343
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Preparation and Characterization of Branched β-Cyclodextrins Having α-L-Fucopyranose and a Study of Their Functions

&
Pages 562-569 | Received 29 Aug 2008, Accepted 31 Oct 2008, Published online: 22 May 2014

  • 1) French, D., The Schardinger dextrins. Adv. Carbohydr. Chem., 12, 189–260 (1957).
  • 2) Shinoda, T., Kagatani, S., Maeda, A., Konno, Y., Hashimoto, H., Hara, K., Fujita, K., and Sonobe, T., Sugar-branched-cyclodextrins as injectable drug carriers in mice. Drug Dev. Ind. Pharm., 25, 1185–1192 (1999).
  • 3) Hattori, K., Kenmoku, A., Mizuguchi, T., Ikeda, D., Mizuno, M., and Inazu, T., Saccharide-branched cyclodextrins as targeting drug carriers. J. Inclusion Phenom. Macrocyclic Chem., 56, 9–16 (2006).
  • 4) Townsend, R. R., Hardy, M. R., Wong, T. C., and Lee, Y. C., Binding of N-linked bovine fetuin glycopeptides to isolated rabbit hepatocytes: Gal/GalNAc hepatic lectin discrimination between Galβ(1,4)GlcNAc and Galβ(1,3)GlcNAc in a triantennary structure. Biochemistry, 25, 5716–5725 (1986).
  • 5) Lee, Y. C., and Lee, R. T., Carbohydrate-protein interactions: basic of glycobiology. Acc. Chem. Res., 28, 321–327 (1995).
  • 6) Tanimoto, T., Sakaki, T., and Koizumi, K., Preparation of 61,62-, 61,63-, 61,64-, and 61,65-di-O-(α-D-glucopyranosyl)cyclomalto-octaoses. Carbohydr. Res., 267, 27–37 (1995).
  • 7) Ikuta, A., Koizumi, K., and Tanimoto, T., Preparation and characterization of 61,6n-di-O-(α-D-galactopyranosyl)cyclomaltooctaoses. J. Carbohydr. Chem., 19, 13–23 (2000).
  • 8) Tanimoto, T., Kishimoto, Y., Ikuta, A., Nishi, Y., and Miyake, K., Preparation and characterization of branched β-cyclodextrins having manno-oligosaccharide side chains derived from yeast mannan and study of their functions. J. Inclusion Phenom. Macrocyclic Chem., 44, 297–302 (2002).
  • 9) Ikuta, A., Koizumi, K., and Tanimoto, T., Efficient chemical syntheses of branched cyclomalto-oligosaccharides using the trichloroacetimidate method. J. Carbohydr. Chem., 22, 297–308 (2003).
  • 10) Ikuta, A., Mizuta, N., Kitahata, S., Murata, T., Usui, T., Koizumi, K., and Tanimoto, T., Preparation and characterization of novel branched β-cyclodextrins having β-D-galactose residues on the non-reducing terminal of the side chains and their specific interactions with peanut (Arachis hypogaea) agglutinin. Chem. Pharm. Bull., 52, 51–56 (2004).
  • 11) Koizumi, K., Tanimoto, T., Okada, Y., Hara, K., Fujita, K., Hashimoto, H., and Kitahata, S., Isolation and characterization of novel heterogeneous branched cyclomalto-oligosaccharides (cyclodextrins) produced by transgalactosylation with α-galactosidase from coffee bean. Carbohydr. Res., 278, 129–142 (1995).
  • 12) Hamayasu, K., Hara, K., Fujita, K., Kondo, Y., Hashimoto, H., Tanimoto, T., Koizumi, K., Nakano, H., and Kitahata, S., Enzymatic synthesis of mannosyl-cyclodextrin by α-mannosidase from Jack bean. Biosci. Biotechnol. Biochem., 61, 825–829 (1997).
