326
Views
21
CrossRef citations to date
0
Altmetric
Original Articles

The Schizosaccharomyces pombe Syntaxin 1 Homolog, Psy1, Is Essential in the Development of the Forespore Membrane

, , &
Pages 339-345 | Received 19 Aug 2008, Accepted 20 Oct 2008, Published online: 22 May 2014

  • 1) Yoo, B. Y., Calleja, G. B., and Johnson, B. F., Ultrastructural changes of the fission yeast (Schizosaccharomyces pombe) during ascospore formation. Arch. Microbiol., 91, 1–10 (1973).
  • 2) Tanaka, K., and Hirata, A., Ascospore development in the fission yeasts Schizosaccharomyces pombe and S. japonicus. J. Cell Sci., 56, 263–279 (1982).
  • 3) Hirata, A., and Shimoda, C., Electron microscopic examination of sporulation-deficient mutants of the fission yeast Schizosaccharomyces pombe. Arch. Microbiol., 158, 249–255 (1992).
  • 4) Hagan, I., and Yanagida, M., The product of the spindle formation gene sad1 + associates with the fission yeast spindle pole body and is essential for viability. J. Cell Biol., 129, 1033–1047 (1995).
  • 5) Ikemoto, S., Nakamura, T., Kubo, M., and Shimoda, C., S. pombe sporulation-specific coiled-coil protein Spo15 is localized to the spindle pole body and essential for its modification. J. Cell Sci., 113, 545–554 (2000).
  • 6) Nakase, Y., Nakamura-Kubo, M., Ye, Y., Hirata, A., Shimoda, C., and Nakamura, T., Meiotic spindle pole bodies acquire the ability to assemble the spore plasma membrane by sequential recruitment of sporulation-specific components in fission yeast. Mol. Biol. Cell, 19, 2476–2487 (2008).
  • 7) Nakamura, T., Nakamura-Kubo, M., Hirata, A., and Shimoda, C., The Schizosaccharomyces pombe spo3 + gene is required for assembly of the forespore membrane and genetically interacts with psy1 + encoding syntaxin-like protein. Mol. Biol. Cell, 12, 3955–3972 (2001).
  • 8) Nakamura, T., Asakawa, H., Nakase, Y., Kashiwazaki, J., Hiraoka, Y., and Shimoda, C., Live observation of forespore membrane in fission yeast. Mol. Biol. Cell, 19, 3544–3553 (2008).
  • 9) Bresch, C., Muller, G., and Egel, R., Genes involved in meiosis and sporulation of a yeast. Mol. Gen. Genet., 102, 301–306 (1968).
  • 10) Kishida, M., and Shimoda, C., Genetic mapping of eleven spo genes essential for ascospore formation in the fission yeast Schizosaccharomyces pombe. Curr. Genet., 10, 443–447 (1986).
  • 11) Martín-Castellanos, C., Blanco, M., Rozalén, A. E., Pérez-Hidalgo, L., García, A. I., Conde, F., Mata, J., Ellermeier, C., Davis, L., San-Segundo, P., Smith, G. R., and Moreno, S., A large-scale screen in S. pombe identifies seven novel genes required for critical meiotic events. Curr. Biol., 15, 2056–2062 (2005).
  • 12) Nakamura-Kubo, M., Nakamura, T., Hirata, A., and Shimoda, C., The fission yeast spo14 + gene encoding a functional homologue of budding yeast Sec12 is required for the development of forespore membranes. Mol. Biol. Cell, 14, 1109–1124 (2003).
  • 13) Nakase, Y., Nakamura, T., Hirata, A., Routt, S. M., Skinner, H. B., Bankaitis, V. A., and Shimoda, C., Schizosaccharomyces pombe spo20 + gene encoding a homologue of Saccharomyces cerevisiae Sec14 plays an important role in forespore membrane formation. Mol. Biol. Cell, 12, 901–917 (2001).
  • 14) Nakase, Y., Nakamura, T., Okazaki, K., Hirata, A., and Shimoda, C., The Sec14 family glycerophospholipid-transfer protein is required for structural integrity of the spindle pole body during meiosis in fission yeast. Genes Cells, 9, 1275–1286 (2004).
  • 15) Protopopov, V., Govindan, B., Novick, P., and Gerst, J. E., Homologs of the synaptobrevin/VAMP family of synaptic vesicle proteins function on the late secretory pathway in S. cerevisiae. Cell, 74, 855–861 (1993).
  • 16) Sollner, T., Whiteheart, S. W., Brunner, M., Erdjument-Bromage, H., Geromanos, S., Tempst, P., and Rothman, J. E., SNAP receptors implicated in vesicle targeting and fusion. Nature, 362, 318–324 (1993).
  • 17) Rothman, J. E., Mechanisms of intracellular protein transport. Nature, 372, 55–63 (1994).
  • 18) Rothman, J. E., and Warren, G., Implications of the SNARE hypothesis for intracellular membrane topology and dynamics. Curr. Biol., 4, 220–233 (1994).
  • 19) Pelham, H. R., SNAREs and the secretory pathway: lessons from yeast. Exp. Cell Res., 247, 1–8 (1999).
  • 20) Jahn, R., Lang, T., and Sudhof, T. C., Membrane fusion. Cell, 112, 519–533 (2003).
