751
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

The Effect of Hyperosmosis on Paracellular Permeability in Caco-2 Cell Monolayers

, , &
Pages 328-334 | Received 04 Aug 2008, Accepted 06 Oct 2008, Published online: 22 May 2014

  • 1) Anderson, J. M., and Van Itallie, C. M., Tight junctions and the molecular basis for regulation of paracellular permeability. Am. J. Physiol., 269, G467–G475 (1995).
  • 2) Lutz, K. L., and Siahaan, T. J., Molecular structure of the apical junction complex and its contribution to the paracellular barrier. J. Pharm. Sci., 86, 977–984 (1997).
  • 3) Noach, A. B., Sakai, M., Blom-Roosemalen, M. C., de Jonge, H. R., de Boer, A. G., and Breimer, D. D., Effect of anisotonic conditions on the transport of hydrophilic model compounds across monolayers of human colonic cell lines. J. Pharmacol. Exp. Ther., 270, 1373–1380 (1994).
  • 4) Pérez, M., Barber, A., and Ponz, F., Effect of osmolality on the epithelial paracellular permeability in rat jejunum. Rev. Esp. Fisiol., 52, 103–112 (1996).
  • 5) Parisi, M., Pisam, M., Calamita, G., Gobin, R., Toriano, R., and Bourguet, J., Water pathways across a reconstituted epithelial barrier formed by Caco-2 cells: effects of medium hypertonicity. J. Membr. Biol., 143, 237–245 (1995).
  • 6) Hubert, A., Cauliez, B., Chedeville, A., Husson, A., and Lavoinne, A., Osmotic stress, a proinflammatory signal in Caco-2 cells. Biochimie, 86, 533–541 (2004).
  • 7) Madara, J. L., and Pappenheimer, J. R., Structural basis for physiological regulation of paracellular pathways in intestinal epithelia. J. Membr. Biol., 100, 149–164 (1987).
  • 8) Atisook, K., Carlson, S., and Madara, J. L., Effects of phlorizin and sodium on glucose-elicited alterations of cell junctions in intestinal epithelia. Am. J. Physiol., 258, C77–C85 (1990).
  • 9) Madara, J. L., and Carlson, S., Supraphysiologic L-tryptophan elicits cytoskeletal and macromolecular permeability alterations in hamster small intestinal epithelium in vitro. J. Clin. Invest., 87, 454–462 (1991).
  • 10) Farhadi, A., Banan, A., Fields, J., and Keshavarzian, A., Intestinal barrier: an interface between health and disease. J. Gastroenterol. Hepatol., 18, 479–497 (2003).
  • 11) Pinto, M., Robine-Leon, S., Appay, M. D., Kedinger, M., Triadou, N., Dussaulx, E., Lacroix, B., Simon-Assmann, P., Haffen, K., Fogh, J., and Zweibaum, A., Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biol. Cell, 47, 323–330 (1983).
  • 12) Chantret, I., Rodolosse, A., Barbat, A., Dussaulx, E., Brot-Laroche, E., Zweibaum, A., and Rousset, M., Differential expression of sucrase-isomaltase in clones isolated from early and late passages of the cell line Caco-2: evidence for glucose-dependent negative regulation. J. Cell Sci., 107, 213–225 (1994).
  • 13) Hidalgo, I. J., Raub, T. J., and Borchardt, R. T., Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology, 96, 736–749 (1989).
  • 14) Vachon, P. H., and Beaulieu, J. F., Transient mosaic patterns of morphological and functional differentiation in the Caco-2 cell line. Gastroenterology, 103, 414–423 (1992).
  • 15) Konishi, T., Satsu, H., Hatsugai, Y., Aizawa, K., Inakuma, T., Nagata, S., Sakuda, S. H., Nagasawa, H., and Shimizu, M., Inhibitory effect of a bitter melon extract on the P-glycoprotein activity in intestinal Caco-2 cells. Br. J. Pharmacol., 143, 379–387 (2004).
  • 16) Tsukazaki, M., Satsu, H., Mori, A., Sugita-Konishi, Y., and Shimizu, M., Effects of tributyltin on barrier functions in human intestinal Caco-2 cells. Biochem. Biophys. Res. Commun., 315, 991–997 (2004).
