384
Views
41
CrossRef citations to date
0
Altmetric
Original Articles

Virtual Reality and Robotics for Stroke Rehabilitation: Where Do We Go from Here?

&
Pages 685-700 | Published online: 05 Jan 2015

REFERENCES

  • American Heart Association. Heart Disease and Stroke Statistics-2010 Update: A Report From the American Heart Association. Dallas, TX: AHA; 2010.
  • National Institute of Neurological Disorders and Stroke. Report of the Stroke Progress Review Group — September 2006. Bethesda, MD: National Institutes of Health; 2006.
  • Adamovich SV, Fluet GG, Tunik E, Merians AS, et al., Sensorimotor training in virtual reality: a review. NeuroRehabilitation. 2009;25(429–44.
  • World Health Organization. International Classification of Functioning, Disability and Health. Geneva: WHO; 2010.
  • Piron L, Turolla A, Agostini M, et al. Exercises for paretic upper limb after stroke: a combined virtual-reality and telemedicine approach. I Rehabil Med. 2009;41(12):1016–1020.
  • Lucca LF. Virtual reality and motor rehabilitation of the upper limb after stroke: a generation of progress? I Rehabil Med. 2009;41(12):1003–1006.
  • Trotti C, Menegoni F, Baudo S, Bigoni M, Galli M, Mauro A. Virtual reality for the upper limb motor training in stroke: a case report. Stud Health Technol Inform. 2009;144:257–260.
  • Rand D, Katz N, Weiss PL. Intervention using the VMall for improving motor and functional ability of the upper extremity in post stroke participants. Eur I Phys Rehabil Med. 2009; 45(1):113–121.
  • Crosbie JH, Lennon S, Basford JR, McDonough SM. Virtual reality in stroke rehabilitation: still more virtual than real. Disabil Rehabil. 2007;29(14):1139–1146; discussion 1147–1152.
  • Mirelman A, Patritti BL, Bonato P, Deutsch JE. Effects of virtual reality training on gait biomechanics of individuals post-stroke. Gait Posture. 2010;31(4):433–437.
  • Dunning K, Levine P, Schmitt L, Israel S, Fulk G. An ankle to computer virtual reality system for improving gait and function in a person 9 months poststroke. Top Stroke Rehabil. 2008;15(6):602–610.
  • Adamovich SV, Fluet GG, Mathai A, Qiu Q, Lewis J, Merians AS. Design of a complex virtual reality simulation to train finger motion for persons with hemiparesis: a proof of concept study. I Neuroeng Rehabil. 2009;6:28.
  • Merians, AS, Tunik E, Adamovich SV. Virtual reality to maximize function for hand and arm rehabilitation: exploration of neural mechanisms. Stud Health Technol Inform. 2009;145:109–125.
  • Baram Y, Aharon-Peretz J, Lenger R. Virtual reality feedback for gait improvement in patients with idiopathic senile gait disorders and patients with history of stroke. I Am Geriatr Soc. 2010;58(1):191–192.
  • Walker ML, Ringleb SI, Maihafer GC, et al. Virtual reality-enhanced partial body weight-supported treadmill training poststroke: feasibility and effectiveness in 6 subjects. Arch Phys Med Rehabil. 2010;91(1):115–122.
  • Kim JFI, Jang SH, Kim CS, Jung JFI, You JFI. Use of virtual reality to enhance balance and ambulation in chronic stroke: a double-blind, randomized controlled study. Am I Phys Med Rehabil. 2009;88(9):693–701.
  • Holden MK. Virtual environments for motor rehabilitation: review. Cyberpsychol Behav. 2005; 8(3):187–211; discussion 212–219.
  • Buxbaum LJ, Palermo MA, Mastrogiovanni D, et al. Assessment of spatial attention and neglect with a virtual wheelchair navigation task. I Clin Exp Neuropsychol. 2008;30(6):650–660.
  • Kizony R, Levin MF, Hughey L, Perez C, Rung J. Cognitive load and dual-task performance during locomotion poststroke: a feasibility study using a functional virtual environment. Phys Ther. 2010;90(2):252–260.
  • Kang YJ, Ku J, Han K, et al. Development and clinical trial of virtual reality-based cognitive assessment in people with stroke: preliminary study. Cyberpsychol Behav. 2008;11(3):329–339.
