426
Views
28
CrossRef citations to date
0
Altmetric
Original Articles

Dietary Japanese Millet Protein Ameliorates Plasma Levels of Adiponectin, Glucose, and Lipids in Type 2 Diabetic Mice

, , , , , , , & show all
Pages 351-360 | Received 27 Aug 2008, Accepted 03 Oct 2008, Published online: 22 May 2014

  • 1) Mokdad, A. H., Bowman, B. A., Ford, E. S., Vinicor, F., Marks, J. S., and Koplan, J. P., The continuing epidemics of obesity and diabetes in the United States. J. Am. Med. Assoc., 286, 1195–1200 (2001).
  • 2) McLellan, F., Obesity rising to alarming levels around the world. Lancet, 359, 1412 (2002).
  • 3) Costacou, T., and Mayer-Davis, E. J., Nutrition and prevention of type 2 diabetes. Annu. Rev. Nutr., 23, 147–170 (2003).
  • 4) Hu, F. B., Manson, J. E., Stampfer, M. J., Colditz, G., Liu, S., Solomon, C. G., and Willett, W. C., Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N. Eng. J. Med., 345, 790–797 (2001).
  • 5) Khaw, K. T., Wareham, N., Bingham, S., Welch, A., Luben, R., and Day, N., Combined impact of health behaviors and mortality in men and women: the ERIC-Norfolk prospective population study. PloS Med., 5, 1–9 (2008).
  • 6) Kahn, B. B., and Flier, J. S., Obesity and insulin resistance. J. Clin. Invest., 106, 473–481 (2000).
  • 7) Barnard, N. D., Jaster, B., Cohen, J., Seid, K., Jenkins, D. J. A., Green, A. A., Turner-McGrievy, G., Talpers, S., and Gloede, L., A low-fat vegan diet improves glycemic control and cardiovascular risk factor in a randomized clinical trial in individuals with type 2 diabetes. Diabetes Care, 29, 1777–1783 (2006).
  • 8) Scherer, P. E., Adipose tissue: from lipid storage compartment to endocrine organ. Diabetes, 55, 1537–1545 (2006).
  • 9) Berg, A. H., Combs, T. P., and Scherer, P. E., ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism. Trends Endocrinol. Metab., 13, 84–89 (2002).
  • 10) Kadowaki, T., Yamauchi, T., Kubota, N., Hara, K., Ueki, K., and Tobe, K., Adiponectin and adiponectin receptors in insulin resistance, diabetes, and metabolic syndrome. J. Clin. Invest., 116, 1784–1792 (2006).
  • 11) Okamoto, Y., Kihara, S., Funahashi, T., Matsuzawa, Y., and Libby, P., Adiponectin: a key adipocytokine in metabolic syndrome. Clin. Sci., 110, 267–278 (2006).
  • 12) Szmitko, P. E., Teoh, H., Stewart, D. J., and Verma, S., Adiponectin and cardiovascular disease: state of the art? Am. J. Physiol. Circ. Physiol., 292, H1655–H1663 (2007).
  • 13) Yamauchi, T., Nio, Y., Maki, T., Kobayashi, M., Takazawa, T., Iwabu, M., Okada-Iwabu, M., Kawamoto, S., Kubota, N., Kubota, T., Ito, Y., Kamon, J., Tsuchida, A., Kumagai, K., Kozono, H., Hada, Y., Ogata, H., Tokuyama, K., Tsunoda, M., Ide, T., Murakami, K., Awazawa, M., Takamoto, I., Froguel, P., Hara, K., Tobe, K., Nagai, R., Ueki, K., and Kadowaki, T., Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat. Med., 13, 332–339 (2007).
  • 14) Yang, W. S., Lee, W. J., Funahashi, T., Tanaka, S., Matsuzawa, Y., Chao, C. L., Chen, C. L., Tai, T. Y., and Chuang, L. M., Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin. J. Clin. Endocrinol. Metab., 86, 3815–3819 (2001).