  • 17) Gumbiner, B., Structure, biochemistry, and assembly of epithelial tight junctions. Am. J. Physiol., 253, C749–C758 (1987).
  • 18) Schneeberger, E. E., and Lynch, R. D., Structure, function, and regulation of cellular tight junctions. Am. J. Physiol., 262, L647–L661 (1992).
  • 19) Satsu, H., Miyamoto, Y., and Shimizu, M., Hypertonicity stimulates taurine uptake and transporter gene expression in Caco-2 cells. Biochim. Biophys. Acta, 1419, 89–96 (1999).
  • 20) Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J. D., “Molecular Biology of the Cell” 2nd ed., Garland, New York, pp. 304–310 (1989).
  • 21) Anderberg, E. K., Lindmark, T., and Artursson, P., Sodium caprate elicits dilatations in human intestinal tight junctions and enhances drug absorption by paracellular route. Pharm. Res., 10, 857–864 (1993).
  • 22) Liu, D. Z., LeCluyse, E. L., and Thakker, D. R., Dodecylphosphocholine-mediated enhancement of paracellular permeability and cytotoxicity in Caco-2 cell monolayers. J. Pharm. Sci., 88, 1161–1168 (1999).
  • 23) Ballard, S. T., Hunter, J. H., and Taylor, A. E., Regulation of tight-junction permeability during nutrient absorption across the intestinal epithelium. Annu. Rev. Nutr., 15, 35–55 (1995).
  • 24) Takeuchi, M., Okura, T., Mori, T., Akita, K., Ohta, T., Ikeda, M., Ikegami, H., and Kurimoto, M., Intracellular production of interleukin-18 in human epithelial-like cell lines is enhanced by hyperosmotic stress in vitro. Cell Tissue Res., 297, 467–473 (1999).
  • 25) Németh, Z. H., Deitch, E. A., Szabó, C., and Haskó, G., Hyperosmotic stress induces nuclear factor-kappaB activation and interleukin-8 production in human intestinal epithelial cells. Am. J. Pathol., 161, 987–996 (2002).
  • 26) de Vries, H. E., Blom-Roosemalen, M. C., van Oosten, M., de Boer, A. G., van Berkel, T. J., Breimer, D. D., and Kuiper, J., The influence of cytokines on the integrity of the blood-brain barrier in vitro. J. Neuroimmunol., 64, 37–43 (1996).
  • 27) Hochman, J. H., Fix, J., and LeCluyse, E. L., In vitro and in vivo analysis of the mechanism of absorption enhancement by palmitoyl carnitine. J. Pharmacol. Exp. Ther., 269, 813–822 (1994).
  • 28) Suzuki, T., and Hara, H., Various nondigestible saccharides open a paracellular calcium transport pathway with the induction of intracellular calcium signaling in human intestinal Caco-2 cells. J. Nutr., 134, 1935–1941 (2004).
  • 29) Hidalgo, I. J., and Li, J., Carrier-mediated transport and efflux mechanism in Caco-2 cells. Adv. Drug Deliv. Rev., 22, 53–66 (1996).
  • 30) Mordrelle, A., Jullian, E., Costa, C., Cormet-Boyaka, E., Benamouzig, R., Tomé, D., and Huneau, J. F., EAAT1 is involved in transport of L-glutamate during differentiation of the Caco-2 cell line. Am. J. Physiol. Gastrointest. Liver Physiol., 279, G366–G373 (2000).
  • 31) Bohlen, H. G., Na+-induced intestinal interstitial hyperosmolality and vascular responses during absorptive hyperemia. Am. J. Physiol., 242, H785–H789 (1982).
  • 32) Haljamäe, H., Jodal, M., and Lundgren, O., Countercurrent multiplication of sodium in intestinal villi during absorption of sodium chloride. Acta Physiol. Scand., 89, 580–593 (1973).
  • 33) Hallbäck, D. A., Jodal, M., Mannischeff, M., and Lundgren, O., Tissue osmolality in intestinal villi of four mammals in vivo and in vitro. Acta Physiol. Scand., 143, 271–277 (1991).
  • 34) Sjöqvist, A., and Beeuwkes, R. 3rd, Villous sodium gradient associated with volume absorption in the feline intestine: an electron-microprobe study on freeze-dried tissue. Acta Physiol. Scand., 136, 271–279 (1989).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.