  • Gaggioli A, Meneghini A, Morganti F, Alcaniz M, Riva G. A strategy for computer-assisted mental practice in stroke rehabilitation. Neurorehabil Neural Repair. 2006;20(4):503–507.
  • Gaggioli A, Morganti F, Meneghini A, et al. Computer-guided mental practice in neurorehabilitation. Stud Health Technol Inform. 2009;145:195–208.
  • Yip BC, Man DW. Virtual reality (VR)-based community living skills training for people with acquired brain injury: a pilot study. Brain Inj. 2009;23(13–14):1017-1026.
  • Broeren J, Claesson L, Goude D, Rydmark M, Sunnerhagen KS. Virtual rehabilitation in an activity centre for community-dwelling persons with stroke. The possibilities of 3-dimensional computer games. Cerebrovasc Dis. 2008;26(3):289–296.
  • Yang YR, Tsai MP, Chuang TY, Sung WH, Wang RY. Virtual reality-based training improves community ambulation in individuals with stroke: a randomized controlled trial. Gait Posture. 2008;28(2): 201–206.
  • Fordell H, Bodin K, Bucht G, Malm J. A virtual reality test battery for assessment and screening of spatial neglect. Acta Neurol Scand. 2011;123(3):167–174.
  • Tsirlin I, Dupierrix E, Chokron S, Coquillart S, Ohlmann T. Uses of virtual reality for diagnosis, rehabilitation and study of unilateral spatial neglect: review and analysis. Cyberpsychol Behav. 2009;12(2):175–181.
  • Kim J, Kim K, Kim DY, et al. Virtual environment training system for rehabilitation of stroke patients with unilateral neglect: crossing the virtual street. Cyberpsychol Behav. 2007;10(1):7–15.
  • Katz N, Ring H, Naveh Y, Kizony R, Feintuch U, Weiss PL. Interactive virtual environment training for safe street crossing of right hemisphere stroke patients with unilateral spatial neglect. Disabil Rehabil. 2005;27(20):1235–1243.
  • Deutsch JE, Mirelman A. Virtual reality-based approaches to enable walking for people poststroke. Top Stroke Rehabil. 2007;14(6):45–53.
  • Nichols DS. Balance retraining after stroke using force platform biofeedback. Phys Ther. 1997;77(5):553–558.
  • Rand D, Kizony R, Weiss PT. The Sony PlayStation II EyeToy: low-costvirtual reality for use in rehabilitation. I Neurol Phys Ther. 2008;32(4):155–163.
  • Flynn S, Palma P, Bender A. Feasibility of using the Sony PlayStation 2 gaming platform for an individual poststroke: a case report. I Neurol Phys Ther. 2007;31(4):180–189.
  • Nelson DL, Konosky K, Fleharty K, et al. The effects of an occupationally embedded exercise on bilaterally assisted supination in persons with hemiplegia. Am I Occup Ther. 1996;50(8): 639–646.
  • Cunningham D, Krishack M. Virtual reality: a wholistic approach to rehabilitation. Stud Health Technol Inform. 1999;62:90–93.
  • O'Connor TJ, Cooper RA, Fizgerald SG, et al., Evaluation of a manual wheelchair interface to computer games. Neurorehabil Neural Repair. 2000;14(1):21–31.
  • O'Connor TJ, Fizgerald SG, Cooper RA, Thorman TA, Boninger ML. Does computer game play aid in motivation of exercise and increase metabolic activity during wheelchair ergometry? Med Eng Phys. 2001;23(4):267–273.
  • O'Connor TJ, Fizgerald SG, Cooper RA, Thorman TA, Boninger ML. Kinetic and physiological analysis of the GAME(Wheels) system. I Rehabil Res Dev. 2002;39(6):627–634.
  • Adamovich SV, Merians AS, Boian R, et al. A virtual reality based exercise system for hand rehabilitation post-stroke: transfer to function. Conf Proc IEEE Eng Med Biol Soc. 2004;7:4936–4939.
  • Boian R, Sharma A, Han S, et al. Virtual reality-based post-stroke hand rehabilitation. Stud Health Technol Inform. 2002;85:64–70.
  • Brewer BR, Klatzky R, Matsuoka Y. Visual feedback distortion in a robotic environment for hand rehabilitation. Brain Res Bull. 2008;75(6): 804–813.
  • Szturm T, Peters JF, Otto C, Kapadia N, Desai A. Task-specific rehabilitation of finger-hand function using interactive computer gaming. Arch Phys Med Rehabil. 2008;89(11):2213–2217.
