2,532
Views
218
CrossRef citations to date
0
Altmetric
Original Articles

Carbon Catabolite Control of the Metabolic Network in Bacillus subtilis

Pages 245-259 | Published online: 22 May 2014

  • 1) Chambliss, G. H., Carbon source-mediated catabolite repression. In “Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics,” eds. Sonenshein, A. L., Hoch, J. A., and Losick, R., American Society for Microbiology Press, Washington, DC, pp. 213–219 (1993).
  • 2) Perlman, R. L., de Crombrugghe, B., and Pastan, I., Cyclic AMP regulates catabolite and transient repression in E. coli. Nature, 223, 810–812 (1969).
  • 3) Nicholson, W. L., Park, Y. K., Henkin, T. M., Won, M., Weickert, M. J., Gaskell, J. A., and Chambliss, G. H., Catabolite repression-resistant mutations of the Bacillus subtilis alpha-amylase promoter affect transcription levels and are in an operator-like sequence. J. Mol. Biol., 198, 609–618 (1987).
  • 4) Weickert, M. J., and Chambliss, G. H., Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis. Proc. Natl. Acad. Sci. USA, 87, 6238–6242 (1990).
  • 5) Henkin, T. M., Grundy, F. J., Nicholson, W. L., and Chambliss, G. H., Catabolite repression of alpha-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli lacl and galR repressors. Mol. Microbiol., 5, 575–584 (1991).
  • 6) Miwa, Y., and Fujita, Y., Determination of the cis sequence involved in catabolite repression of the Bacillus subtilis gnt operon; implication of a consensus sequence in catabolite repression in the genus Bacillus. Nucleic Acids Res., 18, 7049–7053 (1990).
  • 7) Miwa, Y., and Fujita, Y., Promoter-independent catabolite repression of the Bacillus subtilis gnt operon. J. Biochem., 113, 665–671 (1993).
  • 8) Jacob, S., Allmansberger, R., Gartner, D., and Hillen, W., Catabolite repression of the operon for xylose utilization from Bacillus subtilis W23 is mediated at the level of transcription and depends on a cis site in the xylA reading frame. Mol. Gen. Genet., 229, 189–196 (1991).
  • 9) Kraus, A., Hueck, C., Gartner, D., and Hillen, W., Catabolite repression of the Bacillus subtilis xyl operon involves a cis element functional in the context of an unrelated sequence, and glucose exerts additional xylR-dependent repression. J. Bacteriol., 176, 1738–1745 (1994).
  • 10) Oda, M., Katagai, T., Tomura, D., Shoun, H., Hoshino, T., and Furukawa, K., Analysis of the transcriptional activity of the hut promoter in Bacillus subtilis and identification of a cis-acting regulatory region associated with catabolite repression downstream from the site of transcription. Mol. Microbiol., 6, 2573–2582 (1992).
  • 11) Wray, L. V., Jr., Pettengill, F. K., and Fisher, S. H., Catabolite repression of the Bacillus subtilis hut operon requires a cis-acting site located downstream of the transcription initiation site. J. Bacteriol., 176, 1894–1902 (1994).
  • 12) Grundy, F. J., Turinsky, A. J., and Henkin, T. M., Catabolite regulation of Bacillus subtilis acetate and acetoin utilization genes by CcpA. J. Bacteriol., 176, 4527–4533 (1994).
  • 13) Fujita, Y., and Miwa, Y., Catabolite repression of the Bacillus subtilis gnt operon mediated by the CcpA protein. J. Bacteriol., 176, 511–513 (1994).
  • 14) Miwa, Y., Saikawa, M., and Fujita, Y., Possible function and some properties of the CcpA protein of Bacillus subtilis. Microbiology, 140, 2567–2575 (1994).
  • 15) Dahl, M. K., and Hillen, W., Contribution of XylR, CcpA and HPr to catabolite repression of the xyl operon in Bacillus subtilis. FEMS Microbiol. Lett., 132, 79–83 (1995).
  • 16) Fujita, Y., Miwa, Y., Galinier, A., and Deutscher, J., Specific recognition of the Bacillus subtilis gnt cis-acting catabolite-responsive element by a protein complex formed between CcpA and seryl-phosphorylated HPr. Mol. Microbiol., 17, 953–960 (1995).
  • 17) Kim, J. H., Guvener, Z. T., Cho, J. Y., Chung, K. C., and Chambliss, G. H., Specificity of DNA binding activity of the Bacillus subtilis catabolite control protein CcpA. J. Bacteriol., 177, 5129–5134 (1995).
  • 18) Kim, J. H., and Chambliss, G. H., Contacts between Bacillus subtilis catabolite regulatory protein CcpA and amyO target site. Nucleic Acids Res., 25, 3490–3496 (1997).
  • 19) Grundy, F. J., Waters, D. A., Takova, T. Y., and Henkin, T. M., Identification of genes involved in utilization of acetate and acetoin in Bacillus subtilis. Mol. Microbiol., 10, 259–271 (1993).
  • 20) Turinsky, A. J., Grundy, F. J., Kim, J. H., Chambliss, G. H., and Henkin, T. M., Transcriptional activation of the Bacillus subtilis ackA gene requires sequences upstream of the promoter. J. Bacteriol., 180, 5961–5967 (1998).
  • 21) Moir-Blais, T. R., Grundy, F. J., and Henkin, T. M., Transcriptional activation of the Bacillus subtilis ackA promoter requires sequences upstream of the CcpA binding site. J. Bacteriol., 183, 2389–2393 (2001).