  • 13) Kitahata, S., Tanimoto, Y., Ikuta, A., Tanaka, K., Fujita, K., Hashimoto, H., Murakami, H., Nakano, H., and Koizumi, K., Synthesis of novel heterobranched β-cyclodextrins from 42-O-β-D-galactosyl-maltose and β-cyclodextrin by the reverse action of pullulanase, and isolation and characterization of the products. Biosci. Biotechnol. Biochem., 64, 1223–1229 (2000).
  • 14) Kitahata, S., Tanimoto, T., Okada, Y., Ikuta, A., Tanaka, K., Murakami, H., Nakano, H., and Koizumi, K., Synthesis of novel heterobranched β-cyclodextrins from α-D-mannosyl-maltotriose and β-cyclodextrin by the reverse action of pullulanase, and isolation and characterization of the products. Biosci. Biotechnol. Biochem., 64, 2406–2411 (2000).
  • 15) Tanimoto, T., Omatsu, M., Ikuta, A., Nishi, Y., Murakami, H., Nakano, H., and Kitahata, S., Synthesis of novel heterobranched β-cyclodextrins having β-D-N-acetylglucosaminyl-maltotriose on the side chain. Biosci. Biotechnol. Biochem., 69, 732–739 (2005).
  • 16) Okada, Y., Matsuda, K., Hara, K., Hamayasu, K., Hashimoto, H., and Koizumi, K., Properties and the inclusion behavior of 6-O-α-D-galactosyl- and 6-O-α-D-mannosyl-cyclodextrins. Chem. Pharm. Bull., 47, 1564–1568 (1999).
  • 17) Hakomori, S., Aberrant glycosylation in cancer cell membranes as focused on glycolipids: overview and perspectives. Cancer Res., 45, 2405–2414 (1985).
  • 18) Feizi, T., Demonstration by monoclonal antibodies that carbohydrate structures of glycoproteins and glycolipids are onco-developmental antigens. Nature, 314, 53–57 (1985).
  • 19) Pendu, J. L., Lambert, F., Samuelsson, B., Breimer, M. E., Seitz, R. C., Urdaniz, M. P., Suesa, N., Ratcliffe, M., Francois, A., Poschmann, A., Vinas, J., and Oriol, R., Monoclonal antibodies specific for type 3 and type 4 chain-based blood group determinants: relationship to the A1 and A2 subgroups. Glycoconj. J., 3, 255–271 (1986).
  • 20) Hakomori, S., Tumor-associated glycolipid antigens, their metabolism and organization. Chem. Phys. Lipids, 42, 209–233 (1986).
  • 21) Bouhours, D., Larson, G., Bouhours, J.-F., Lundblad, A., and Hansson, G. C., Developmental changes of blood group A-active glycosphingolipids with type 1 and type 2 chains in rat small intestine. Glycoconj. J., 4, 59–71 (1987).
  • 22) Wegmann, B., and Schmidt, R. R., Synthesis of the H-disaccharide (2-O-α-L-fucopyranosyl-D-galactose) via the trichloroacetimidate method. Carbohydr. Res., 184, 254–261 (1988).
  • 23) Hakomori, S., Fucolipids and blood group glycolipids in normal and tumor tissue. Prog. Biochem. Pharmacol., 10, 167–196 (1975).
  • 24) Hakomori, S., Glycosphingolipids in cellular interaction, differentiation, and oncogenesis. Ann. Rev. Biochem., 50, 733–764 (1981).
  • 25) Springer, G. F., Role of human cell surface structures in interactions between man and microbes. Naturwissenschaften, 57, 162–171 (1970).
  • 26) Kondo, A., Identification of target proteins of glycosyltransferases using functional glycomics by gene expression regulation. Trends Glycosci. Glycotechnol., 19, 247–256 (2007).
  • 27) Nishi, Y., Yamane, N., and Tanimoto, T., Preparation and characterization of 6I,6n-di-O-(L-fucopyranosyl)-β-cyclodextrin (n=II–IV) and investigation of their functions. Carbohydr. Res., 342, 2173–2181 (2007).