  • 21) Takegawa, K., Iwaki, T., Fujita, Y., Morita, T., Hosomi, A., and Tanaka, N., Vesicle-mediated protein transport pathways to the vacuole in Schizosaccharomyces pombe. Cell Struct. Funct., 28, 399–417 (2003).
  • 22) Edamatsu, M., and Toyoshima, Y. Y., Fission yeast synaptobrevin is involved in cytokinesis and cell elongation. Biochem. Biophys. Res. Commun., 301, 641–645 (2003).
  • 23) Nakamura, T., Kashiwazaki, J., and Shimoda, C., A fission yeast SNAP-25 homologue, SpSec9, is essential for cytokinesis and sporulation. Cell Struct. Funct., 30, 15–24 (2005).
  • 24) Egel, R., and Egel-Mitani, M., Premeiotic DNA synthesis in fission yeast. Exp. Cell Res., 88, 127–134 (1974).
  • 25) Gutz, H., Heslot, H., Leupold, U., and Loprieno, N., Schizosaccharomyces pombe. In “Handbook of Genetics, Vol. 1,” ed. King, R. C., Plenum Press, New York, pp. 395–446 (1974).
  • 26) Moreno, S., Klar, A., and Nurse, P., Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol., 194, 793–823 (1990).
  • 27) Tanaka, K., Yonekawa, T., Kawasaki, Y., Kai, M., Furuya, K., Iwasaki, M., Murakami, H., Yanagida, M., and Okayama, H., Fission yeast Eso1p is required for establishing sister chromatid cohesion during S phase. Mol. Cell. Biol., 20, 3459–3469 (2000).
  • 28) Hagan, I. M., and Hyams, J. S., The use of cell division cycle mutants to investigate the control of microtubule distribution in the fission yeast Schizosaccharomyces pombe. J. Cell Sci., 89, 343–357 (1988).
  • 29) Woods, A., Sherwin, T., Sasse, R., MacRae, T. H., Baines, A. J., and Gull, K., Definition of individual components within the cytoskeleton of Trypanosoma brucei by a library of monoclonal antibodies. J. Cell Sci., 93, 491–500 (1989).
  • 30) Yamamoto, M., Imai, Y., and Watanabe, Y., Mating and sporulation in Schizosaccharomyces pombe. In “Molecular and Cellular Biology of the Yeast Saccharomyces,” eds. Pringle, J. R., Broach, J. B., and Jones, E. W., Cold Spring Harbor Press, Cold Spring Harbor (1997).
  • 31) Weimbs, T., Low, S. H., Chapin, S. J., Mostov, K. E., and Bucher, P., A conserved domain is present in different families of vesicular fusion proteins: a new superfamily. Proc. Natl. Acad. Sci. USA, 94, 3046–3051 (1997).
  • 32) Fernandez, I., Ubach, J., Dulubova, I., Zhang, X., Südhof, T. C., and Rizo, J., Three-dimensional structure of an evolutionarily conserved N-terminal domain of syntaxin 1A. Cell, 94, 841–849 (1998).
  • 33) Nicholson, K. L., Munson, M., Miller, R. B., Filip, T. J., Fairman, R., and Hughson, F. M., Regulation of SNARE complex assembly by an N-terminal domain of the t-SNARE Sso1p. Nat. Struct. Biol., 5, 793–802 (1998).
  • 34) Ye, Y., Fujii, M., Hirata, A., Kawamukai, M., Shimoda, C., and Nakamura, T., Geranylgeranyl diphosphate synthase in fission yeast is a heteromer of farnesyl diphosphate synthase (FPS), Fps1, and an FPS-like protein, Spo9, essential for sporulation. Mol. Biol. Cell, 18, 3568–3581 (2007).
  • 35) Aalto, M. K., Ronne, H., and Keranen, S., Yeast syntaxins Sso1p and Sso2p belong to a family of related membrane proteins that function in vesicular transport. EMBO J., 12, 4095–4104 (1993).
  • 36) Jantti, J., Aalto, M. K., Oyen, M., Sundqvist, L., Keranen, S., and Ronne, H., Characterization of temperature-sensitive mutations in the yeast syntaxin 1 homologues Sso1p and Sso2p, and evidence of a distinct function for Sso1p in sporulation. J. Cell Sci., 115, 409–420 (2000).
  • 37) Neiman, A. M., Ascospore formation in the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev., 69, 565–584 (2005).
  • 38) Oyen, M., Jäntti, J., Keränen, S., and Ronne, H., Mapping of sporulation-specific functions in the yeast syntaxin gene SSO1. Curr. Genet., 45, 76–82 (2004).
  • 39) Calakos, N., Bennett, M. K., Peterson, K. E., and Scheller, R. H., Protein-protein interactions contributing to the specificity of intracellular vesicular trafficking. Science, 263, 1146–1149 (1994).
  • 40) Fiebig, K. M., Rice, L. M., Pollock, E., and Brunger, A. T., Folding intermediates of SNARE complex assembly. Nat. Struct. Biol., 6, 117–123 (1999).
  • 41) Dulubova, I., Sugita, S., Hill, S., Hosaka, M., Fernandez, I., Südhof, T. C., and Rizo, J., A conformational switch in syntaxin during exocytosis: role of munc18. EMBO J., 18, 4372–4382 (1999).
  • 42) Scales, S. J., Chen, Y. A., Yoo, B. Y., Patel, S. M., Doung, Y. C., and Scheller, R. H., SNAREs contribute to the specificity of membrane fusion. Neuron, 26, 457–464 (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.