  • Rizzo A, Requejo P, Winstein CJ, et al. Virtual reality applications for addressing the needs of those aging with disability. Stud Health Technol Inform. 2011;163:510–516.
  • Hesse S, Schmidt H, Werner C, Bardeleben A. Upper and lower extremity robotic devices for rehabilitation and for studying motor control. Curr Opin Neurol. 2003;16(6):705–710.
  • Kakou H, Shitama H, Kimura Y, et al. [Walking assist robot and its clinical application]. I UOEH. 2009;31(2):207–218. [in Japanese]
  • Lewek MD. The value of overground gait training for improving locomotion in individuals with chronic stroke. I Neurol Phys Ther. 2009;33(4):187–188.
  • Merians AS, Tunik E, Fluet GG, Qiu Q, Adamovich SV. Innovative approaches to the rehabilitation of upper extremity hemiparesis using virtual environments. Eur J Phys Rehabil Med. 2009;45(1):123–133.
  • Edwards DJ, Krebs HI, Rykman A, et al. Raised corticomotor excitability of M1 forearm area following anodal tDCS is sustained during robotic wrist therapy in chronic stroke. Restor Neurol Neurosci. 2009;27(3):199–207.
  • Mirelman A, Bonato P, Deutsch JE. Effects of training with a robot-virtual reality system compared with a robot alone on the gait of individuals after stroke. Stroke. 2009;40(1):169–174.
  • Neckel ND, Bionien N, Nichols D., Hidler J Abnormal joint torque patterns exhibited by chronic stroke subjects while walking with a prescribed physiological gait pattern. I Neuroeng Rehabil. 2008;5:19.
  • Schabowsky CN, Godfrey SB, Holley RJ, Lum PS. Development and pilot testing of HEXORR: Hand EXOskeleton Rehabilitation Robot. I Neuroeng Rehabil. 2010;7:36.
  • Cruz EG, Kamper DG. Use of a novel robotic interface to study finger motor control. Ann Biomed Eng. 2010;38(2):259–268.
  • Miller LC, Ruiz-Torres R, Stienen AH, Dewald JP. A wrist and finger force sensor module for use during movements of the upper limb in chronic hemiparetic stroke. IEEE Trans Biomed Eng. 2009;56(9):2312–2317.
  • Rosati G, Gallina P, Masiero S. Design, implementation and clinical tests of a wire-based robot for neurorehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2007;15(4):560–569.
  • Krebs HI, Volpe BT, Williams D, et al. Robot-aided neurorehabilitation: a robot for wrist rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2007;15(3): 327–335.
  • Khanna I, Roy A, Rodgers MM, Krebs HI, Macko RM, Forrester LW. Effects of unilateral robotic limb loading on gait characteristics in subjects with chronic stroke. I Neuroeng Rehabil. 2010;7:23.
  • Kim SH, Banala SK, Brackbill EA, Agrawal SW, Krishnamoorthy V, Scholz JP. Robot-assisted modifications of gait in healthy individuals. Exp Brain Res. 2010;202(4):809–824.
  • Dickstein R. Rehabilitation of gait speed after stroke: a critical review of intervention approaches. Neurorehabil Neural Repair. 2008;22(6):649–660.
  • Vergaro E, Casadio M, Squeri V, Giannoni P, Morasso P, Sanquineti V. Self-adaptive robot training of stroke survivors for continuous tracking movements. J Neuroeng Rehabil. 2010;7:13.
  • Dukelow SP, Herter TM, Moore KD, et al. Quantitative assessment of limb position sense following stroke. Neurorehabil Neural Repair. 2010;24(2):178–187.
  • Hidler J, Neckel N. Inverse-dynamics based assessment of gait using a robotic orthosis. Conf Proc IEEE Eng Med Biol Soc. 2006;1:185–188.
  • Colombo R, Sterpi O, Mazzone A, Delconte C, Minuco G, Pisano F. Measuring changes of movement dynamics during robot-aided neurorehabilitation of stroke patients. IEEE Trans Neural Syst Rehabil Eng. 2010;18(1):75–85.
  • Sanguineti V, Casadio, M, Vergaro E, Squeri V, Giannoni P, Morasso PG. Robot therapy for stroke survivors: proprioceptive training and regulation of assistance. Stud Health Technol Inform. 2009;145:126–142.