  • 22) Shivers, R. P., Dineen, S. S., and Sonenshein, A. L., Positive regulation of Bacillus subtilis ackA by CodY and CcpA: establishing a potential hierarchy in carbon flow. Mol. Microbiol., 62, 811–822 (2006).
  • 23) Zalieckas, J. M., Wray, L. V., Jr., and Fisher, S. H., Expression of the Bacillus subtilis acsA gene: position and sequence context affect cre-mediated carbon catabolite repression. J. Bacteriol., 180, 6649–6654 (1998).
  • 24) Sá-Nogueira, I., Nogueira, T. V., Soares, S., and de Lencastre, H., The Bacillus subtilis L-arabinose (ara) operon: nucleotide sequence, genetic organization and expression. Microbiology, 143, 957–969 (1997).
  • 25) Miwa, Y., Nakata, A., Ogiwara, A., Yamamoto, M., and Fujita, Y., Evaluation and characterization of catabolite-responsive elements (cre) of Bacillus subtilis. Nucleic Acids Res., 28, 1206–1210 (2000).
  • 26) Krüger, S., and Hecker, M., Regulation of the putative bglPH operon for aryl-beta-glucoside utilization in Bacillus subtilis. J. Bacteriol., 177, 5590–5597 (1995).
  • 27) Krüger, S., Gertz, S., and Hecker, M., Transcriptional analysis of bglPH expression in Bacillus subtilis: evidence for two distinct pathways mediating carbon catabolite repression. J. Bacteriol., 178, 2637–2644 (1996).
  • 28) Monedero, V., Boël, G., and Deutscher, J., Catabolite regulation of the cytochrome c 550-encoding Bacillus subtilis cccA gene. J. Mol. Microbiol. Biotechnol., 3, 433–438 (2001).
  • 29) Yamamoto, H., Murata, M., and Sekiguchi, J., The CitST two-component system regulates the expression of the Mg-citrate transporter in Bacillus subtilis. Mol. Microbiol., 37, 898–912 (2000).
  • 30) Asai, K., Baik, S. H., Kasahara, Y., Moriya, S., and Ogasawara, N., Regulation of the transport system for C4-dicarboxylic acids in Bacillus subtilis. Microbiology, 146, 263–271 (2000).
  • 31) Saxild, H. H., Andersen, L. N., and Hammer, K., dra-nupC-pdp operon of Bacillus subtilis: nucleotide sequence, induction by deoxyribonucleosides, and transcriptional regulation by the deoR-encoded DeoR repressor protein. J. Bacteriol., 178, 424–434 (1996).
  • 32) Zeng, X., Galinier, A., and Saxild, H. H., Catabolite repression of dra-nupC-pdp operon expression in Bacillus subtilis. Microbiology, 146, 2901–2908 (2000).
  • 33) Darbon, E., Servant, P., Poncet, S., and Deutscher, J., Antitermination by GlpP, catabolite repression via CcpA and inducer exclusion triggered by P-GlpK dephosphorylation control Bacillus subtilis glpFK expression. Mol. Microbiol., 43, 1039–1052 (2002).
  • 34) Yamamoto, H., Serizawa, M., Thompson, J., and Sekiguchi, J., Regulation of the glv operon in Bacillus subtilis: YfiA (GlvR) is a positive regulator of the operon that is repressed through CcpA and cre. J. Bacteriol., 183, 5110–5121 (2001).
  • 35) Fujita, Y., Fujita, T., Miwa, Y., Nihashi, J., and Aratani, Y., Organization and transcription of the gluconate operon, gnt, of Bacillus subtilis. J. Biol. Chem., 261, 13744–13753 (1986).
  • 36) Miwa, Y., Nagura, K., Eguchi, S., Fukuda, H., Deutscher, J., and Fujita, Y., Catabolite repression of the Bacillus subtilis gnt operon exerted by two catabolite-responsive elements. Mol. Microbiol., 23, 1203–1213 (1997).
  • 37) Oda, M., Sugishita, A., and Furukawa, K., Cloning and nucleotide sequences of histidase and regulatory genes in the Bacillus subtilis hut operon and positive regulation of the operon. J. Bacteriol., 170, 3199–3205 (1988).
  • 38) Tojo, S., Satomura, T., Morisaki, K., Deutscher, J., Hirooka, K., and Fujita, Y., Elaborate transcription regulation of the Bacillus subtilis ilv-leu operon involved in the biosynthesis of branched-chain amino acids through global regulators of CcpA, CodY and TnrA. Mol. Microbiol., 56, 1560–1573 (2005).
  • 39) Shivers, R. P., and Sonenshein, A. L., Bacillus subtilis ilvB operon: an intersection of global regulons. Mol. Microbiol., 56, 1549–1559 (2005).
  • 40) Yoshida, K., Aoyama, D., Ishio, I., Shibayama, T., and Fujita, Y., Organization and transcription of the myo-inositol operon, iol, of Bacillus subtilis. J. Bacteriol., 179, 4591–4598 (1997).
  • 41) Miwa, Y., and Fujita, Y., Involvement of two distinct catabolite-responsive elements in catabolite repression of the Bacillus subtilis myo-inositol (iol) operon. J. Bacteriol., 183, 5877–5884 (2001).
  • 42) Pujic, P., Dervyn, R., Sorokin, A., and Ehrlich, S. D., The kdgRKAT operon of Bacillus subtilis: detection of the transcript and regulation by the kdgR and ccpA genes. Microbiology, 144, 3111–3118 (1998).
  • 43) Lin, J. S., and Shaw, G. C., Regulation of the kduID operon of Bacillus subtilis by the KdgR repressor and the ccpA gene: identification of two KdgR-binding sites within the kdgR-kduI intergenic region. Microbiology, 153, 701–710 (2007).
