215
Views
38
CrossRef citations to date
0
Altmetric
Original Articles

Brain Plasticity and Genetic Factors

, &
Pages 282-299 | Published online: 05 Jan 2015

REFERENCES

  • Gresham G, Duncan P, Stason W, et al. Post-Stroke Rehabilitation. Rockville, MD: US Department of Health and Human Services, Public Health Service, Agency for Health Care Policy and Research; 1995.
  • Rathore S, Hinn A, Cooper L, Tyroler H, Rosamond W. Characterization of incident stroke signs and symptoms: findings from the atherosclerosis risk in communities study. Stroke. 2002;33(11):2718–2721.
  • Cramer S, Bastings E. Mapping clinically relevant plasticity after stroke. Neuropharmacology. 2000;39(5):842–851.
  • Frost S, Barbay S, Friel K, Plautz E, Nudo R. Reorganization of remote cortical regions after ischemic brain injury: a potential substrate for stroke recovery. I Neurophysiol. 2003;89(6):3205–3214.
  • Rossini PM, Calautti C, Pauri F, Baron JC. Post-stroke plastic reorganisation in the adult brain. Lancet Neurol. 2003;2(8):493–502.
  • Takahashi CD, Der Yeghiaian L, Cramer SC. Stroke recovery and its imaging. Neuroimaging Clin N Am. 2005;15(3):681–695.
  • Ward NS, Cohen LG. Mechanisms underlying recovery of motor function after stroke. Arch Neurol. 2004;61(12):1844–1848.
  • Cramer SC. Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery. Ann Neurol. 2008;63(3):272–287.
  • Yozbatiran N, Cramer SC. Imaging motor recovery after stroke. NeuroRx. 2006;3(4):482–488.
  • Ethell IM, Pasquale EB. Molecular mechanisms of dendritic spine development and remodeling. Prog Neurobiol. 2005;75(3):161–205.
  • Catterall WA, Dib-Hajj S, Meisler MH, Pietrobon D. Inherited neuronal ion channelopathies: new windows on complex neurological diseases. I Neurosci. 2008;28(46):11768–11777.
  • Cull-Candy SG, Leszkiewicz DN. Role of distinct NMDA receptor subtypes at central synapses. Sci STKE. 2004;(255):re16.
  • Kessels HW, Malinow R. Synaptic AMPA receptor plasticity and behavior. Neuron. 2009; 61(3):340–350.
  • Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation inthehippocampus. Nature. 1993;361(6407):31–39.
  • Bailey CH, Kandel ER. Structural changes accompanying memory storage. Annu Rev Physiol. 1993;55:397–426.
  • Herring A, Ambree O, Tomm M, et al. Environ-mental enrichment enhances cellular plasticity in transgenic mice with Alzheimer-like pathology. Exp Neurol. 2009;216(1):184–192.
  • Volkmar F, Greenough W. Rearing complexity affects branching of dendrites in the visual cortex of the rat. Science. 1972;176(42):1145–1147.
  • Chang FL, Greenough WT. Lateralized effects of monocular training on dendritic branching in adult split-brain rats. Brain Res. 1982;232(2):283–292.
  • Patel SN, Rose SP, Stewart MG. Training induced dendritic spine density changes are specifically related to memory formation processes in the chick, Gallus domesticus. Brain Res. 1988;463(1):168–173.
  • Bailey CH, Chen M. Morphological basis of long-term habituation and sensitization in Aplysia. Science. 1983;220(4592):91–93.
  • Agranoff BW, Davis RE, Brink JJ. Memory fixation in the goldfish. Proc Natl Acad Sci USA. 1965;54(3): 788–793.
  • Bullock S, Csillag A, Rose SP. Synaptic vesicle proteins and acetylcholine levels in chick forebrain nuclei are altered by passive avoidance training. I Neurochem. 1987;49(3):812–820.
  • Kuhl D, Kennedy TE, Barzilai A, Kandel ER. Long-term sensitization training in Aplysia leads to an increase in the expression of BiP, the major protein chaperon of the ER. I Cell Biol. 1992;119(5): 1069–1076.
  • Pohle W, Ruthrich HL, Popov N, Matthies H. Fucose incorporation into rat hippocampus structures after acquisition of a brightness discrimination. A histoautoradiographic analysis. Acta Biol Med Ger. 1979;38(1):53–63.
  • Cheeran B, TaleIli P, Mori F, et al. A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS. I Physiol. 2008;586(Pt 23):5717–5725.
  • Chen R. Interactions between inhibitory and excitatory circuits in the human motor cortex. Exp Brain Res. 2004;154(1):1–10.
  • Floel A, Breitenstein C, Hummel F, etal. Dopaminergic influences on formation of a motor memory. Ann Neurol. 2005;58(1):121–130.
  • Kleim JA, Chan S, Pringle E, et al. BDNF val66met polymorphism is associated with modified experience-dependent plasticity in human motor cortex. Nat Neurosci. 2006;9(6):735–737.
  • Reis J, Swayne OB, Vandermeeren Y, et al. Contri-bution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control. I Physiol. 2008;586(2):325–351.
  • Kleim J, Kleim E, Cramer S. Systematic assess-ment of training-induced changes in corticospinal output to hand using frameless stereotaxic tran-scranial magnetic stimulation. Nature Protocols. 2007;2:1675–1684.
  • Floel A, Cohen LG. Translational studies in neurorehabilitation: from bench to bedside. Cogn Behav Neurol. 2006;19(1):1–10.
  • Merzenich MM, Jenkins WM. Reorganization of cortical representations of the hand following alterations of skin inputs induced by nerve injury, skin island transfers, and experience. I Hand Ther. 1993;6(2):89–104.
  • Sanes J, Donoghue J. Plasticity and primary motor cortex. Annu Rev Neurosci. 2000;23:393–415.
  • Nudo RJ, Milliken GW, Jenkins WM, Merzenich MM. Use-dependent alterations of movement repre-sentations in primary motor cortex of adult squirrel monkeys. I Neurosci. 1996;16(2): 785–807.