  • 15) Weyer, C., Funahashi, T., Tanaka, S., Hotta, K., Matsuzawa, Y., Pratley, R. E., and Tataranni, P. A., Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J. Clin. Endocrinol. Metab., 86, 1930–1935 (2001).
  • 16) Nagasawa, A., Fukui, K., Kojima, M., Kishida, K., Maeda, N., Nagaretani, H., Hibuse, T., Nishizawa, H., Kihara, S., Waki, M., Takamatsu, K., Funahashi, T., and Matsuzawa, Y., Divergent effects of soy protein diet on the expression of adipocytokines. Biochem. Biophys. Res. Commun., 311, 909–914 (2003).
  • 17) Tremblay, F., Lavigne, C., Jacques, H., and Marette, A., Role of dietary proteins and amino acids in the pathogenesis of insulin resistance. Ann. Rev. Nutr., 27, 293–310 (2007).
  • 18) Baltensperger, D., and Cai, Y. Z., Millet: minor. In “Encyclopedia of Grain Science” Vol. 2, eds. Wrigley, C., Corke, H., and Walker, C. E., Elsevier, London, pp. 261–268 (2004).
  • 19) Nishizawa, N., Oikawa, M., and Hareyama, S., Effect of dietary protein from proso millet on the plasma cholesterol metabolism in rats. Agric. Biol. Chem., 54, 229–230 (1990).
  • 20) Nishizawa, N., and Fudamoto, Y., The elevation of plasma concentration of high-density lipoprotein cholesterol in mice fed with protein from proso millet. Biosci. Biotechnol. Biochem., 59, 333–335 (1995).
  • 21) Shimanuki, S., Nagasawa, T., and Nishizawa, N., Plasma HDL subfraction levels increase in rats fed proso-millet protein concentrate. Med. Sci. Monit., 12, BR221–BR226 (2006).
  • 22) Nishizawa, N., Sato, D., Ito, Y., Nagasawa, T., Hatakeyama, Y., Choi, M.-R., Choi, Y.-Y., and Wei, Y. M., Effect of dietary protein of proso millet on liver injury induced by D-galactosamine in rats. Biosci. Biotechnol. Biochem., 66, 92–96 (2002).
  • 23) Spies, J. R., and Chambers, D. C., Chemical determination of tryptophan. Anal. Chem., 20, 30–39 (1948).
  • 24) Moore, S., On the determination of cystine as cysteic acid. J. Biol. Chem., 238, 235–237 (1963).
  • 25) “Standard Tables of Food Composition in Japan” 5th revised ed., Kagawa Nutrition University Press, Sakado, Saitama (2001).
  • 26) Naren, A. P., and Virupaksha, T. K., α- and β-Setarins: methionine-rich proteins of Italian millet (Setaria italica (L.) Beauv.). Cereal Chem., 67, 32–34 (1990).
  • 27) Serna-Saldivar, S., and Rooney, L. W., Structure and chemistry of sorghum and millets. In “Sorghum and Millets: Chemistry and Technology,” ed. Dendy, D. A. V., American Association of Cereal Chemists, St. Paul, pp. 69–124 (1995).
  • 28) Kohama, K., Nagasawa, T., and Nishizawa, N., Polypeptide compositions and NH2-terminal amino acid sequences of proteins in foxtail and prose millets. Biosci. Biotechnol. Biochem., 63, 1921–1926 (1999).
  • 29) Kohama, K., Composition of storage protein from foxtail, proso and Japanese millets and food functionality. PhD thesis, United Graduate School of Agricultural Sciences, Iwate University, pp. 27–65 (2000).
  • 30) Reeves, P. G., Nielsen, F. H., and Fahey, G. C., Jr., AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition Ad Hoc Writing Committee on reformulation of the AIN-76A rodent diet. J. Nutr., 123, 1939–1951 (1993).