  • Casadio M, Giannoni P, Masia L, et al. Robot therapy of the upper limb in stroke patients: preliminary experiences for the principle-based use of this technology. Funct Neurol. 2009;24(4): 195–202.
  • Kutner NG, Zhang R, Butler AJ, Wolf SL, Alberts IL. Quality-of-life change associated with robotic-assisted therapy to improve hand motor function in patients with subacute stroke: a randomized clinical trial. Phys Ther. 2010;90(4):493–504.
  • Kanamori M, Suzuki M, Tanaka M. [Maintenance and improvement of quality of life among elderly patients using a pet-type robot. J Nippon Ronen Igakkai Zasshi. 2002;39(2):214–218 [in Japanese].
  • Brewer BR, McDowell SK, Worthen-Chaudhari LC. Poststroke upper extremity rehabilitation: a review of robotic systems and clinical results. Top Stroke Rehabil. 2007;14(6):22–44.
  • Kwakkel G, Kollen BJ, Krebs HI. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair. 2008;22(2):111–121.
  • Teasell RW, Kalra L. What's new in stroke rehabilitation. Stroke. 2004;35(2):383–385.
  • Westlake KP, Patten C. Pilot study of Lokomat versus manual-assisted treadmill training for locomotor recovery post-stroke. I Neuroeng Rehabil. 2009;6:18.
  • Husemann B, Muller F, Krewer C, Heller S, Koenig E. Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: a randomized controlled pilot study. Stroke. 2007;38(2):349–354.
  • Hidler J, Nichols D, Pelliccio M, et al. Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil Neural Repair. 2009;23(1):5–13.
  • Banala SK, Kim SH, Agrawal SK., Scholz JR Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Trans Neural Syst Rehabil Eng. 2009;17(1):2–8.
  • Krebs HI, Volpe BT, Ferraro M, et al. Robot-aided neurorehabilitation: from evidence-based to science-based rehabilitation. Top Stroke Rehabil. 2002;8(4):54–70.
  • Reinkensmeyer DJ, Kahn LE, Averbuch M., McKenna-Cole A., Schmit BD, Rymer WZ. Understanding and treating arm movement impairment after chronic brain injury: progress with the ARM guide. Rehabil Res Dev. 2000;37(6):653–662.
  • Kahn, LE, et al. Comparison of robot-assisted reaching to free reaching in promoting recovery from chronic stroke. I nteg r Assist Tech nol Information Age. 2001;9:39–44.
  • Krebs HI, Hogan N, Aisen ML, Volpe BT. Robot-aided neurorehabilitation. IEEE Trans Rehabil Eng. 1998;6(1):75–87.
  • Lum P, Reinkensmeyer D, Mahoney R, Rymer WZ, Burgar C. Robotic devices for movement therapy after stroke: current status and challenges to clinical acceptance. Top Stroke Rehabil. 2002;8(4):40–53.
  • Fasoli SE, Krebs HI, Stein J, Frontera WR, Hogan N. Effects of robotic therapy on motor impairment and recovery in chronic stroke. Arch Phys Med Rehabil. 2003;84(4):477–482.
  • Fasoli SE, Fragala-Pinkham M, Krebs HI, Hogan N, Stein J. Robotic therapy for chronic motor impairments after stroke: follow-up results. Arch Phys Med Rehabil. 2004;85(7):1106–1111.
  • Fasoli SE, Krebs HI, Ferraro M, Hogan N, Volpe BT. Does shorter rehabilitation limit potential recovery poststroke? Neurorehabil Neural Repair. 2004;18(2):88–94.
  • Mahoney, R.M., Van der Loos HFM, Lum PS, Burgar C. Robotic stroke therapy assistant. Robotica. 2003;21:33–44.
  • Stein J, Krebs HI, Frontera WR, Fasoli SE, Hughes R, Hogan N. Comparison of two techniques of robot-aided upper limb exercise training after stroke. Am J Phys Med Rehabil. 2004;83(9):720–728.
  • Lum PS, Burgar CG, Shor PC, Majmundar M, Van der Loos M. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil. 2002;83(7):952–959.
  • Choi Y, Qi F, Gordon J, Schweighofer N. An adaptive automated robotic task-practice system for rehabilitation of arm functions after stroke. IEEE Trans Robotics. 2009;25(3):556–568.
  • Lo AC, Guarino PD, Richards LG, et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med. 2010;362(19):1772–1783.