  • Kleim JA, Barbay S, Nudo RJ. Functional reorgan-ization of the rat motor cortex following motor skill learning. I Neurophysiol. 1998;80(6): 3321–3325.
  • Kleim JA, Hogg TM, VandenBerg PM, Cooper NR, Bruneau R, Remple M. Cortical synaptogenesis and motor map reorganization occur during late, but not early, phase of motor skill learning. I Neurosci. 2004;24(3):628–633.
  • Xerri C, Merzenich M, Peterson B, Jenkins W. Plasticity of primary somatosensory cortex paralleling sensorimotor skill recovery from stroke in adult monkeys. I Neurophysiol. 1998;79(4):2119–2148.
  • Nudo R, Milliken G, Jenkins W, Merzenich M. Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. I Neurosci. 1996;16(2):785–807.
  • Nudo RJ, Wise BM, SiFuentes F, Milliken GW. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science. 1996;272(5269):1791–1794.
  • Butefisch CM, Kleiser R, Seitz RJ. Post-lesional cerebral reorganisation: evidence from functional neuroimaging and transcranial magnetic stimula-tion. I Physiol Paris. 2006;99(4-6):437–454.
  • Nudo R. Functional and structural plasticity in motor cortex: implications for stroke recovery. Phys Med Rehabil Clin N Am. 2003;14(1 Suppl): S57–76.
  • Richards LG, Stewart KC, Woodbury ML, Senesac C, Cauraugh JH. Movement-dependent stroke recovery: a systematic review and meta-analysis of TMS and fMRI evidence. Neuropsychologia. 2008;46(1):3–11.
  • Rossini P, Dal Forno G. Neuronal post-stroke plasticity in the adult. Restor Neurol Neurosci. 2004;22(3-5):193–206.
  • Kleim JA, Jones TA. Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. I Speech Lang Hear Res. 2008;51(1):5225–239.
  • Nudo RJ. Plasticity. NeuroRx. 2006;3(4):420–427.
  • Stein DG. Sex differences in brain damage and recovery of function: experimental and clinical findings. Prog Brain Res. 2007;161:339–351.
  • Barde YA. Neurotrophins: a family of proteins supporting the survival of neurons. Prog Clin Biol Res. 1994;390:45–56.
  • Lewin GR. Neurotrophins and the specification of neuronal phenotype. Philos Trans R Soc Lond B Biol Sci. 1996;351 (1338):405–411 .
  • Thoenen H. The changing scene of neurotrophic factors. Trends Neurosci. 1991;14(5):165–170.
  • Levine ES, Dreyfus CF, Black IB, Plummer MR. Brain-derived neurotrophic factor rapidly enhances synaptic transmission in hippocampal neurons via postsynaptic tyrosine kinase receptors. Proc Natl Acad Sci USA. 1995;92(17):8074–8077.
  • Lu B. BDNF and activity-dependent synaptic modulation. Learn Mem. 2003;10(2):86–98.
  • Lohof AM, lp NY, Poo MM. Potentiation of develop-ing neuromuscular synapses by the neurotrophins NT-3 and BDNF. Nature. 1993;363(6427):350–353.
  • Lessmann V. Neurotrophin-dependent modulation of glutamatergic synaptic transmission in the mammalian CNS. Gen Pharmacol. 1998; 31 (5):667–674.
  • Hartmann M, Neumann R, Lessmann V. Synaptic secretion of BDNF after high-frequency stimulation of glutamatergic synapses. Embo J. 2001;20(21): 5887–5897.
  • Kafitz KW, Rose CR, Thoenen H, Konnerth A. Neurotrophin-evoked rapid excitation through TrkB receptors. Nature. 1999;401 (6756):918–921.
  • Carter AR, Chen C, Schwartz PM, Segal RA. Brain-derived neurotrophic factor modulates cerebellar plasticity and synaptic ultrastructure. I Neurosci. 2002;22(4):1316–1327.
  • Kang H, Schuman EM. Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science. 1995; 267(5204):1658–1662.
  • Li YX, Zhang Y, Lester HA, Schuman EM, Davidson N. Enhancement of neurotransmitter release induced by brain-derived neurotrophic factor in cultured hippocampal neurons. I Neurosci. 1998;18(24): 10231–10240.
  • Messaoudi E, Bardsen K, Srebro B, Bramham CR. Acute intrahippocampal infusion of BDNF induces lasting potentiation of synaptic transmission in the rat dentate gyrus. I Neurophysiol. 1998;79(1): 496–499.
  • Winter J. Brain derived neurotrophic factor, but not nerve growth factor, regulates capsaicin sensitivity of rat vagal ganglion neurones. Neurosci Lett. 1998;241(1):21–24.
  • Desai NS, Rutherford LC, Turrigiano GG. BDNF regulates the intrinsic excitability of cortical neurons. Learn Mem. 1999;6(3):284–291.
  • Schinder AF, Berninger B, Poo M. Postsynaptic target specificity of neurotrophin-induced presynaptic potentiation. Neuron. 2000;25(1):151–163.
  • Lu B, Chow A. Neurotrophins and hippocampal synaptic transmission and plasticity. I Neurosci Res. 1999;58(1):76–87.
  • McAllister AK. Subplate neurons: a missing link among neurotrophins, activity, and ocular dominance plasticity? Proc Natl Acad Sci USA. 1999;96(24):13600–13602.
  • Altar CA, Fritsche M, Lindsay RM. Cell body infusions of brain-derived neurotrophic factor increase forebrain dopamine release and serotonin metabolism determined with in vivo microdialysis. Adv Pharmacol. 1998;42:915–921.
  • Genoud C, Knott GW, Sakata K, Lu B, Welker E. Altered synapse formation in the adult soma-tosensory cortex of brain-derived neurotrophic factor heterozygote mice. I Neurosci. 2004;24(10): 2394–2400.
  • Linnarsson S, Bjorklund A, Ernfors P. Learning deficit in BDNF mutant mice. Eur I Neurosci. 1997;9(12):2581–2587.