  • 44) Matsuoka, H., Hirooka, K., and Fujita, Y., Organization and function of the YsiA regulon of Bacillus subtilis involved in fatty acid degradation. J. Biol. Chem., 282, 5180–5194 (2007).
  • 45) Puri-Taneja, A., Paul, S., Chen, Y., and Hulett, F. M., CcpA causes repression of the phoPR promoter through a novel transcription start site, P(A6). J. Bacteriol., 188, 1266–1278 (2006).
  • 46) Choi, S. K., and Saier, M. H., Jr., Mechanism of CcpA-mediated glucose repression of the resABCDE operon of Bacillus subtilis. J. Mol. Microbiol. Biotechnol., 11, 104–110 (2006).
  • 47) Schock, F., and Dahl, M. K., Analysis of DNA flanking the treA gene of Bacillus subtilis reveals genes encoding a putative specific enzyme IITre and a potential regulator of the trehalose operon. Gene, 175, 59–63 (1996).
  • 48) Rivolta, C., Soldo, B., Lazarevic, V., Joris, B., Mauel, C., and Karamata, D., A 35.7 kb DNA fragment from the Bacillus subtilis chromosome containing a putative 12.3 kb operon involved in hexuronate catabolism and a perfectly symmetrical hypothetical catabolite-responsive element. Microbiology, 144, 877–884 (1998).
  • 49) Yoshida, K., Ishio, I., Nagakawa, E., Yamamoto, Y., Yamamoto, M., and Fujita, Y., Systematic study of gene expression and transcription organization in the gntZ-ywaA region of the Bacillus subtilis genome. Microbiology, 146, 573–579 (2000).
  • 50) Inácio, J. M., and de Sá-Nogueira, I., trans-Acting factors and cis elements involved in glucose repression of arabinan degradation in Bacillus subtilis. J. Bacteriol., 189, 8371–8376 (2007).
  • 51) Ali, N. O., Bignon, J., Rapoport, G., and Debarbouille, M., Regulation of the acetoin catabolic pathway is controlled by sigma L in Bacillus subtilis. J. Bacteriol., 183, 2497–2504 (2001).
  • 52) Inácio, J. M., Costa, C., and de Sá-Nogueira, I., Distinct molecular mechanisms involved in carbon catabolite repression of the arabinose regulon in Bacillus subtilis. Microbiology, 149, 2345–2355 (2003).
  • 53) Sá-Nogueira, I., and Ramos, S. S., Cloning, functional analysis, and transcriptional regulation of the Bacillus subtilis araE gene involved in L-arabinose utilization. J. Bacteriol., 179, 7705–7711 (1997).
  • 54) Kim, H. J., Jourlin-Castelli, C., Kim, S. I., and Sonenshein, A. L., Regulation of the Bacillus subtilis ccpC gene by ccpA and ccpC. Mol. Microbiol., 43, 399–410 (2002).
  • 55) Repizo, G. D., Blancato, V. S., Sender, P. D., Lolkema, J., and Magni, C., Catabolite repression of the citST two-component system in Bacillus subtilis. FEMS Microbiol. Lett., 260, 224–231 (2006).
  • 56) Kim, H. J., Roux, A., and Sonenshein, A. L., Direct and indirect roles of CcpA in regulation of Bacillus subtilis Krebs cycle genes. Mol. Microbiol., 45, 179–190 (2002).
  • 57) Puri-Taneja, A., Schau, M., Chen, Y., and Hulett, F. M., Regulators of the Bacillus subtilis cydABCD operon: identification of a negative regulator, CcpA, and a positive regulator, ResD. J. Bacteriol., 189, 3348–3358 (2007).
  • 58) Martin-Verstraete, I., Deutscher, J., and Galinier, A., Phosphorylation of HPr and Crh by HprK, early steps in the catabolite repression signalling pathway for the Bacillus subtilis levanase operon. J. Bacteriol., 181, 2966–2969 (1999).
  • 59) Martin-Verstraete, I., Stülke, J., Klier, A., and Rapoport, G., Two different mechanisms mediate catabolite repression of the Bacillus subtilis levanase operon. J. Bacteriol., 177, 6919–6927 (1995).
  • 60) Bryan, E. M., Beall, B. W., and Moran, C. P., Jr., A sigma E-dependent operon subject to catabolite repression during sporulation in Bacillus subtilis. J. Bacteriol., 178, 4778–4786 (1996).
  • 61) Presecan-Siedel, E., Galinier, A., Longin, R., Deutscher, J., Danchin, A., Glaser, P., and Martin-Verstraete, I., Catabolite regulation of the pta gene as part of carbon flow pathways in Bacillus subtilis. J. Bacteriol., 181, 6889–6897 (1999).
  • 62) Shin, B. S., Choi, S. K., and Park, S. H., Regulation of the Bacillus subtilis phosphotransacetylase gene. J. Biochem., 126, 333–339 (1999).
  • 63) Belitsky, B. R., Kim, H. J., and Sonenshein, A. L., CcpA-dependent regulation of Bacillus subtilis glutamate dehydrogenase gene expression. J. Bacteriol., 186, 3392–3398 (2004).
  • 64) Choi, S. K., and Saier, M. H., Jr., Regulation of sigL expression by the catabolite control protein CcpA involves a roadblock mechanism in Bacillus subtilis: potential connection between carbon and nitrogen metabolism. J. Bacteriol., 187, 6856–6861 (2005).
  • 65) Galinier, A., Deutscher, J., and Martin-Verstraete, I., Phosphorylation of either Crh or HPr mediates binding of CcpA to the Bacillus subtilis xyn cre and catabolite repression of the xyn operon. J. Mol. Biol., 286, 307–314 (1999).
