A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep., 11, 113–116 (1993).
  • 11) Veau, B., Courtois, M., Oudin, A., Chenieux, J. C., Rideau, M., and Clastre, M., Cloning and expression of cDNA encoding two enzymes of the MEP pathway in Catharanthus roseus. Biochim. Biophys. Acta, 1517, 159–163 (2000).
  • 12) Kim, S. M., Kuzuyama, T., Chang, Y. J., and Kim, S. U., Functional identification of Ginkgo biloba 1-deoxy-D-xylulose 5-phosphate synthase (DXS) gene by using Escherichia coli disruptants defective in DXS gene. Agric. Chem. Biotechnol., 48, 101–104 (2005).
  • 13) Kuzuyama, T., Takahashi, S., and Seto, H., Construction and characterization of Escherichia coli disruptants defective in the yaeM gene. Biosci. Biotechnol. Biochem., 63, 776–778 (1999).
  • 14) Kuzuyama, T., Takagi, M., Kaneda, K., Dairi, T., and Seto, H., Formation of 4-(cytidine 5′-diphospho)-2-C-methyl-D-erythritol from 2-C-methyl-D-erythritol 4-phosphate by 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase, a new enzyme in the nonmevalonate pathway. Tetrahedron Lett., 41, 703–706 (2000).
  • 15) Kuzuyama, T., Takagi, M., Kaneda, K., Dairi, T., and Seto, H., Studies on the nonmevalonate pathway: conversion of 4-(cytidine 5′-diphospho)-2-C-methyl-D-erythritol to its 2-phospho derivative by 4-(cytidine 5′-diphospho)-2-C-methyl-D-erythritol kinase. Tetrahedron Lett., 41, 2925–2928 (2000).
  • 16) Takagi, M., Kuzuyama, T., Kaneda, K., Dairi, T., and Seto, H., Studies on the nonmevalonate pathway: formation of 2-C-methyl-D-erythritol 2,4-cyclodiphosphate from 2-phospho-4-(cytidine 5′-diphospho)-2-C-methyl-D-erythritol. Tetrahedron Lett., 41, 3395–3398 (2000).
  • 17) Puan, K. J., Jin, C., Wang, H., Sarikonda, G., Raker, A. M., Lee, H. K., Samuelson, M. I., Märker-Hermann, E., Pasa-Tolic, L., Nieves, E., Giner, J. L., Kuzuyama, T., and Morita, C. T., Preferential recognition of a microbial metabolite by human Vγ2Vδ2 T cells. Int. Immunol., 19, 657–673 (2007).
  • 18) Kim, S. M., Kuzuyama, T., Kobayashi, A., Sando, T., Chang, Y. J., and Kim, S. U., 1-Hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (IDS) is encoded by multicopy genes in gymnosperms Ginkgo biloba and Pinus taeda. Planta, 227, 287–298 (2008).
  • 19) Kakinuma, K., Dekishima, Y., Matsushima, Y., Eguchi, T., Misawa, N., Takagi, M., Kuzuyama, T., and Seto, H., New approach to multiply deuterated isoprenoids using triply engineered Escherichia coli and its potential as a tool for mechanistic enzymology. J. Am. Chem. Soc., 123, 1238–1239 (2001).
  • 20) Livak, K. J., and Schmittgen, T. D., Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25, 402–408 (2001).
  • 21) Hoeffler, J. F., Grosdemange-Billiard, C., and Rohmer, M., Synthesis of tritium labelled 2-C-methyl-D-erythritol, a useful substrate for the elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis. Tetrahedron Lett., 41, 4885–4889 (2000).
  • 22) Okumoto, H., and Katto, H., A practical access to [1-13C] 1-deoxy-D-xylulose and its derivatives. Synlett, 10, 1521–1523 (2003).
  • 23) Walter, M. H., Hans, J., and Strack, D., Two distantly related genes encoding 1-deoxy-D-xyluloses5-phosphate synthases: differential regulation in shoots and apocarotenoid-accumulating mycorrhizal roots. Plant J., 31, 243–254 (2002).
  • 24) Krushkal, J., Pistilli, M., Ferrell, K. M., Souret, F. F., and Weathers, P. J., Computational analysis of the evolution of the structure and function of 1-deoxy-D-xylulose-5-phosphate synthase, a key regulator of the mevalonate-independent pathway in plants. Gene, 313, 127–138 (2003).
  • 25) Phillips, A. M., Walter, M. H., Ralph, S. G., Dabrowska, P., Luck, K., Urós, E. M., Boland, W., Strack, D., Rodríguez-Concepción, M., Bohlmann, J., and Gershenzon, J., Functional identification and differential expression of 1-deoxy-D-xylulose 5-phosphate synthase in induced terpenoid resin formation of Norway spruce (Picea abies). Plant Mol. Biol., 65, 243–257 (2007).
  • 26) Kim, B. R., Kim, S. U., and Chang, Y. J., Differential expression of three 1-deoxy-D-xylulose-5-phosphate synthase genes in rice. Biotechnol. Lett., 27, 997–1001 (2005).