  • Ma YL, Wang HL, Wu HC, Wei CL, Lee EH. Brain-derived neurotrophic factor antisense oligonucleotide impairs memory retention and inhibits long-term potentiation in rats. Neuroscience. 1998;82(4):957–967.
  • Minichiello L, Korte M, Wolfer D, et al. Essential role for TrkB receptors in hippocampus-mediated learning. Neuron. 1999;24(2):401–414.
  • Mizuno M, Yamada K, Olariu A, Nawa H, Nabeshima T. Involvement of brain-derived neurotrophic factor in spatial memory formation and maintenance in a radial arm maze test in rats. I Neurosci. 2000;20(18):7116–7121.
  • Gorski JA, Zeiler SR, Tamowski S, Jones KR. Brain-derived neurotrophic factor is required for the maintenance of cortical dendrites. I Neurosci. 2003;23(17):6856–6865.
  • Vaynman S, Gomez-Pinilla F. License to run: exercise impacts functional plasticity in the intact and injured central nervous system by using neurotrophins. Neurorehabil Neural Repair. 2005;19(4):283–295.
  • Kleim JA, Jones TA, Schallert T. Motor enrichment and the induction of plasticity before or after brain injury. Neurochem Res. 2003;28(11):1757–1769.
  • VandenBerg PM, Bruneau RM, Thomas N, Kleim JA. BDNF is required for maintaining motor map integrity in adult cerebral cortex. Program No. 681.5. 2004 Neuroscience Meeting Planner. San Diego, CA: Society for Neuroscience, 2004. Online.
  • Kesslak JP, So V, Choi J, Cotman CW, Gomez-Pinilla F. Learning upregulates brain-derived neurotrophic factor messenger ribonucleic acid: a mechanism to facilitate encoding and circuit maintenance? Behav Neurosci. 1998;112(4):1012–1019.
  • Gomez-Pinilla F, So V, Kesslak JP. Spatial learning induces neurotrophin receptor and synapsin I in the hippocampus. Brain Res. 2001;904(1):13–19.
  • Hall J, Thomas KL, Everitt BJ. Rapid and selective induction of BDNF expression in the hippocampus during contextual learning. Nat Neurosci. 2000; 3(6):533–535.
  • Rattiner LM, Davis M, French CT, Ressler KJ. Brain-derived neurotrophic factor and tyrosine kinase receptor B involvement in amygdala-dependent fear conditioning. J Neurosci. 2004;24(20):4796–4806.
  • Rocamora N, Welker E, Pascual M, Soriano E. Upregulation of BDNF mRNA expression in the barrel cortex of adult mice after sensory stimulation. I Neurosci. 1996; 16(14):4411–4419.
  • Klintsova AY, Dickson E, Yoshida R, Greenough WT. Altered expression of BDNF and its high-affinity receptor TrkB in response to complex motor learning and moderate exercise. Brain Res. 2004;1028(1):92–104.
  • Ishibashi H, Hihara S, Takahashi M, Heike T, Yokota T, Iriki A. Tool-use learning induces BDNF expression in a selective portion of monkey anterior parietal cortex. Brain Res Mol Brain Res. 2002; 102(1-2):110–112.
  • Ishibashi H, Hihara S, Takahashi M, Heike T, Yokota T, Iriki A. Tool-use learning selectively induces expres-sion of brain-derived neurotrophic factor, its recep-tor trkB, and neurotrophin 3 in the intraparietal multisensory cortex of monkeys. Brain Res Cogn Brain Res. 2002;14(1):3–9.
  • Uchida K, Baba H, Maezawa Y, et al. Increased expression of neurotrophins and their receptors in the mechanically compressed spinal cord of the spinal hyperostotic mouse (twy/twy). Acta Neuropathol. 2003;106(1):29–36.
  • Ferrer I, Krupinski J, Goutan E, Marti E, Ambrosio S, Arenas E. Brain-derived neurotrophic factor reduces cortical cell death by ischemia after middle cerebral artery occlusion in the rat. Acta Neuropathol (Bed). 2001;101(3):229–238.
  • Laske C, Stransky E, Leyhe T, et al. Stage-dependent BDNF serum concentrations in Alzheimer's disease. I Neural Transm. 2006;113(9):1217–1224.
  • Matzilevich DA, Rail JM, Moore AN, Grill RJ, Dash PK. High-density microarray analysis of hippocampal gene expression following experimental brain injury. I Neurosci Res. 2002;67(5):646–663.
  • Henderson CE, Camu W, Mettling C, et al. Neurotrophins promote motor neuron survival and are present in embryonic limb bud. Nature. 1993;363(6426):266–270.
  • Sendtner M, Holtmann B, Kolbeck R, Thoenen H, Barde YA. Brain-derived neurotrophic factor prevents the death of motoneurons in newborn rats after nerve section. Nature. 1992;360(6406): 757–759.
  • Yan Q, Elliott IL, Matheson C, et al. Influences of neurotrophins on mammalian motoneurons in vivo. Neurobiol. 1993;24(12):1555–1577.
  • Ikeda O, Murakami M, Ino H, et al. Acute up-regulation of brain-derived neurotrophic factor expression resulting from experimentally induced injury in the rat spinal cord. Acta Neuropathol. 2001;102(3):239–245.
  • Comelli M, Seren M, Guidolin D, et al. Photochemi-cal stroke and brain-derived neurotrophic factor (BDNF) mRNA expression. Neuroreport. 1992;3(6): 473–476.
  • Kurozumi K, Nakamura K, Tamiya T, et al. Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol Ther. 2005;11 (1):96–104.
  • Miyake K, Yamamoto W, Tadokoro M, et al. Alterations in hippocampal GAP-43, BDNF, and L1 following sustained cerebral ischemia. Brain Res. 2002;935(1-2):24–31.