  • 66) Schilling, C. H., Held, L., Torre, M., and Saier, M. H., Jr., GRASP-DNA: a web application to screen prokaryotic genomes for specific DNA-binding sites and repeat motifs. J. Mol. Microbiol. Biotechnol., 2, 495–500 (2000).
  • 67) Makita, Y., Nakao, M., Ogasawara, N., and Nakai, K., DBTBS: database of transcriptional regulation in Bacillus subtilis and its contribution to comparative genomics. Nucleic Acids Res., 32, D75–77 (2004).
  • 68) Freese, E., and Fujita, Y., Control of enzyme synthesis during growth and sporulation. In “Microbiology-1976,” ed. Schlessinger, D., American Society for Microbiology Press, Washington, DC, pp. 164–184 (1976).
  • 69) Lopez, J. M., and Thoms, B., Role of sugar uptake and metabolic intermediates on catabolite repression in Bacillus subtilis. J. Bacteriol., 129, 217–224 (1977).
  • 70) Nihashi, J., and Fujita, Y., Catabolite repression of inositol dehydrogenase and gluconate kinase syntheses in Bacillus subtilis. Biochim. Biophys. Acta, 798, 88–95 (1984).
  • 71) Galinier, A., Kravanja, M., Engelmann, R., Hengstenberg, W., Kilhoffer, M. C., Deutscher, J., and Haiech, J., New protein kinase and protein phosphatase families mediate signal transduction in bacterial catabolite repression. Proc. Natl. Acad. Sci. USA, 95, 1823–1828 (1998).
  • 72) Reizer, J., Hoischen, C., Titgemeyer, F., Rivolta, C., Rabus, R., Stülke, J., Karamata, D., Saier, M. H., Jr., and Hillen, W., A novel protein kinase that controls carbon catabolite repression in bacteria. Mol. Microbiol., 27, 1157–1169 (1998).
  • 73) Jault, J. M., Fieulaine, S., Nessler, S., Gonzalo, P., Di Pietro, A., Deutscher, J., and Galinier, A., The HPr kinase from Bacillus subtilis is a homo-oligomeric enzyme which exhibits strong positive cooperativity for nucleotide and fructose 1,6-bisphosphate binding. J. Biol. Chem., 275, 1773–1780 (2000).
  • 74) Ramstrom, H., Sanglier, S., Leize-Wagner, E., Philippe, C., Van Dorsselaer, A., and Haiech, J., Properties and regulation of the bifunctional enzyme HPr kinase/phosphatase in Bacillus subtilis. J. Biol. Chem., 278, 1174–1185 (2003).
  • 75) Kundig, W., Ghosh, S., and Roseman, S., Phosphate bound to histidine in a protein as an intermediate in a novel phospho-transferase system. Proc. Natl. Acad. Sci. USA, 52, 1067–1074 (1964).
  • 76) Deutscher, J., Reizer, J., Fischer, C., Galinier, A., Saier, M. H., Jr., and Steinmetz, M., Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis. J. Bacteriol., 176, 3336–3344 (1994).
  • 77) Reizer, J., Bergstedt, U., Galinier, A., Kuster, E., Saier, M. H., Jr., Hillen, W., Steinmetz, M., and Deutscher, J., Catabolite repression resistance of gnt operon expression in Bacillus subtilis conferred by mutation of His-15, the site of phosphoenolpyruvate-dependent phosphorylation of the phosphocarrier protein HPr. J. Bacteriol., 178, 5480–5486 (1996).
  • 78) Deutscher, J., Kuster, E., Bergstedt, U., Charrier, V., and Hillen, W., Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in gram-positive bacteria. Mol. Microbiol., 15, 1049–1053 (1995).
  • 79) Jones, B. E., Dossonnet, V., Kuster, E., Hillen, W., Deutscher, J., and Klevit, R. E., Binding of the catabolite repressor protein CcpA to its DNA target is regulated by phosphorylation of its corepressor, HPr. J. Biol. Chem., 272, 26530–26535 (1997).
  • 80) Shumacher, M. A., Allen, G. S., Diel, M., Seidel, G., Hillen, W., and Brennan, R. G., Structural basis for allosteric control of the transcription regulator CcpA by the phosphoprotein HPr-Ser46-P. Cell, 118, 731–741 (2004).