  • 31) Folch, J., Lees, M., and Sloane Stanley, G. H., A simple method for the isolation and purification of total lipids for animal tissues. J. Biol. Chem., 226, 497–509 (1957).
  • 32) McLaughlin, T., Abbasi, F., Cheal, K., Chu, J., Lamendola, C., and Reaven, G. M., Use of matabolic markers to identify overweight individuals who are insulin resistance. Ann. Intern. Med., 139, 802–809 (2003).
  • 33) Reaven, G. M., The insulin resistance syndrome: definition and dietary approaches to treatment. Ann. Rev. Nutr., 25, 391–406 (2005).
  • 34) Yamauchi, T., Kamon, J., Waki, H., Terauchi, Y., Kubota, N., Hara, K., Mori, Y., Ide, T., Murakami, K., Tsuboyama-Kasaoka, N., Ezaki, O., Akanuma, Y., Gavrilova, O., Vinson, C., Reitman, M. L., Kagechika, H., Shudo, K., Yoda, M., Nakano, Y., Tobe, K., Nagai, R., Kimura, S., Tomita, M., Froguel, P., and Kadowaki, T., The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med., 7, 941–946 (2001).
  • 35) Nagasawa, A., Fukui, K., Funahashi, T., Maeda, N., Shimomura, I., Kihara, S., Waki, M., Takamatsu, K., and Matsuzawa, Y., Effects of soy protein diet on the expression of adipose genes and plasma adiponectin. Horm. Metab. Res., 34, 635–639 (2002).
  • 36) Lavigne, C., Marette, A., and Jacques, H., Cod and soy proteins compared with casein improve glucose tolerance and insulin sensitivity in rats. Am. J. Physiol. Endocrinol. Metab., 278, E491–E500 (2000).
  • 37) Ascencio, C., Torres, N., Isoard-Acosta, F., Gómez-Pérez, F. J., Hernández-Pando, R., and Tovar, A. R., Soy protein affects serum insulin and hepatic SREBP-1 mRNA and reduces fatty liver in rats. J. Nutr., 134, 522–529 (2004).
  • 38) Belobrajdic, D. P., McIntosh, G. H., and Owens, J. A., A high-whey-protein diet reduces body weight gain and alters insulin sensitivity relative to red meat in Wistar rats. J. Nutr., 134, 1454–1458 (2004).
  • 39) Debry, G., “Dietary Protein and Atherosclerosis,” CRC Press, Baca Raton (2004).
  • 40) Flakoll, P. J., Wentzel, L. S., Rice, D. E., Hill, J. O., and Abumrad, N. N., Short-term regulation of insulin-mediated glucose utilization in four-day fasted human volunteers: role of amino acid availability. Diabetologia, 35, 357–366 (1992).
  • 41) Layman, D. K., and Walker, D. A., Potential importance of leucine in treatment of obesity and the metabolic syndrome. J. Nutr., 136, 319S–323S (2006).
  • 42) Doi, M., Yamaoka, I., Nakamaya, M., Sugawara, K., and Yoshizawa, F., Hypoglycemic effect of isoleucine involves increased muscle glucose uptake and whole body glucose oxidation and decreased hepatic gluconeogenesis. Am. J. Physiol. Endocrinol. Metab., 292, E1683–E1693 (2007).
  • 43) Berg, A. H., Combs, T. P., Du, X. L., Brownlee, M., and Scherer, P. E., The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat. Med., 7, 947–953 (2001).
  • 44) Maeda, N., Shimomura, I., Kishida, K., Nishizawa, H., Matsuda, M., Nagaretani, H., Furuyama, N., Kondo, H., Takahashi, M., Arita, Y., Komuro, R., Ouchi, N., Kihara, S., Tochino, Y., Okutomi, K., Horie, M., Takeda, S., Aoyama, T., Funahashi, T., and Matsuzawa, Y., Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat. Med., 8, 731–737 (2002).