  • Yamashita K, Wiessner C, Lindholm D, Thoenen H, Hossmann K. Post-occlusion treatment with BDNF reduces infarct size in a model of permanent occlusion of the middle cerebral artery in rat. Metab Brain Dis. 1997;12(4):271–280.
  • Zhang Y, Pardridge WM. Blood-brain barrier targeting of BDNF improves motor function in rats with middle cerebral artery occlusion. Brain Res. 2006;1111 (1):227–229.
  • Zhao L, Risedal A, Wojcik A, Hejzlar J, Johansson B, Kokaia Z. Enriched environment influences brain-derived neurotrophic factor levels in rat forebrain after focal stroke. Neurosci Lett. 2001;305(3): 169–172.
  • Schabitz WR, Berger C, Kollmar R, et al. Effect of brain-derived neurotrophic factor treatment and forced arm use on functional motor recovery after small cortical ischemia. Stroke. 2004;35(4): 992–997.
  • Shimizu E, Hashimoto K, lyo M. Ethnic difference of the BDNF 196G/A (val66met) polymorphism frequencies: the possibility to explain ethnic mental traits. Am I Med Genet B Neuropsychiatr Genet. 2004;126(1):122–123.
  • Seidah NG, Benjannet S, Pareek S, Chretien M, Murphy RA. Cellular processing of the neurotrophin precursors of NT3 and BDNF by the mammalian proprotein convertases. FEBS Lett. 1996;379(3): 247–250.
  • Egan MF, Kojima M, Callicott JFI, et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003;112(2):257–269.
  • Chen ZY, Patel PD, Sant G, et al. Variant brain-derived neurotrophic factor (BDNF) (Met66) alters the intracellular trafficking and activity-dependent secretion of wild-type BDNF in neurosecretory cells and cortical neurons./ Neurosci. 2004;24(18): 4401–4411.
  • Ho BC, Miley P, O'Leary DS, Librant A, Andreasen NC, Wassink TH. Cognitive and magnetic resonance imaging brain morphometric correlates of brain-derived neurotrophic factor Va166Met gene polymorphism in patients with schizophrenia and healthy volunteers. Arch Gen Psychiatry. 2006;63(7):731–740.
  • Pezawas L, Verchinski BA, Mattay VS, et al. The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology. J Neurosci. 2004;24(45):10099–10102.
  • Szeszko PR, Lipsky R, Mentschel C, et al. Brain-derived neurotrophic factor val66met polymorphism and volume of the hippocampal formation. Mo/ Psychiatry. 2005;10(7):631–636.
  • Bueller JA, Aftab M, Sen S, Gomez-Hassan D, Burmeister M, Zubieta JK. BDNF Va166Met allele is associated with reduced hippocampal volume in healthy subjects. Biol Psychiatry. 2006;59(9): 812–815.
  • Frodl T, Schule C, Schmitt G, et al. Association of the brain-derived neurotrophic factor Va166Met polymorphism with reduced hippocampal volumes in major depression. Arch Gen Psychiatry. 2007;64(4):410–416.
  • Nemoto K, Ohnishi T, Mori T, et al. The Va166Met polymorphism of the brain-derived neurotrophic factor gene affects age-related brain morphology. Neurosci Lett. 2006;397(1-2):25–29.
  • Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci. 2001;24:677–736.
  • Lu B, Pang PT, Woo NH. The yin and yang of neurotrophin action. Nat Rev Neurosci. 2005;6(8):603–614.
  • Hariri AR, Goldberg TE, Mattay VS, et al. Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. I Neurosci. 2003;23(17):6690–6694.
  • Goldberg TE, ludicello J, Russo C, et al. BDNF Va166Met polymorphism significantly affects d' in verbal recognition memory at short and long delays. Biol Psychol. 2008;77(1):20–24.
  • McHughen S, Kleim JA, Kleim ED, Procaccio V, Cramer SC. BDNF val66met polymorphism and short-term experience-dependent plasticity in the human brain [abstract]. Organization for Human Brain Mapping Annual Meeting; 2007; Chicago, Illinois.
  • Laske C, Stransky E, Leyhe T, et al. Stage-dependent BDNF serum concentrations in Alzheimer's disease. Neural Transm. 2006;113(9):1217–1224.
  • Siironen I, Juvela S, Kanarek K, Vilkki J, Hernesniemi J, Lappalainen J. The Met allele of the BDNF Va166Met polymorphism predicts poor outcome among survivors of aneurysmal subarachnoid hemorrhage. Stroke. 2007;38(10):2858–2860.
  • Vilkki J, Lappalainen J, Juvela S, Kanarek K, Hernesniemi JA, Siironen J. Relationship of the met allele of the brain-derived neurotrophic factor Va166Met polymorphism to memory after aneurysmal subarachnoid hemorrhage. Neurosurgery. 2008;63(2):198–203; discussion 203.
  • Mahley RW, Rail SC Jr. Apolipoprotein E: far more than a lipid transport protein. Annu Rev Genomics Hum Genet. 2000;1:507–537.
  • Cedazo-Minguez A. Apolipoprotein E and Alzheimer's disease: molecular mechanisms and therapeutic opportunities. I Cell Mol Med. 2007;11(6):1227–1238.
  • Eichner JE, Dunn ST, Perveen G, Thompson DM, Stewart KE, Stroehla BC. Apolipoprotein E polymorphism and cardiovascular disease: a HuGE review. Am I Epidemiol. 2002;155(6):487–495.
  • Bersano A, Ballabio E, Bresolin N, Candelise L. Genetic polymorphisms for the study of multifactorial stroke. Hum Mutat. 2008;29(6): 776–795.
  • Nathan BP, Nisar R, Randall S, et al. Apolipoprotein E is upregulated in olfactory bulb glia following peripheral receptor lesion in mice. Exp Neurol. 2001;172(1):128–136.
  • Nwosu I, Gairhe S, Struble RG, Nathan BR Impact of apoE deficiency during synaptic remodeling in the mouse olfactory bulb. Neurosci Lett. 2008;441(3):282–285.