  • 81) Kunst, F., Ogasawara, N., Moszer, I., Albertini, A. M., Alloni, G., Azevedo, V., Bertero, M. G., Bessières, P., Bolotin, A., Borchert, S., Borriss, R., Boursier, L., Brans, A., Braun, M., Brignell, S. C., Bron, S., Brouillet, S., Bruschi, C. V., Caldwell, B., Capuano, V., Carter, N. M., Choi, S.-K., Codani, J.-J., Connerton, I. F., Cummings, N. J., Daniel, R. A., Denizot, F., Devine, K. M., Düsterhöft, A., Ehrlich, S. D., Emmerson, P. T., Entian, K. D., Errington, J., Fabret, C., Ferrari, E., Foulger, D., Fritz, C., Fujita, M., Fujita, Y., Fuma, S., Galizzi, A., Galleron, N., Ghim, S.-Y., Glaser, P., Goffeau, A., Golightly, E. J., Grandi, G., Guiseppi, G., Guy, B. J., Haga, K., Haiech, J., Harwood, C. R., Hénaut, A., Hilbert, H., Holsappel, S., Hosono, S., Hullo, M.-F., Itaya, M., Jones, L., Joris, B., Karamata, D., Kasahara, Y., Klaerr-blanchard, M., Klein, C., Kobayashi, Y., Koetter, P., Koningstein, G., Krogh, S., Kumano, M., Kurita, K., Lapidus, A., Lardinois, S., Lauber, J., Lazarevic, V., Lee, S.-M., Levine, A., Liu, H., Masuda, S., Mauël, C., Médigue, C., Medina, N., Mellado, R. P., Mizuno, M., Moestl, D., Nakai, S., Noback, M., Noone, D., O’Reilly, M., Ogawa, K., Ogiwara, A., Oudega, B., Park, S.-H., Parro, V., Pohl, T. M., Portetelle, D., Porwollik, S., Prescott, A. M., Presecan, E., Pujic, P., Purnelle, B., Rapoport, G., Rey, M., Reynolds, S., Rieger, M., Rivolta, C., Rocha, E., Roche, B., Rose, M., Sadaie, Y., Sato, T., Scanlan, E., Schleich, S., Schroeter, R., Scoffone, F., Sekiguchi, J., Sekowska, A., Seror, S. J., Serror, P., Shin, B.-S., Soldo, B., Sorokin, A., Tacconi, E., Takagi, T., Takahashi, H., Takemaru, K., Takeuchi, M., Tamakoshi, A., Tanaka, T., Terpstra, P., Tognoni, A., Tosato, V., Uchiyama, S., Vandenbol, M., Vannier, F., Vassarotti, A., Viari, A., Wambutt, R., Wedler, E., Wedler, H., Weitzenegger, T., Winters, P., Wipat, A., Yamamoto, H., Yamane, K., Yasumoto, K., Yata, K., Yoshida, K., Yoshikawa, H.-F., Zumstein, E., Yoshikawa, H., and Danchin, A., The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature, 390, 249–256 (1997).
  • 82) Galinier, A., Haiech, J., Kilhoffer, M. C., Jaquinod, M., Stülke, J., Deutscher, J., and Martin-Verstraete, I., The Bacillus subtilis crh gene encodes a HPr-like protein involved in carbon catabolite repression. Proc. Natl. Acad. Sci. USA, 94, 8439–8444 (1997).
  • 83) Warner, J. B., Krom, B. P., Magni, C., Konings, W. N., and Lolkema, J. S., Catabolite repression and induction of the Mg(2+)-citrate transporter CitM of Bacillus subtilis. J. Bacteriol., 182, 6099–6105 (2000).
  • 84) Warner, J. B., and Lolkema, J. S., A Crh-specific function in carbon catabolite repression in Bacillus subtilis. FEMS Microbiol. Lett., 220, 277–280 (2003).
  • 85) Gorke, B., Fraysse, L., and Galinier, A., Drastic differences in Crh and HPr synthesis levels reflect their different impacts on catabolite repression in Bacillus subtilis. J. Bacteriol., 186, 2992–2995 (2004).
  • 86) Schumacher, M. A., Seidel, G., Hillen, W., and Brennan, R. G., Phosphoprotein Crh-Ser46-P displays altered binding to CcpA to effect carbon catabolite regulation. J. Biol. Chem., 281, 6793–6800 (2006).
  • 87) He, B., and Zalkin, H., Repression of Escherichia coli purB is by a transcriptional roadblock mechanism. J. Bacteriol., 174, 7121–7127 (1992).
  • 88) Zalieckas, J. M., Wray, L. V., Jr., Ferson, A. E., and Fisher, S. H., Transcription-repair coupling factor is involved in carbon catabolite repression of the Bacillus subtilis hut and gnt operons. Mol. Microbiol., 27, 1031–1038 (1998).
  • 89) Sancar, A., DNA excision repair. Annu. Rev. Biochem., 65, 43–81 (1996).
  • 90) Kim, J. H., Yang, Y. K., and Chambliss, G. H., Evidence that Bacillus catabolite control protein CcpA interacts with RNA polymerase to inhibit transcription. Mol. Microbiol., 56, 155–162 (2005).
  • 91) Tobisch, S., Zühlke, D., Bernhardt, J., Stülke, J., and Hecker, M., Role of CcpA in regulation of the central pathways of carbon catabolism in Bacillus subtilis. J. Bacteriol., 181, 6996–7004 (1999).
  • 92) Yoshida, K., Kobayashi, K., Miwa, Y., Kang, C.-M., Matsunaga, M., Yamaguchi, H., Tojo, S., Yamamoto, M., Nishi, R., Ogasawara, N., Nakayama, T., and Fujita, Y., Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in Bacillus subtilis. Nucleic Acids Res., 29, 683–692 (2001).
  • 93) Moreno, M. S., Schneider, B. L., Maile, R. R., Weyler, W., and Saier, M. H., Jr., Catabolite repression mediated by the CcpA protein in Bacillus subtilis: novel modes of regulation revealed by whole-genome analyses. Mol. Microbiol., 39, 1366–1381 (2001).
  • 94) Blencke, H. M., Homuth, G., Ludwig, H., Mäder, U., Hecker, M., and Stülke, J., Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways. Metab. Eng., 5, 133–149 (2003).
  • 95) Lorca, G. L., Chung, Y. J., Barabote, R. D., Weyler, W., Schilling, C. H., and Saier, M. H., Jr., Catabolite repression and activation in Bacillus subtilis: dependency on CcpA, HPr, and HprK. J. Bacteriol., 187, 7826–7839 (2005).
  • 96) Tam, L. T., Antelmann, H., Eymann, C., Albrecht, D., Bernhardt, J., and Hecker, M., Proteome signatures for stress and starvation in Bacillus subtilis as revealed by a 2-D gel image color coding approach. Proteomics, 6, 4565–4585 (2006).