  • 28) Kochibe, N., and Furukawa, K., Purification and properties of a novel fucose-specific hemagglutinin of Aleuria aurantia. Biochemistry, 19, 2841–2846 (1980).
  • 29) Yamashita, K., Kochibe, N., Ohkura, T., Ueda, I., and Kobata, A., Fractionation of L-fucose-containing oligosaccharides on immobilized Aleuria aurantia lectin. J. Biol. Chem., 260, 4688–4693 (1985).
  • 30) Debray, H., and Montreuil, J., Aleuria aurantia agglutinin. A new isolation procedure and further study of its specificity towards various glycopeptides and oligosaccharides. Carbohydr. Res., 185, 15–26 (1989).
  • 31) Fujihashi, M., Peapus, D. H., Kamiya, N., Nagata, Y., and Miki, K., Crystal structure of fucose-specific lectin from Aleuria aurantia binding ligands at three of its five sugar recognition sites. Biochemistry, 42, 11093–11099 (2003).
  • 32) Wimmerova, M., Mitchell, E., Sanchez, J.-F., Gautier, C., and Imberty, A., Crystal structure of fungal lectin. J. Biol. Chem., 278, 27059–27067 (2003).
  • 33) Cush, R., Cronin, J. M., Stewart, W. J., Maule, C. H., Molloy, J., and Goddard, N. J., The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions. Part I: principle of operation and associated instrumentation. Biosens. Bioelectron., 8, 347–354 (1993).
  • 34) Koizumi, K., Okada, Y., Nakanishi, N., Tanimoto, T., Takagi, Y., Ishikawa, M., Ishigami, H., Hara, K., and Hashimoto, H., Analyses of a mixture of glucosyl-cyclomaltoheptaoses prepared on an industrial scale. J. Carbohydr. Chem., 10, 657–670 (1991).
  • 35) Nakanishi, N., Tsujikawa, J., Hara, N., Tanimoto, T., and Koizumi, K., Synthesis of 6A,6X-di-O-(tert-butyldimethylsilyl)-α- and -β-cyclodextrin derivatives. Yakugaku Zasshi, 110, 477–483 (1990).
  • 36) Urban, F. J., Moore, B. S., and Breitenbach, R., Synthesis of tigogenyl β-O-cellobioside heptaacetate and glycoside tetraacetate via Schmidt’s trichloroacetimidate method; some new observations. Tetrahedron Lett., 31, 4421–4424 (1990).
  • 37) Doddrell, D. M., and Pegg, D. T., Assignment of proton-decoupled carbon-13 spectra of complex molecules by using polarization transfer spectroscopy. A superior method to off-resonance decoupling. J. Am. Chem. Soc., 102, 6388–6390 (1980).
  • 38) Horváth, C., Melander, W., and Molnár, I., Solvophobic interactions in liquid chromatography with nonpolar stationary phases. J. Chromatogr., 125, 129–156 (1976).
  • 39) Fägerstam, L. G., Frostell-Karlsson, Å., Karlsson, R., Persson, B., and Rönnberg, I., Biospecific interaction analysis using surface plasmon resonance detection applied to kinetic, binding site and concentration analysis. J. Chromatogr., 597, 397–410 (1992).
  • 40) Koizumi, K., Tanimoto, T., Fujita, K., Hara, K., Kuwahara, N., and Kitahata, S., Preparation, isolation, and characterization of novel heterogeneous branched cyclomalto-oligosaccharides having β-D-galactosyl residue(s) on the side chain. Carbohydr. Res., 238, 75–91 (1993).
  • 41) Zehavi, U., and Sharon, N., The synthesis of methyl 2,4-diacetamido-2,4,6-trideoxy hexopyranosides. J. Org. Chem., 37, 2141–2145 (1972).
  • 42) Gardiner, J. G., and Percival, E., Methyl ethers of L-fucose. J. Chem. Soc., 1414–1418 (1958).
  • 43) Dejter-Juszynski, M., and Flowers, H. M., Studies on the Koenigs-Knorr reaction. Carbohydr. Res., 18, 219–226 (1971).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.