  • White F, Nicoll JA, Roses AD, Horsburgh K. Impaired neuronal plasticity in transgenic mice expressing human apolipoprotein E4 compared to E3 in a model of entorhinal cortex lesion. Neurobiol Dis. 2001;8(4):611–625.
  • Holtzman DM, Pitas RE, Kilbridge J, et al. Low density lipoprotein receptor-related protein mediates apolipoprotein E-dependent neurite outgrowth in a central nervous system-derived neuronal cell line. Proc Natl Acad Sci USA. 1995;92(21):9480–9484.
  • Arendt T, Schindler C, Bruckner MK, et al. Plastic neuronal remodeling is impaired in patients with Alzheimer's disease carrying apolipoprotein epsilon 4 allele. I Neurosci. 1997;17(2):516–529.
  • Corder EH, Saunders AM, Strittmatter WI, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science. 1993;261(5123):921–923.
  • Hyman BT, Gomez-Isla T, Rebeck GW, et al. Epidemiological, clinical, and neuropathological study of apolipoprotein E genotype in Alzheimer's disease. Ann NY Acad Sci. 1996;802:1–5.
  • Caselli RJ, Graff-Radford NR, Reiman EM, et al. Preclinical memory decline in cognitively normal apolipoprotein E-epsilon4 homozygotes. Neurology. 1999;53(1):201–207.
  • De Blasi S, Montesanto A, Martino C, et al. APOE polymorphism affects episodic memory among non demented elderly subjects. Exp Gerontol. 2009;44(3):224–227.
  • Plassman BL, Welsh-Bohmer KA, Bigler ED, et al. Apolipoprotein E epsilon 4 allele and hippocampal volume in twins with normal cognition. Neurology. 1997;48(4):985–989.
  • Burggren AC,Zeineh MM, Ekstrom AD, etal. Reduced cortical thickness in hippocampal subregions among cognitively normal apolipoprotein E e4 carriers. Neuroimage. 2008;41 (4):1177–1183.
  • Mueller SG, Schuff N, Raptentsetsang S, Elman J, Weiner MW. Selective effect of Apo e4 on CA3 and dentate in normal aging and Alzheimer's disease using high resolution MRI at 4 T. Neuroimage. 2008;42(1 ):42–48.
  • Greenwood PM, Lambert C, Sunderland T, Parasuraman R. Effects of apolipoprotein E genotype on spatial attention, working memory, and their interaction in healthy, middle-aged adults: results from the National Institute of Mental Health's BIOCARD study. Neuropsychology. 2005;19(2):199–211.
  • Bondi MW, Salmon DP, Monsch AU, et al. Episodic memory changes are associated with the APOE-epsilon 4 allele in nondemented older adults. Neurology. 1995;45(12):2203–2206.
  • Parasuraman R, Greenwood PM, Sunderland T. The apolipoprotein E gene, attention, and brain function. Neuropsychology. 2002;16(2): 254–274.
  • Reiman EM, CaseIli RJ, Yun LS, et al. Preclinical evidence of Alzheimer's disease in persons homozygous for the epsilon 4 allele for apolipo-protein E. N Engl J Med. 1996;334(12):752–758.
  • Xu G, McLaren DG, Ries ML, et al. The influence of parental history of Alzheimer's disease and apolipoprotein E epsilon4 on the BOLD signal during recognition memory. Brain. 2009;132 (Pt 2):383–391.
  • Teasdale GM, Nicoll JA, Murray G, Fiddes M. Association of apolipoprotein E polymorphism with outcome after head injury. Lancet. 1997;350(9084):1069–1071.
  • Zhou W, Xu D, Peng X, Zhang Q, Jia J, Crutcher KA. Meta-analysis of APOE4 allele and outcome after traumatic brain injury. J Neurotrauma. 2008;25(4):279–290.
  • Martinez-Gonzalez NA, Sudlow CL. Effects of apolipoprotein E genotype on outcome after ischaemic stroke, intracerebral haemorrhage and subarachnoid haemorrhage. I Neurol Neurosurg Psychiatry. 2006;77(12):1329–1335.
  • Waters RJ, Nicoll JA. Genetic influences on outcome following acute neurological insults. Curr Opin Crit Care. 2005;11(2):105–110.
  • Cramer SC, Warren M, Enney L, Sanaee N, Hancock S, Procaccio V. Polymorphisms in BDNF and ApoE relate to clinical outcome in the GAIN trials [abstract]. International Stroke Conference; 2009; San Diego. Stroke. 2009:40:e28.
  • Matthews PM, Johansen-Berg H, Reddy H. Non-invasive mapping of brain functions and brain recovery: applying lessons from cognitive neuroscience to neurorehabilitation. Restor Neurol Neurosci. 2004;22(3-5):245–260.
  • Dobkin B. The Clinical Science of Neurologic Rehabilitation. New York: Oxford University Press; 2003.
  • Krakauer JW. Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol. 2006;19(1):84–90.
  • Mattay VS, Goldberg TE, Fera F, et al. Catechol 0-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. Proc Natl Acad Sci USA. 2003; 100(10):6186–6191.
  • Weinberger NM. Specific long-term memory traces in primary auditory cortex. Nat Rev Neurosci. 2004;5(4):279–290.
  • Stefan K, Wycislo M, Classen J. Modulation of associative human motor cortical plasticity by attention. J Neurophysiol. 2004;92(1):66–72.
  • Bobb AJ, Addington AM, Sidransky E, et al. Support for association between ADHD and two candidate genes: NET1 and DRD1. Am J Med Genet B Neuropsychiatr Genet. 2005;134(1):67–72.
  • Shaw P, Gornick M, Lerch J, et al. Polymorphisms of the dopamine D4 receptor, clinical outcome, and cortical structure in attention-deficit/hyperactivity disorder. Arch Gen Psychiatry. 2007;64(8):921–931.
  • Faraone SV, Perlis RH, Doyle AE, et al. Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry. 2005;57(11):1313–1323.