  • 97) Lulko, A. T., Buist, G., Kok, J., and Kuipers, O. P., Transcriptome analysis of temporal regulation of carbon metabolism by CcpA in Bacillus subtilis reveals additional target genes. J. Mol. Microbiol. Biotechnol., 12, 82–95 (2007).
  • 98) Ludwig, H., Meinken, C., Matin, A., and Stulke, J., Insufficient expression of the ilv-leu operon encoding enzymes of branched-chain amino acid biosynthesis limits growth of a Bacillus subtilis ccpA mutant. J. Bacteriol., 184, 5174–5178 (2002).
  • 99) Renna, M. C., Najimudin, N., Winik, L. R., and Zahler, S. A., Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin. J. Bacteriol., 175, 3863–3875 (1993).
  • 100) Turinsky, A. J., Moir-Blais, T. R., Grundy, F. J., and Henkin, T. M., Bacillus subtilis ccpA gene mutants specifically defective in activation of acetoin biosynthesis. J. Bacteriol., 182, 5611–5614 (2000).
  • 101) Wacker, I., Ludwig, H., Reif, I., Blencke, H. M., Detsch, C., and Stülke, J., The regulatory link between carbon and nitrogen metabolism in Bacillus subtilis: regulation of the gltAB operon by the catabolite control protein CcpA. Microbiology, 149, 3001–3009 (2003).
  • 102) Yoshida, K., Yamaguchi, M., Morinaga, T., Kinehara, M., Ikeuchi, M., Ashida, H., and Fujita, Y., myo-Inositol catabolism in Bacillus subtilis. J. Biol. Chem., 283, 10415–10424 (2008).
  • 103) Burklen, L., Schock, F., and Dahl, M. K., Molecular analysis of the interaction between the Bacillus subtilis trehalose repressor TreR and the tre operator. Mol. Gen. Genet., 260, 48–55 (1998).
  • 104) Débarbouille, M., Martin-Verstraete, I., Kunst, F., and Rapoport, G., The Bacillus subtilis sigL gene encodes an equivalent of σ54 from gram-negative bacteria. Proc. Natl. Acad. Sci. USA, 88, 9092–9096 (1991).
  • 105) Fujita, Y., Matsuoka, H., and Hirooka, K., Regulation of fatty acid metabolism in bacteria. Mol. Microbiol., 66, 829–839 (2007).
  • 106) Schuch, R., Garibian, A., Saxild, H. H., Piggot, P. J., and Nygaard, P., Nucleosides as a carbon source in Bacillus subtilis: characterization of the drm-pupG operon. Microbiology, 145, 2957–2966 (1999).
  • 107) Gardan, R., Rapoport, G., and Débarbouille, M., Expression of the rocDEF operon involved in arginine catabolism in Bacillus subtilis. J. Mol. Biol., 249, 843–856 (1995).
  • 108) Gardan, R., Rapoport, G., and Débarbouille, M., Role of the transcriptional activator RocR in the arginine-degradation pathway of Bacillus subtilis. Mol. Microbiol., 24, 825–837 (1997).
  • 109) Belitsky, B. R., and Sonenshein, A. L., An enhancer element located downstream of the major glutamate dehydrogenase gene of Bacillus subtilis. Proc. Natl. Acad. Sci. USA, 96, 10290–10295 (1999).
  • 110) Huang, M., Oppermann-Sanio, F. B., and Steinbüchel, A., Biochemical and molecular characterization of the Bacillus subtilis acetoin catabolic pathway. J. Bacteriol., 181, 3837–3841 (1999).
  • 111) Débarbouille, M., Gardan, R., Arnaud, M., and Rapoport, G., Role of BkdR, a transcriptional activator of the SigL-dependent isoleucine and valine degradation pathway in Bacillus subtilis. J. Bacteriol., 181, 2059–2066 (1999).
  • 112) Sauer, U., and Eikmanns, B. J., The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiol. Rev., 29, 765–794 (2005).
  • 113) Le Brun, N. E., Bengtsson, J., and Hederstedt, L., Genes required for cytochrome c synthesis in Bacillus subtilis. Mol. Microbiol., 36, 638–650 (2000).
  • 114) Sun, G., Sharkova, E., Chesnut, R., Birkey, S., Duggan, M. F., Sorokin, A., Pujic, P., Ehrlich, S. D., and Hulett, F. M., Regulators of aerobic and anaerobic respiration in Bacillus subtilis. J. Bacteriol., 178, 1374–1385 (1996).
  • 115) Nakano, M. M., Zhu, Y., Lacelle, M., Zhang, X., and Hulett, F. M., Interaction of ResD with regulatory regions of anaerobically induced genes in Bacillus subtilis. Mol. Microbiol., 37, 1198–1207 (2000).
  • 116) Birkey, S. M., Liu, W., Zhang, X., Duggan, M. F., and Hulett, F. M., Pho signal transduction network reveals direct transcriptional regulation of one two-component system by another two-component regulator: Bacillus subtilis PhoP directly regulates production of ResD. Mol. Microbiol., 30, 943–953 (1998).
  • 117) de Mendoza, D., Schujman, G. E., and Aguilar, P. S., Biosynthesis and function of membrane lipids. In “Bacillus subtilis and Its Closest Relatives: from Genes to Cells,” eds. Sonenshein, A. L., Hoch, J. A., and Losick, R., American Society for Microbiolgy Press, Washington, DC, pp. 43–55 (2002).
  • 118) Fink, P. S., Biosynthesis of the branched-chain amino acids. In “Bacillus subtilis and Other Gram-Positive Bacteria,” eds. Sonenshein, A. L., Hoch, J. A., and Losick, R., American Society for Microbiolgy Press, Washington, DC, pp. 307–317 (1993).