  • Matari C MJ, Eriksson J, Feil-Seifer DJ., Winstein CJ. Socially assistive robotics for post-stroke rehabilitation. I Neuroeng Rehabil. 2007;4:5.
  • Eriksson J, Matari CMJ, Winstein CJ. Hands-off assistive robotics for post-stroke arm rehabilitation. In: IEEE 9th International Conference on Rehabilitation Robotics; 2005:21–24.
  • Mead R, et al. An architecture for rehabilitation task practice in socially assistive human-robot interaction. In: IEEE International Symposium in Robot and Human Interactive Communication (Ro-Man 2010); 2010; Viareggio, Italy.
  • Wade E, et al., Assessing the quality and quantity of social interaction in a socially assistive robot-guided therapeutic setting. In: International Conference on Rehabilitation Robotics; 2011; Zurich.
  • Sanford J, Moreland J, Swanson LR, Stratford PW, Gowland C. Reliabilityof the Fugl-Meyer assessment for testing motor-performance in patients following stroke. Phys Ther. 1993;73(7):447–454.
  • Wolf SL, Caitlin PA, Ellis M, Archer AL, Morgan B, Piacentino A. Assessing Wolf Motor Function Test as outcome measure for research in patients after stroke. Stroke. 2001;32(7):1635–1639.
  • Blanton S, Morris DM, Prettyman MG, et al. Lessons learned in participant recruitment and retention: the EXCITE trial. Phys Ther. 2006;86(11):1520–1533.
  • Wolf SL, Winstein CJ, Miller JP, et al. Retention of upper limb function in stroke survivors who have received constraint-induced movement therapy: the EXCITE randomised trial. Lancet Neurol. 2008;7(1):33–40.
  • Mazzoleni S, Toth A, Munih M, et al. Whole-body isometric force/torque measurements for functional assessment in neuro-rehabilitation: platform design, development and verification. I Neuroeng Rehabil. 2009;6:38.
  • Balasubramanian S, Wei R, Herman R, He J. Robot-measured performance metrics in stroke rehabilitation. In: 2009 ICME International Conference on Complex Medical Engineering; 2009:330–335.
  • Ball SJ, Brown IE, Scott SH. A planar 3DOF robotic exoskeleton for rehabilitation and assessment. In: 2007 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2007; 1–16:4024–4027.
  • Van Dijck G, Van Vaerenbergh J, Van Hulle MM. Posterior probability profiles for the automated assessment of the recovery of patients with stroke from activity of daily living tasks. Artif Intel' Med. 2009;46(3):233–249.
  • Colombo R, Pisano F, Micera S, et al. Robotic techniques for upper limb evaluation and rehabilitation of stroke patients. IEEE Trans Neural Syst Rehabil Eng. 2005;13(3):311–324.
  • Leibowitz N, Levy N, Weingarten S, et al. Automated measurement of proprioception following stroke. Disabil Rehabil. 2008;30(24):1829–1836.
  • Chen SY, Han CE, Parikh N, et al. BART: a novel instrument to measure spontaneous arm use in patients after stroke. Paper presented at: Neuroscience 2008; November 15–19, 2008; Washington, DC.
  • Stewart J. Planning of unconstrained reach actions after unilateral sensorimotor stroke. Doctoral dissertation. Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles; 2010.
  • Knorr B, Hughes R, Sherrill D, Stein J, Akay M, Bonato P. Quantitative measures of functional upper limb movement in persons after stroke. In: 2nd International IEEE/EMBS Conference on Neural Engineering; 2005:252–255.
  • Parnandi AR, Wade E, Matari MJ. Motor function assessment using wearable inertial sensors. Presented at: 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2010); 2010; Buenos Aires, Argentina.
  • Wade E, Parnandi AR, Matari C MJ. Automated administration of the Wolf Motor Function Test for post-stroke assessment. Presented at: ICST 4th International ICST Conference on Pervasive Computing Technologies for Healthcare 2010; 2010; Munich, Germany.
  • Riva G, Gamberini L. Virtual reality in telemedicine. Telemed J E Health. 2000;6(3):327–340.
  • Pugnetti, L, Meehan M, Mendozzi L. Psychophysiological correlates of virtual reality: a review. Presence Teleoper Virtual Environ. 2001;10(4):384–400.
  • Grimes GJ, Dubois H, Grimes SJ, Greenleaf WI, Rothenburg S, Cunningham D. Telerehabilitation services using web-based telecommunication. Stud Health Technol Inform. 2000;70:113–118.