  • Kirley A, Lowe N, Hawi Z, et al. Association of the 480 bp DAT1 allele with methylphenidate response in a sample of Irish children with ADHD. Am I Med Genet B Neuropsychiatr Genet. 2003;121B(1):50–54.
  • Cook EH Jr, Stein MA, Krasowski MD, et al. Association of attention-deficit disorder and the dopamine transporter gene. Am I Hum Genet. 1995;56(4):993–998.
  • Curran S, Mill J, Tahir E, et al. Association study of a dopamine transporter polymorphism and attention deficit hyperactivity disorder in UK and Turkish samples. Mo/ Psychiatry. 2001;6(4): 425–428.
  • Xu X, Mill J, Sun B, et al. Association study of promoter polymorphisms at the dopamine transporter gene in Attention Deficit Hyperactivity Disorder. BMC Psychiatry. 2009;9:3.
  • Kopeckova M, Paclt I, Goetz P. Polymorphisms and low plasma activity of dopamine-beta-hydroxylase in ADHD children. Neuro Endocrinol Lett. 2006;27(6):748–754.
  • Thapar A, O'Donovan M, Owen MJ. The genetics of attention deficit hyperactivity disorder. Hum Mol Genet. 2005; 14 Spec No. 2:R275–282.
  • Brookes KJ, Hawi Z, Kirley A, Barry E, Gill M, Kent L. Association of the steroid sulfatase (STS) gene with attention deficit hyperactivity disorder. Am I Med Genet B Neuropsychiatr Genet. 2008;1476(8): 1531–1535.
  • Bellgrove MA, Mattingley JB. Molecular genetics of attention. Ann NY Acad Sci. 2008;1129:200–212.
  • Greenwood PM, Sunderland T, Putnam K, Levy J, Parasuraman R. Scaling of visuospatial attention undergoes differential longitudinal change as a function of APOE genotype prior to old age: results from the NIMH BIOCARD study. Neuropsychology. 2005;19(6):830–840.
  • Takahashi CD, Der-Yeghiaian L, Le V, Motiwala RR, Cramer SC. Robot-based hand motor therapy after stroke. Brain. 2008;131(Pt 2):425–437.
  • Belmaker RH, Agam G. Major depressive disorder. N Engl I Med. 2008;358(1):55–68.
  • Hadidi N, Treat-Jacobson DJ, Lindquist R. Poststroke depression and functional outcome: a critical review of literature. Heart Lung. 2009;38(2):151–162.
  • Morris PL, Robinson RG, And rzejewski P, Samuels J, Price TR. Association of depression with 10-year poststroke mortality. Am I Psychiatry. 1993;150(1):124–129.
  • aanhet Rot M, Mathew SJ, Charney DS. Neurobiological mechanisms in major depressive disorder. Can Med Assoc J. 2009;180(3):305–313.
  • Hirschfeld RM. History and evolution of the monoamine hypothesis of depression. I Clin Psychiatry. 2000;61 Suppl 6:4–6.
  • Levinson DF. The genetics of depression: a review. Biol Psychiatry. 2006;60(2):84–92.
  • McMahon FJ, Buervenich S, Charney D, et al. Variation in the gene encoding the serotonin 2A receptor is associated with outcome of antidepressant treatment. Am I Hum Genet. 2006;78(5):804–814.
  • Martinowich K, Manji H, Lu B. New insights into BDNF function in depression and anxiety. Nat Neurosci. 2007;10(9):1089–1093.
  • Hwang JP, Tsai SJ, Hong CJ, Yang CH, Lirng JF, Yang YM. The Va166Met polymorphism of the brain-derived neurotrophic-factor gene is associated with geriatric depression. Neurobiol Aging. 2006;27(12):1834–1837.
  • Taylor WD, Zuchner S, McQuoid DR, Steffens DC, Speer MC, Krishnan KR. Allelic differences in the brain-derived neurotrophic factor Va166Met polymorphism in late-life depression. Am I Geriatr Psychiatry. 2007;15(10):850–857.
  • Tsai SJ, Cheng CY, Yu YW, Chen TJ, Hong Cl. Association study of a brain-derived neurotrophic-factor genetic polymorphism and major depressive disorders, symptomatology, and antidepressant response. Am I Med Genet B Neuropsychiatr Genet. 2003;123B(1):19–22.
  • Hong CJ, Huo SJ, Yen FC, Tung CL, Pan GM, Tsai SJ. Association study of a brain-derived neurotrophic-factor genetic polymorphism and mood disorders, age of onset and suicidal behavior. Neuropsychobiology. 2003;48(4):186–189.
  • Schumacher J, Jamra RA, Becker T, et al. Evidence for a relationship between genetic variants at the brain-derived neurotrophic factor (BDNF) locus and major depression. Bio/ Psychiatry. 2005;58(4):307–314.
  • Chen B, Dowlatshahi D, MacQueen GM, Wang JF, Young LT. Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Bio/ Psychiatry. 2001;50(4):260–265.
  • Bocchio-Chiavetto L, Miniussi C, Zanardini R, et al. 5-HTTLPR and BDNF Va166Met polymorphisms and response to rTMS treatment in drug resistant depression. Neurosci Lett. 2008;437(2):130–134.
  • Neeper SA, Gomez-Pinilla F, Choi J, Cotman CW. Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res. 1996;726(1-2):49–56.
  • Gomez-Pinilla F, Ying Z, Roy RR, Molteni R, Edgerton VR. Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity. I Neurophysiol. 2002;88(5): 2187–2195.
  • Vaynman S, Ying Z, Gomez-Pinilla F. Exercise induces BDNF and synapsin I to specific hippocampal subfields. I Neurosci Res. 2004;76(3):356–362.
  • Ploughman M, Granter-Button S, Chernenko G, Tucker BA, Mearow KM, Corbett D. Endurance exercise regimens induce differential effects on brain-derived neurotrophic factor, synapsin-I and insulin-like growth factor I after focal ischemia. Neuroscience. 2005;136(4):991–1001.