  • 119) Grandoni, J. A., Zahler, S. A., and Calvo, J. M., Transcriptional regulation of the ilv-leu operon of Bacillus subtilis. J. Bacteriol., 174, 3212–3219 (1992).
  • 120) Mäder, U., Homuth, G., Scharf, C., Büttner, K., Bode, R., and Hecker, M., Transcriptome and proteome analysis of Bacillus subtilis gene expression modulated by amino acid availability. J. Bacteriol., 184, 4288–4295 (2002).
  • 121) Molle, V., Nakaura, Y., Shivers, R. P., Yamaguchi, H., Losick, R., Fujita, Y., and Sonenshein, A. L., Additional targets of the Bacillus subtilis global regulator CodY identified by chromatin immunoprecipitation and genome-wide transcript analysis. J. Bacteriol., 185, 1911–1922 (2003).
  • 122) Tojo, S., Satomura, T., Morisaki, K., Yoshida, K., Hirooka, K., and Fujita, Y., Negative transcriptional regulation of the ilv-leu operon for biosynthesis of branched-chain amino acids through the Bacillus subtilis global regulator TnrA. J. Bacteriol., 186, 7971–7979 (2004).
  • 123) Ratnayake-Lecamwasam, M., Serror, P., Wong, K. W., and Sonenshein, A. L., Bacillus subtilis CodY represses early-stationary-phase genes by sensing GTP levels. Genes Dev., 15, 1093–1103 (2001).
  • 124) Shivers, R. P., and Sonenshein, A. L., Activation of the Bacillus subtilis global regulator CodY by direct interaction with branched-chain amino acids. Mol. Microbiol., 53, 599–611 (2004).
  • 125) Wray, L. V., Jr., Zalieckas, J. M., and Fisher, S. H., Bacillus subtilis glutamine synthetase controls gene expression through a protein-protein interaction with transcription factor TnrA. Cell, 107, 427–435 (2001).
  • 126) Doan, T., and Aymerich, S., Regulation of the central glycolytic genes in Bacillus subtilis: binding of the repressor CggR to its single DNA target sequence is modulated by fructose-1,6-bisphosphate. Mol. Microbiol., 47, 1709–1721 (2003).
  • 127) Servant, P., Le Coq, D., and Aymerich, S., CcpN (YqzB), a novel regulator for CcpA-independent catabolite repression of Bacillus subtilis gluconeogenic genes. Mol. Microbiol., 55, 1435–1451 (2005).
  • 128) Jourlin-Castelli, C., Mani, N., Nakano, M. M., and Sonenshein, A. L., CcpC, a novel regulator of the LysR family required for glucose repression of the citB gene in Bacillus subtilis. J. Mol. Biol., 295, 865–878 (2000).
  • 129) Kim, S. I., Jourlin-Castelli, C., Wellington, S. R., and Sonenshein, A. L., Mechanism of repression by Bacillus subtilis CcpC, a LysR family regulator. J. Mol. Biol., 334, 609–624 (2003).
  • 130) Chauvaux, S., Paulsen, I. T., and Saier, M. H., Jr., CcpB, a novel transcription factor implicated in catabolite repression in Bacillus subtilis. J. Bacteriol., 180, 491–497 (1998).
  • 131) Fillinger, S., Boschi-Muller, S., Azza, S., Dervyn, E., Branlant, G., and Aymerich, S., Two glyceraldehyde-3-phosphate dehydrogenases with opposite physiological roles in a nonphotosynthetic bacterium. J. Biol. Chem., 275, 14031–14037 (2000).
  • 132) Licht, A., Preis, S., and Brantl, S., Implication of CcpN in the regulation of a novel untranslated RNA (SR1) in Bacillus subtilis. Mol. Microbiol., 58, 189–206 (2005).
  • 133) Heidrich, N., Chinali, A., Gerth, U., and Brantl, S., The small untranslated RNA SR1 from the Bacillus subtilis genome is involved in the regulation of arginine catabolism. Mol. Microbiol., 62, 520–536 (2006).
  • 134) Heidrich, N., Moll, I., and Brantl, S., In vitro analysis of the interaction between the small RNA SR1 and its primary target ahrC mRNA. Nucleic Acids Res., 35, 4331–4346 (2007).
  • 135) Miller, C. M., Baumberg, S., and Stockley, P. G., Operator interactions by the Bacillus subtilis arginine repressor/activator, AhrC: novel positioning and DNA-mediated assembly of a transcriptional activator at catabolic sites. Mol. Microbiol., 26, 37–48 (1997).
  • 136) Ludwig, H., Homuth, G., Schmalisch, M., Dyka, F. M., Hecker, M., and Stülke, J., Transcription of glycolytic genes and operons in Bacillus subtilis: evidence for the presence of multiple levels of control of the gapA operon. Mol. Microbiol., 41, 409–422 (2001).
  • 137) Zorrilla, S., Doan, T., Alfonso, C., Margeat, E., Ortega, A., Rivas, G., Aymerich, S., Royer, C. A., and Declerck, N., Inducer-modulated cooperative binding of the tetrameric CggR repressor to operator DNA. Biophys. J., 92, 3215–3227 (2007).
  • 138) Fujita, Y., and Freese, E., Purification and properties of fructose-1,6-bisphosphatase of Bacillus subtilis. J. Biol. Chem., 254, 5340–5349 (1979).
  • 139) Mijakovic, I., Poncet, S., Galinier, A., Monedero, V., Fieulaine, S., Janin, J., Nessler, S., Marquez, J. A., Scheffzek, K., Hasenbein, S., Hengstenberg, W., and Deutscher, J., Pyrophosphate-producing protein dephosphorylation by HPr kinase/phosphorylase: a relic of early life? Proc. Natl. Acad. Sci. USA, 99, 13442–13447 (2002).