  • 27) Okada, A., Shimizu, T., Okada, K., Kuzuyama, T., Koga, T., Shibuya, N., Nojiri, H., and Yamane, H., Elicitor induced activation of the methylerythritol phosphate pathway toward phytoalexins biosynthesis in rice. Plant Mol. Biol., 5, 177–187 (2007).
  • 28) Kim, S. M., Kuzuyama, T., Chang, Y. J., Kwon, H. J., and Kim, S. U., Cloning and functional characterization of 2-C-methyl-D-erythritol 4-phosphate cytidyltransferase (GbMECT) gene from Ginkgo biloba. Phytochemistry, 67, 1435–1441 (2006).
  • 29) Rodríguez-Concepción, M., and Boronat, A., Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids: a metabolic milestone achieved through genomics. Plant Physiol., 130, 1079–1089 (2002).
  • 30) Xiang, S., Usunow, G., Lange, G., Busch, M., and Tong, L., Crystal structure of 1-deoxy-D-xylulose 5-phosphate synthase, a crucial enzyme for isoprenoids biosynthesis. J. Biol. Chem., 282, 2676–2682 (2007).
  • 31) Reuter, K., Sanderbrand, S., Jomaa, H., Wiesner, J., Steinbrecher, I., Beck, E., Hintz, M., Klebe, G., and Stubbs, M. T., Crystal structure of 1-deoxy-D-xylulose-5-phophate reductoisomerase, a crucial enzyme in the non-mevalonate pathway of isoprenoid biosynthesis. J. Biol. Chem., 277, 5378–5384 (2002).
  • 32) Richard, S. B., Lillo, A. M., Tetzlaff, C. N., Bowman, M. E., Noel, J. P., and Cane, D. E., Kinetic analysis of Escherichia coli 2-C-methyl-D-erythritol-4-phosphate cytidyltransferase, wild type and mutants, reveals role of active site amino acids. Biochemistry, 43, 12189–12197 (2004).
  • 33) Miallau, L., Alphey, M. S., Kemp, L. E., Leonard, G. A., McSweeney, S. M., Hecht, S., Bacher, A., Eisenreich, W., Rohdich, F., and Hunter, W. N., Biosynthesis of isoprenoids: crystal structure of 4-diphosphocytidyl-2C-methyl-D-erythritol kinase. Proc. Natl. Acad. Sci. USA, 100, 9173–9178 (2003).
  • 34) Richard, S. B., Ferrer, J. L., Bowman, M. E., Lillo, A. M., Tetzlaff, C. N., Cane, D. E., and Noel, J. P., Structure and mechanism of 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase. J. Biol. Chem., 277, 8667–8672 (2002).
  • 35) Hecht, S., Eisenreich, W., Adam, P., Amslinger, S., Kis, K., Bacher, A., Arigoni, D., and Rohdich, F., Studies on the nonmevalonate pathway to terpenes: the role of the GcpE (IspG) protein. Proc. Natl. Acad. Sci. USA, 98, 14837–14842 (2001).
  • 36) Gräwert, T., Kaiser, J., Zepeck, F., Laupitz, R., Hecht, S., Amslinger, S., Schramek, N., Schleicher, E., Weber, S., Haslbeck, M., Buchner, J., Rieder, C., Arigoni, D., Bacher, A., Eisenreich, W., and Rohdich, F., IspH protein of Escherichia coli: studies on iron-sulfur cluster implementation and catalysis. J. Am. Chem. Soc., 126, 12847–12855 (2004).
  • 37) Okada, K., and Hase, T., Cyanobacterial non-mevalonate Pathway. J. Biol. Chem., 280, 20672–20679 (2005).
  • 38) Seemann, M., Wegner, P., Schünemann, V., Bui, B. T. S., Wolff, M., Marquet, A., Trautwein, A. X., and Rohmer, M., Isoprenoid biosynthesis in chloroplasts via the methylerythritol phosphate pathway: the (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase (GcpE) from Arabidopsis thaliana is a [4Fe-4S] protein. J. Biol. Inorg. Chem., 10, 131–137 (2005).
  • 39) Wolff, M., Seemann, M., Bui, B. T. S., Frapart, Y., Tritsch, D., Estrabot, A. G., Rodríguez-Concepción, M., Boronat, A., Marquet, A., and Rohmer, M., Isoprenoid biosynthesis via the methylerythritol phosphate pathway: the (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase (LytB/IspH) from Escherichia coli is a [4Fe-4S] protein. FEBS Lett., 541, 115–120 (2003).
  • 40) Lange, B. M., Wildung, M. R., McCaskill, D., and Croteau, R., A family of transketolases that directs isoprenoid biosynthesis via a mevalonate-independent pathway. Proc. Natl. Acad. Sci. USA, 95, 2100–2104 (1998).
  • 41) Dickenson, P. B., The ultra-structure of the vessel of H. brasiliensis. Proc. Nat. Rubber Prod. Res. Ass. Jubilee Conf. Cambridge 1964, 52–66 (1965).
  • 42) Ko, J. H., Chow, K. S., and Han, K. H., Transcriptome analysis reveals novel features of the molecular events occurring in the laticifers of Hevea brasiliensis (para rubber tree). Plant Mol. Biol., 53, 479–492 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.