  • Rojas Vega S, Abel T, Lindschulten R, Hollmann W, Bloch W, Struder HK. Impact of exercise on neuroplasticity-related proteins in spinal cord injured humans. Neuroscience. 2008;153(4): 1064–1070.
  • Bryan A, Hutchison KE, Seals DR, Allen DL. A transdisciplinary model integrating genetic, physiological, and psychological correlates of volu n-tary exercise. Health Psychol. 2007;26(1):30–39.
  • Freedman JE, Hylek EM. Clopidogrel, genetics, and drug responsiveness. N Engl I Med. 2009;360(4):411–413.
  • Dam M, Tonin P, De Boni A, et al. Effects of fluoxetine and maprotiline on functional recov-ery in poststroke hemiplegic patients undergo-ing rehabilitation therapy. Stroke. 1996;27(7): 1211–1214.
  • Pariente J, Loubinoux I, Carel C, et al. Fluoxetine modulates motor performance and cerebral activation of patients recovering from stroke. Ann Neurol. 2001;50(6):718–729.
  • Zittel S, Weiller C, Liepert J. Citalopram improves dexterity in chronic stroke patients. Neurorehabil Neural Repair. 2008;22(3):311–314.
  • Zittel S, Weiller C, Liepert J. Reboxetine improves motor function in chronic stroke. A pilot study. Neurol. 2007;254(2):197–201.
  • Walker-Batson D, Smith P, Curtis S, Unwin H, Greenlee R. Amphetamine paired with physical therapy accelerates motor recovery after stroke. Further evidence. Stroke. 1995;26(12): 2254–2259.
  • Restemeyer C, Weiller C, Liepert J. No effect of a levodopa single dose on motor performance and motor excitability in chronic stroke. A double-blind placebo-controlled cross-over pilot study. Restor Neurol Neurosci. 2007;25(2):143–150.
  • Scheidtmann K, Fries W, Muller F, Koenig E. Effect of levodopa in combination with physiotherapy on functional motor recovery after stroke: a prospective, randomised, double-blind study. Lancet. 2001;358:787–790.
  • Grade C, Redford B, Chrostowski J, Toussaint L, Blackwell B. Methylphenidate in early post-stroke recovery: a double-blind, placebo-con-trolled study. Arch Phys Med Rehabil. 1998;79(9): 1047–1050.
  • Stein MA, Waldman ID, Sarampote CS, et al. Dopamine transporter genotype and meth-ylphenidate dose response in children with ADHD. Neuropsychopharmacology. 2005; 30(7):1374–1382.
  • Gilbert DL, Wang Z, Sallee FR, et al. Dopamine transporter genotype influences the physiological response to medication in ADHD. Brain. 2006;129(Pt 8):2038–2046.
  • Peters EJ, Slager SL, McGrath PJ, Knowles JA, Hamilton SP. Investigation of serotonin-related genes in antidepressant response. Mo/ Psychiatry. 2004;9(9):879–889.
  • Peters EJ, Slager SL, Jenkins GD, et al. Resequencing of serotonin-related genes and association of tagging SNPs to citalopram response. Pharmacogenet Genomics. 2009;19(1):1–10.
  • Smits KM, Smits LJ, Schouten JS, Stelma FF, Nelemans P, Prins MH. Influence of SERTPR and STin2 in the serotonin transporter gene on the effect of selective serotonin reuptake inhibitors in depression: a systematic review. Mol Psychiatry. 2004;9(5):433–441.
  • Hiratsuka M, Sasaki T, Mizugaki M. Genetic testing for pharmacogenetics and its clinical application in drug therapy. Clin Chim Acta. 2006;363(1-2): 177–186.
  • Ikeda T, Kurosawa M, Uchikawa C, Kitayama S, Nukina N. Modulation of monoamine transporter expression and function by repetitive transcranial magnetic stimulation. Biochem Biophys Res Commun. 2005;327(1):218–224.
  • Bath KG, Lee FS. Variant BDNF (Va166Met) impact on brain structure and function. Cogn Affect Behav Neurosci. 2006;6(1):79–85.
  • Jonsson E, Brene S, Zhang XR, et al. Schizophrenia and neurotrophin-3 alleles. Acta Psychiatr Scand. 1997;95(5):414–419.
  • Virgos C, Martorell L, Valero J, et al. Association study of schizophrenia with polymorphisms at six candidate genes. Schizophr Res. 2001;49 (1-2):65–71.
  • Chen Z, Simmons MS, Perry RT, Wiener HW, Harrell LE, Go RC. Genetic association of neurotrophic tyrosine kinase receptor type 2 (NTRK2) With Alzheimer's disease. Am I Med Genet B Neuropsychiatr Genet. 2008;147(3): 363–369.
  • Bonifacio MJ, Palma PN, Almeida L, Soares-da-Silva P. Catechol-O-methyltransferase and its inhibitors in Parkinson's disease. CNS Drug Rev. 2007;13(3):352–379.
  • Lotta T, Vidgren J, Tilgmann C, et al. Kinetics of human soluble and membrane-bound catechol 0-methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry. 1995;34(13): 4202–4210.
  • Egan MF, Goldberg TE, Kolachana BS, et al. Effect of COMT Va1108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Nat/ Acad Sci USA. 2001;98(12):6917–6922.
  • Mannisto PT, Kaakkola S. Catechol-0-methyltransferase (COMT): biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors. Pharmacol Rev. 1999;51 (4):593–628.
  • Xu H, Kellendonk CB, Simpson EH, et al. DRD2 C957T polymorphism interacts with the COMT Va1158Met polymorphism in human working memory ability. Schizophr Res. 2007;90(1-3): 104–107.
  • Srivastava V, Varma PG, Prasad S, et al. Genetic susceptibility to tardive dyskinesia among schizophrenia subjects: IV. Role of dopaminergic pathway gene polymorphisms. Pharmacogenet Genomics. 2006;16(2):111–117.
  • Caldu X, Vendrell P, Bartres-Faz D, et al. Impact of the COMT Va1108/158 Met and DAT genotypes on prefrontal function in healthy subjects. Neuroimage. 2007;37(4):1437–1444.