  • Rovetta A, Lorini F, Canina M. A new project for rehabilitation and psychomotor disease analysis with virtual reality support. Stud Health Technol Inform.1998;50:180–185.
  • Schmidt RA, Lee TD. Motor Control and Learning : A Behavioral Emphasis. 4th ed. Champaign, IL: Human Kinetics; 2005:vi, 537.
  • Cahill L, Gorski L, Le K. Enhanced human memory consolidation with post-learning stress: interaction with the degree of arousal at encoding. Learn Mem. 2003;10(4):270–274.
  • Pattichis CS, Kyriacou E, Voskarides S, Pattichis MS, Istepanian RSH, Schizas CN. Wireless telemedicine systems: an overview. IEEE Antennas Propagation Mag. 2002;44(2):143–153.
  • Mehairi SO, Barada H, Qutayri M. Integration of technologies for smart home application. In: 2007 IEEE/ACS International Conference on Computer Systems and Applications. 2007;1, 2: 241–246.
  • Gatzoulis L, lakovidis I. Wearable and portable eHealth systems. IEEE Eng Med Biol Mag. 2007;26(5):51–56.
  • Gaddam A, Mukhopadhyay SC, Sen Gupta G, Guesgen H. Wireless sensors networks based monitoring: review, challenges and implementation issues. In: Proceedings of the Third International Conference on Sensing Technology; 2008:533–538.
  • Roy SH, Cheng MS, Chang SS, et al. A combined sEMG and accelerometer system for monitoring functional activity in stroke. IEEE Trans Neural Syst Rehabil Eng. 2009;17(6):585–594.
  • Mark T. Wearable health monitors: real-time, patient-friendly data collection. Telemed J E Health. 2010;16(2):134–138.
  • Helal A, Cook DJ, Schmalz M. Smart home-based health platform for behavioral monitoring and alteration of diabetes patients. I Diabetes Sci Technol, 2009;3(1):141–148.
  • Junnila S, Kailanto H, Merilahti J, et al. Wireless, multipurpose in-home health monitoring platform: two case trials. IEEE Trans la Technol Biomed. 2010;14(2):447–455.
  • Marschollek M, et al. Multimodal home monitoring of elderly people-first results from the LASS study. In: 21st International Conference on Advanced Networking and Applications Workshops/ Symposia, Proceedings. 2007;2: 815–819.
  • Medjahed H, Istrate D, Broudy J, Dorizzi B. Human activities of daily living recognition using fuzzy logic for elderly home monitoring. In: 2009 IEEE International Conference on Fuzzy Systems. 2009;1–3:2001–2006.
  • Gourlay D, Lun KC, Liya G. Virtual reality and telemedicine for home health care. Computers & Graphics-UK. 2000;24(5):695–699.
  • Uswatte G, Taub E, Morris D, Light K, Thompson PA. The Motor Activity Log-28: assessing daily use of the hemiparetic arm after stroke. Neurology 2006;67(7):1189–1194.
  • Boyd LA, Winstein Cl. Impact of explicit information on implicit motor-sequence learning following middle cerebral artery stroke. Phys Ther. 2003;83(11):976–989.
  • Wulf G, Shea C, Park JFI. Attention and motor performance: preferences for and advantages of an external focus. Res Q Exerc Sport. 2001;72(4):335–344.
  • Kidd C, Breazeal C. A robotic weight loss coach. In: 22nd Conference on Artificial Intelligence. Vancouver, British Columbia: AAAI; 2007.
  • Bickmore T, Gruber A. Relational agents in clinical psychiatry. Harv Rev Psychiatry. 2010;18(2):119–130.
  • Breazeal C. Role of expressive behaviour for robots that learn from people. Philos Trans RI Soc Lond B Biol Sci. 2009;364(1535):3527–3538.
  • Campbell M, Fitzpatrick R, Haines A, et al. Framework for design and evaluation of complex interventions to improve health. BMJ. 2000;321(7262):694–696.
  • Gaggioli, A, Kesher EA, Weiss PL, Riva G, eds. Advanced technologies in rehabilitation. In: Studies in Health Technology and Informatics. 105 Press: 2009;145.
  • Kantak SS, Sullivan KJ, Fisher BE, Knowlton BJ, Winstein CI. Neural substrates of motor memory consolidation depend on practice structure. Nat Neurosci. 2010; 13(8):923–925.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.