  • 140) Crutz, A. M., Steinmetz, M., Aymerich, S., Richter, R., and Le Coq, D., Induction of levansucrase in Bacillus subtilis: an antitermination mechanism negatively controlled by the phosphotransferase system. J. Bacteriol., 172, 1043–1050 (1990).
  • 141) Débarbouillé, M., Arnaud, M., Fouet, A., Klier, A., and Rapoport, G., The sacT gene regulating the sacPA operon in Bacillus subtilis shares strong homology with transcriptional antiterminators. J. Bacteriol., 172, 3966–3973 (1990).
  • 142) Tortosa, P., and Le Coq, D., A ribonucleic antiterminator sequence (RAT) and a distant palindrome are both involved in sucrose induction of the Bacillus subtilis sacXY regulatory operon. Microbiology, 141, 2921–2927 (1995).
  • 143) Schnetz, K., Stülke, J., Gertz, S., Krüger, S., Krieg, M., Hecker, M., and Rak, B., LicT, a Bacillus subtilis transcriptional antiterminator protein of the BglG family. J. Bacteriol., 178, 1971–1999 (1996).
  • 144) Stülke, J., Martin-Verstraete, I., Zagorec, M., Rose, M., Klier, A., and Rapoport, G., Induction of the Bacillus subtilis ptsGHI operon by glucose is controlled by a novel antiterminator, GlcT. Mol. Microbiol., 25, 65–78 (1997).
  • 145) Langbein, I., Bachem, S., and Stülke, J., Specific interaction of the RNA-binding domain of the Bacillus subtilis transcriptional antiterminator GlcT with its RNA target, RAT. J. Mol. Biol., 293, 795–805 (1999).
  • 146) Martin-Verstraete, I., Débarbouillé, M., Klier, A., and Rapoport, G., Levanase operon of Bacillus subtilis includes a fructose-specific phosphotransferase system regulating the expression of the operon. J. Mol. Biol., 214, 657–671 (1990).
  • 147) Martin-Verstraete, I., Charrier, V., Stülke, J., Galinier, A., Erni, B., Rapoport, G., and Deutscher, J., Antagonistic effects of dual PTS-catalysed phosphorylation on the Bacillus subtilis transcriptional activator LevR. Mol. Microbiol., 28, 293–303 (1998).
  • 148) Stülke, J., Martin-Verstraete, I., Charrier, V., Klier, A., Deutscher, J., and Rapoport, G., The HPr protein of the phosphotransferase system links induction and catabolite repression of the Bacillus subtilis levanase operon. J. Bacteriol., 177, 6928–6936 (1995).
  • 149) Tobisch, S., Stülke, J., and Hecker, M., Regulation of the lic operon of Bacillus subtilis and characterization of potential phosphorylation sites of the LicR regulator protein by site-directed mutagenesis. J. Bacteriol., 181, 4995–5003 (1999).
  • 150) Tobisch, S., Glaser, P., Krüger, S., and Hecker, M., Identification and characterization of a new β-glucoside utilization system in Bacillus subtilis. J. Bacteriol., 179, 496–506 (1997).
  • 151) Reizer, J., Sutrina, S. L., Wu, L. F., Deutscher, J., Reddy, P., and Saier, M. H., Jr., Functional interactions between proteins of the phosphoenolpyruvate:sugar phosphotransferase systems of Bacillus subtilis and Escherichia coli. J. Biol. Chem., 267, 9158–9169 (1992).
  • 152) Watanabe, S., Hamano, M., Kakeshita, H., Bunai, K., Tojo, S., Yamaguchi, H., Fujita, Y., Wong, S. L., and Yamane, K., Mannitol-1-phosphate dehydrogenase (MtlD) is required for mannitol and glucitol assimilation in Bacillus subtilis: possible cooperation of mtl and gut operons. J. Bacteriol., 185, 4816–4824 (2003).
  • 153) Stülke, J., and Hillen, W., Regulation of carbon catabolism in Bacillus species. Annu. Rev. Microbiol., 54, 849–880 (2000).
  • 154) Deutscher, J., Galinier, A., and Martin-Verstraete, I., Carbohydrate uptake and metabolism. In “Bacillus subtilis and Its Closest Relatives, from Genes to Cells,” eds. Sonenshein, A. L., Hoch, J. A., and Losick, R., American Society for Microbiology Press, Washington, DC, pp. 129–150 (2002).
  • 155) Görke, B., and Deutscher, J., The regulatory functions of histidyl-phosphorylated HPr in Bacilli. In “Global Regulatory Networks in Bacillus subtitis,” ed. Fujita, Y., Transworld Research Network, Kerala, pp. 1–37 (2007).
  • 156) Aymerich, S., Goelzer, A., and Fromion, V., Transcriptional controls of the central carbon metabolism in Bacillus subtilis. In “Global Regulatory Networks in Bacillus subtitis,” ed. Fujita, Y., Transworld Research Network, Kerala, pp. 39–73 (2007).
  • 157) Fujita, Y., Miwa, Y., Tojo, S., and Hirooka, K., Carbon catabolite control and metabolic networks mediated by the CcpA protein in Bacillus subtilis. In “Global Regulatory Networks in Bacillus subtitis,” ed. Fujita, Y., Transworld Research Network, Kerala, pp. 91–110 (2007).
  • 158) Sonenshein, A. L., Control of key metabolic intersections in Bacillus subtilis. Nat. Rev. Microbiol., 5, 917–927 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.