  • Raz N, Rodrigue KM, Kennedy KM, Land S. Genetic and vascular modifiers of age-sensitive cognitive skills: effects of COMT, BDNF, ApoE, and hypertension. Neuropsychology. 2009;23(1): 105–116.
  • Mata I, Arranz MJ, Staddon S, Lopez-llundain JM, Tabares-Seisdedos R, Murray RM. The high-activity Val allele of the catechol-O-methyltransferase gene predicts greater cognitive deterioration in patients with psychosis. Psychiatr Genet. 2006;16(5): 213–216.
  • Galderisi S, Maj M, Kirkpatrick B, et al. Catechol-0-methyltransferase Va1158Met polymorphism in schizophrenia: associations with cognitive and motor impairment. Neuropsychobiology. 2005;52(2):83–89.
  • de Frias CM, Annerbrink K, Westberg L, Eriksson E, Adolfsson R, Nilsson LG. Catechol O-methyltransferase Va1158Met polymorphism is associated with cognitive performance in nondemented adults. I Cogn Neurosci. 2005; 17(7):1018–1025.
  • Starr IM, Fox H, Harris SE, Dearyll, Whalley U. COMT genotype and cognitive ability: a longitudinal aging study. Neurosci Lett. 2007;421(1):57–61.
  • Luria A. Restoration of Function after Brain Injury. New York: Macmillan; 1963.
  • Burgard EC, Sarvey JM. Muscarinic receptor activation facilitates the induction of long-term potentiation (LTP) in the rat dentate gyrus. Neurosci Lett. 1990;116(1-2):34–39.
  • Hasselmo ME, Barkai E. Cholinergic modulation of activity-dependent synaptic plasticity in the piriform cortex and associative memory function in a network biophysical simulation. I Neurosci. 1995;15(10):6592–6604.
  • Markram H, Segal M. Acetylcholine potentiates responses to N-methyl-D-aspartate in the rat hippocampus. Neurosci Lett. 1990;113(1):62–65.
  • Atri A, Sherman S, Norman K, et al. Blockade of central cholinergic receptors impairs new learning and increases proactive interference in a word paired-associate memory task. Behav Neurosci. 2004;118(1):223–236.
  • Beatty WW, Butters N, Janowsky DS. Patterns of memory failure after scopolamine treatment: implications for cholinergic hypotheses of dementia. Behav Neural Biol. 1986;45(2):196–211.
  • Flicker C, Serby M, Ferris SH. Scopolamine effects on memory, language, visuospatial praxis and psychomotor speed. Psychopharmacology (Berl). 1990;100(2):243–250.
  • Rogers IL, Kesner RP. Cholinergic modulation of the hippocampus during encoding and retrieval. Neurobiol Learn Mem. 2003;80(3):332–342.
  • Elrod K, Buccafuscoll, Jackson WI. Nicotine enhances delayed matching-to-sample performance by primates. Life Sci. 1988;43(3):277–287.
  • Poltavski DV, Petros T. Effects of transdermal nicotine on prose memory and attention in smokers and nonsmokers. Physiol Behav. 2005;83(5):833–843.
  • Socci DJ, Sanberg PR, Arendash GW. Nicotine enhances Morris water maze performance of young and aged rats. Neurobiol Aging. 1995;16(5): 857–860.
  • Warburton DM, Rusted JM, Muller C. Patterns of facilitation of memory by nicotine. Behav Pharmacol. 1992;3(4):375–378.
  • Wesnes K, Warburton DM. Effects of scopolamine and nicotine on human rapid information processing performance. Psychopharmacology (Berl). 1984;82(3):147–150.
  • Giocomo LM, HasseImo ME. Neuromodulation by glutamate and acetylcholine can change circuit dynamics by regulating the relative influence of afferent input and excitatory feedback. Mo/ Neurobiol. 2007;36(2):184–200.
  • Scacchi R, Gambina G, Moretto G, Corbo RM. Variability of AChE, BChE, and ChAT genes in the late-onset form of Alzheimer's disease and relationships with response to treatment with Donepezil and Rivastigmine. Am I Med Genet B Neuropsychiatr Genet. 2009;150B(4):502–507.
  • Steinlein OK, Bertrand D. Neuronal nicotinic acetylcholine receptors: from the genetic analysis to neurological diseases. Biochem Pharmacol. 2008;76(10):1175–1183.
  • Stitzel JA. Naturally occurring genetic variability in the nicotinic acetylcholine receptor alpha4 and alpha7 subunit genes and phenotypic diversity in humans and mice. Front Biosci. 2008;13:477–491.
  • Edwards MJ, Huang YZ, Mir P, Rothwell JC, Bhatia KR Abnormalities in motor cortical plasticity differentiate manifesting and nonmanifesting DYT1 carriers. Mov Disord. 2006;21(12):2181–2186.
  • Hegde AN. Ubiquitin-proteasome-mediated local protein degradation and synaptic plasticity. Prog Neurobiol. 2004;73(5):311–357.
  • Wood MA, Kaplan MP, Brensinger CM, Guo W, Abel T. Ubiquitin C-terminal hydrolase L3 (Uch13) is involved in working memory. Hippocampus. 2005;15(5):610–621.
  • Liu Y, Fallon L, Lashuel HA, Liu Z, Lansbury PT, Jr. The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson's disease susceptibility. Cell. 2002;111(2):209–218.
  • Meigs JB, Shrader P, Sullivan LM, et al. Genotype score in addition to common risk factors for prediction of type 2 diabetes. N Engl I Med. 2008;359(21):2208–2219.
  • Pharoah PD, Antoniou AC, Easton DF, Ponder BA. Polygenes, risk prediction, and targeted prevention of breast cancer. N Engl I Med. 2008;358(26): 2796–2803.
  • Zheng SL, Sun J, Wiklund F, et al. Cumulative association of five genetic variants with prostate cancer. N Engll Med. 2008;358(9):910–919.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.