  • 45) Pietzsch, J., Julius, U., Nitzsche, S., and Hanefeld, M., In vivo evidence for increased apolipoprotein A-I catabolism in subjects with impaired glucose tolerance. Diabetes, 47, 1928–1934 (1998).
  • 46) Aso, Y., Yamamoto, R., Wakabayashi, S., Uchida, T., Takayanagi, K., Takebayashi, K., Okuno, T., Inoue, T., Node, K., Tobe, T., Inukai, T., and Nakano, Y., Comparison of serum high-molecular weight (HMW) adiponectin with total adiponectin concentrations in type 2 diabetic patients with coronary artery disease using a novel enzyme-linked immunosorbent assay to detect HMW adiponectin. Diabetes, 55, 1954–1960 (2006).
  • 47) Behall, K. M., Scholfield, D. J., Hallfrisch, J. G., and Liljeberg-Elmståhl, H. G. M., Consumption of both resistant starch and β-glucan improves postpradial plasma glucose and insulin in women. Diabetes Care, 29, 976–981 (2006).
  • 48) Lihn, A. S., Richelsen, B., Pedersen, S. B., Haugaard, S. B., Rathje, G. S., Madsbad, S., and Andersen, O., Increased expression of TNF-α, IL-6, and IL-8 in HALS: implications for reduced adiponectin expression and plasma levels. Am. J. Physiol. Endocrinol. Metab., 285, E1072–E1080 (2003).
  • 49) Choi, Y.-Y., Osada, K., Ito, Y., Nagasawa, T., Choi, M.-R., and Nishizawa, N., Effects of dietary protein of Korean foxtail millet on plasma adiponectin, HDL-cholesterol, and insulin levels in genetically type 2 diabetic mice. Biosci. Biotechnol. Biochem., 69, 31–37 (2005).
  • 50) Park, K. O., Ito, Y., Nagasawa, T., Choi, M. R., and Nishizawa, N., Effects of dietary Korean proso-millet protein on plasma adiponectin, HDL cholesterol, insulin levels, and gene expressions in obese type 2 diabetic mice. Biosci. Biotechnol. Biochem., 72, 2918–2925 (2008).
  • 51) Lewis, G. F., and Rader, D. J., New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ. Res., 96, 1221–1232 (2005).
  • 52) Yokoyama, S., Release of cellular cholesterol: molecular mechanism for cholesterol homeostasis in cells and in the body. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 1529, 231–244 (2000).
  • 53) von Eynatten, M., Schneider, J. G., Mumpert, P. M., Rudofsky, G., Schmidt, N., Barosch, P., Hamann, A., Morcos, M., Kreuzer, J., Bierhaus, A., Nawroth, P. P., and Dugi, K. A., Decreased plasma lipoprotein lipase in hypoadiponectinemia: an association independent of systemic inflammation and insulin resistance. Diabetes Care, 27, 2925–2929 (2004).
  • 54) Maeda, N., Takahashi, M., Funahashi, T., Kihara, S., Nishizawa, H., Kishida, K., Nagaretani, H., Matsuda, M., Komuro, R., Ouchi, N., Kuriyama, H., Hotta, K., Nakamura, T., Shimomura, I., and Matsuzawa, Y., PPARγ ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes, 50, 2094–2099 (2001).
  • 55) Nawrocki, A. R., Rajala, M. W., Tomas, E., Pajvani, U. B., Saha, A. K., Trumbauer, M. E., Pang, Z., Chen, A. S., Ruderman, N. B., Chen, H., Rossetti, L., and Scherer, P. E., Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor γ agonists. J. Biol. Chem., 281, 2654–2660 (2006).
  • 56) Qi, L., Rimm, E., Liu, S. M., Rifai, N., and Hu, F. B., Dietary glycemic index, glycemic load, cereal fiber, and plasma adiponectin concentration in diabetic men. Diabetes Care, 28, 1022–1028 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.