561
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Transcriptome Profiling of the Mangrove Plant Bruguiera gymnorhiza and Identification of Salt Tolerance Genes by Agrobacterium Functional Screening

, &
Pages 304-310 | Received 28 Jul 2008, Accepted 19 Oct 2008, Published online: 22 May 2014

  • 1) Boyer, J. S., Plant productivity and environment. Science, 218, 443–448 (1982).
  • 2) Xu, D., Duan, X., Wang, B., Hong, B., Ho, T., and Wu, R., Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol., 110, 249–257 (1996).
  • 3) Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., and Shinozaki, K., Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol., 17, 287–291 (1999).
  • 4) Apse, M. P., Aharon, G. S., Snedden, W. A., and Blumwald, E., Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science, 285, 1256–1258 (1999).
  • 5) Gaxiola, R. A., Li, J., Undurraga, S., Dang, L. M., Allen, G. J., Alper, S. L., and Fink, G. R., Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc. Natl. Acad. Sci. USA, 98, 11444–11449 (2001).
  • 6) Shi, H., Lee, B. H., Wu, S. J., and Zhu, J. K., Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat. Biotechnol., 21, 81–85 (2003).
  • 7) Kawasaki, S., Borchert, C., Deyholos, M., Wang, H., Brazille, S., Kawai, K., Galbraith, D., and Bohnert, H. J., Gene expression profiles during the initial phase of salt stress in rice. Plant Cell, 13, 889–905 (2001).
  • 8) Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A., Nakajima, M., Enju, A., Sakurai, T., Satou, M., Akiyama, K., Taji, T., Yamaguchi-Shinozaki, K., Carninci, P., Kawai, J., Hayashizaki, Y., and Shinozaki, K., Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J., 31, 279–292 (2002).
  • 9) Kreps, J. A., Wu, Y., Chang, H. S., Zhu, T., Wang, X., and Harper, J. F., Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol., 130, 2129–2141 (2002).
  • 10) Ueda, A., Kathiresan, A., Inada, M., Narita, Y., Nakamura, T., Shi, W., Takabe, T., and Bennett, J., Osmotic stress in barley regulates expression of a different set of genes than salt stress does. J. Exp. Bot., 55, 2213–2218 (2004).
  • 11) Taji, T., Seki, M., Satou, M., Sakurai, T., Kobayashi, M., Ishiyama, K., Narusaka, Y., Narusaka, M., Zhu, J. K., and Shinozaki, K., Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol., 135, 1697–1709 (2004).
  • 12) Gong, Q., Li, P., Ma, S., Indu Rupassara, S., and Bohnert, H. J., Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J., 44, 826–839 (2005).
  • 13) Walia, H., Wilson, C., Wahid, A., Condamine, P., Cui, X., and Close, T. J., Expression analysis of barley (Hordeum vulgare L.) during salinity stress. Funct. Integr. Genomics, 6, 143–156 (2006).
  • 14) Kawaura, K., Mochida, K., Yamazaki, Y., and Ogihara, Y., Transcriptome analysis of salinity stress responses in common wheat using a 22k oligo-DNA microarray. Funct. Integr. Genomics, 6, 132–142 (2006).
  • 15) Miyama, M., and Hanagata, N., Microarray analysis of 7029 gene expression patterns in Burma mangrove under high-salinity stress. Plant Sci., 172, 948–957 (2007).
  • 16) Miyama, M., and Tada, Y., Transcriptional and physiological study of the response of Burma mangrove (Bruguiera gymnorhiza) to salt and osmotic stress. Plant Mol. Biol., 68, 119–129 (2008).
  • 17) Banzai, T., Hanagata, N., Dubinsky, Z., and Karube, I., Fructose-2,6-bisphosphate contents were increased in response to salt, water and osmotic stress in leaves of Bruguiera gymnorrhiza by differential changes in the activity of the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphate 2-phosphatase. Plant Mol. Biol., 53, 51–59 (2003).
  • 18) Yamada, A., Saitoh, T., Mimura, T., and Ozeki, Y., Expression of mangrove allene cyclase enhances salt tolerance in Escherichia coli, yeast and tobacco cells. Plant Cell Physiol., 43, 903–910 (2002).
  • 19) He, X. J., Mu, R. L., Cao, W. H., Zhang, Z. G., Zhang, J. S., and Chen, S. Y., AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J., 44, 903–916 (2005).
  • 20) Vera-Estrella, R., Barkla, B. J., García-Ramírez, L., and Pantoja, O., Salt stress in Thellungiella halophila activates Na+ transport mechanisms required for salinity tolerance. Plant Physiol., 139, 1507–1517 (2005).
  • 21) Clough, S. J., and Bent, A. F., Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J., 16, 735–743 (1998).
  • 22) Banzai, T., Sumiya, K., Hanagata, N., Dubinsky, Z., and Karube, I., Molecular cloning and characterization of genes encoding BURP domain-containing protein in the mangrove, Bruguiera gymnorrhiza. Trees, 16, 87–93 (2002).
  • 23) Banzai, T., Hershkovits, G., Katcoff, D. J., Hanagata, N., Dubinsky, Z., and Karube, I., Identification and characterization of mRNA transcripts differentially expressed in response to high salinity by means of differential display in the mangrove, Bruguiera gymnorrhiza. Plant Sci., 162, 499–505 (2002).
  • 24) Mosavi, L. K., Minor, D. L., Jr., and Peng, Z.-Y., Consensus-derived structural determinants of the ankyrin repeat motif. Proc. Natl. Acad. Sci. USA, 99, 16029–16034 (2002).
  • 25) Mosavi, L. K., Cammett, T. J., Desrosiers, D. C., and Peng, Z.-Y., The ankyrin repeat as molecular architecture for protein recognition. Protein Sci., 13, 1435–1448 (2004).
  • 26) Sakamoto, H., Maruyama, K., Sakuma, Y., Meshi, T., Iwabuchi, M., Shinozaki, K., and Yamaguchi-Shinozaki, K., Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol., 136, 2734–2746 (2004).
  • 27) Mittler, R., Kim, Y. S., Song, S., Coutu, J., Coutu, A., Ciftci-Yilmaz, S., Lee, H., Stevenson, B., and Zhu, J. K., Gain- and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress. FEBS Lett., 580, 6537–6542 (2006).
  • 28) Kader, J. C., Lipid-transfer proteins: a puzzling family of plant proteins. Trends Plant Sci., 2, 66–70 (1997).
  • 29) Trevino, M. B., and O’Connell, M. A., Three drought-responsive members of the nonspecific lipid-transfer protein gene family in Lycopersicon pennellii show different developmental patterns of expression. Plant Physiol., 116, 1461–1468 (1998).
  • 30) Jung, H. W., Kim, K. D., and Hwang, B. K., Identification of pathogen-responsive regions in the promoter of a pepper lipid transfer protein gene (CALTPI) and the enhanced resistance of the CALTPI transgenic Arabidopsis against pathogen and environmental stresses. Planta, 221, 361–373 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.