5
Views
2
CrossRef citations to date
0
Altmetric
Technical Paper

Modeling of Surface Deformations during Plasma Disruptions

Pages 185-197 | Published online: 09 May 2017

References

  • “ITER Physics,” ITER Documentation Series No. 21, Chap. 4, D. E. POST, Ed., International Atomic Energy Agency (1990).
  • G. JANESCHITZ et al., “The ITER Divertor Concept,” J. Nucl. Mater., 220–222, 73 (1995).
  • S. T. PICRAUX, J. A. KNAPP, and M. J. DAVIS, “Electron Beam Simulation of Disruptions into Stainless Steel,” J. Nucl. Mater., 120, 278 (1984).
  • F. BROSSA, E. FRANCONI, P. MORETTO, and G. RIGON, “Structural and Chemical Modifications of AISI 316 SS FT Limiters Compared with the Disruption Simulation Damage,” J. Nucl. Mater., 141–143, 210 (1986).
  • G. RIGON, P. MORETTO, and F. BROSSA, “Experimental Simulation of Plasma Disruption with an Electron Beam,” Fusion Eng. Des., 5, 299 (1987).
  • M. SEKI, T. YAMAZAKI, A. MINATO, T. HORIE, Y. TANAKA, and T. TONE, “Improvement of an Electron Beam Facility as a Heat Source for Disruption Simulation Experiments,” Fusion Eng. Des., 5, 215 (1987).
  • M. SHIBUI, J. OHMORI, and Y. SAWADA, “Thermal Shock Tests of Tungsten by H+ Beam Bombardment,” Fusion Eng. Des., 5, 197 (1987).
  • K. IOKI, M. YAMADA, M. NISHIKAWA, T. UCHIKAWA, M. ONOZUKA, and H. YAMAO, “Thermomechanical Behaviour of Graphite and Coating Materials Subjected to a High Heat Flux,” Fusion Eng. Des., 5, 181 (1987).
  • F. BROSSA, M. CAMBINI, D. QUATAERT, G. RIGON, and P. SCHILLER, “Physical and Metallurgical Phenomena During Simulations of Plasma Disruptions,” J. Nucl. Mater., 155–157, 412 (1988).
  • P. SCHILLER, F. BROSSA, M. CAMBINI, D. QUATAERT, and G. RIGON, “Experimental Evidence for Melt Layer Convection During Disruption Simulation Experiments,” Fusion Eng. Des., 6, 131 (1988).
  • H. YANAGI, T. SUKEGAWA, T. KOBAYASHI, H. MADARAME, H. HASHIZUME, and K. MIYA, “High Heat Load Experiments for First Wall Materials,” J. Nucl. Mater., 155–157, 402 (1988).
  • J. G. VAN DER LAAN, “Effects of Pulsed-Laser Radiation on First Wall Materials,” J. Nucl. Mater., 162–164, 964 (1989).
  • T. TERAMOTO and M. SAITO, “Fatigue Strength for Stainless Steel Irradiated by High Power Laser Beam,” Fusion Eng. Des., 9, 201 (1989).
  • D. QUATAERT, F. BROSSA, P. SCHILLER, and G. RIGON, “Melting and Conduction During Short Electron Beam Pulses,” Fusion Eng. Des., 13, 381 (1991).
  • J. VAN DER LAAN, M. AKIBA, A. HASSANEIN, M. SEKI, and V. TANCHUK, “Prediction for Disruption Erosion of ITER Plasma Facing Components; A Comparison of Experimental and Numerical Results,” Fusion Eng. Des., 18, 135 (1991).
  • S. YAMAZAKI, T. KOBAYASHI, and S. KOGA, “High Heat Flux Test on First Wall Materials,” Fusion Eng. Des., 15, 17 ~1991).
  • V. R. BARABASH et al., “Damage of Refractory Metals and Carbon-Based Materials Under Simulation of the Thermal Influence at Plasma Disruption,” Fusion Eng. Des., 18, 145 (1991).
  • H. BOLT, Y. OOISHI, M. IIDA, and T. SUKEGAWA, “Study of the Plasma-Material Interaction During Simulated Plasma Disruptions,” Fusion Eng. Des., 18, 117 (1991).
  • J. VAN DER LAAN and H. TH. KLIPPEL, “Simulation and Analysis of the Response of Carbon Materials to Off-Normal Loads Accompanying Plasma-Disruptions,” J. Nucl. Mater., 179–181, 184 (1991).
  • M. OGAWA, M. ARAKI, M. SEKI, T. KUNUGI, K. FUKAYA, and H. ISE, “Experimental Study on Melting and Evaporation of Metal Exposed to Intense Hydrogen Ion Beam. Fusion Eng. Des., 19, 193 (1992).
  • J. VAN DER LAAN, H. TH. KLIPPEL, G. J. KRAAIJ, R. C. L. VAN DER STAD, J. LINKE, and M. AKIBA, “Effects of Short Pulse High Heat Fluxes on Carbon Base Plasma Facing Materials for ITER,” J.Nucl. Mater., 196–198, 612 (1992).
  • V. R. BARABASH, A. G. BARAMOV, J. GAHL, V. N. LITUNOVSKY, J. McDONALD, and I. B. OVCHINNIKOV, “Experimental Study of Pulse Plasma-Carbon Materials Interaction During the Simulation of Thermal Quench of Tokamak Plasma Disruption,” J. Nucl. Mater., 298–302, 187 (1992).
  • J. LINKE, M. AKIBA, H. BOLT, J. VAN DER LAAN, J. VAN OSCH, S. SUZUKI, and E. WALLURA, “Simulation of Disruptions on Coatings and Bulk Materials,” J.Nucl. Mater., 196–198, 607 (1992).
  • P. D. ROCKETT, J. A. HUNTER, J. M. GAHL, J. T. BRADLEY III, and R. R. PETERSON, “Plasma Gun Experiments and Modelling of Disruptions,” J. Nucl. Mater., 212–215, 1278 (1994).
  • G. TSOTRIDIS and I. GODED, “The Influence of Impurities on the Molten Depths in Simulated Plasma Disruptions,” Fusion Technol., 26, 7 (1994).
  • A. HASSANEIN and D. EHST, “Dynamic Modeling of Plasma-Vapor Interactions During Plasma Disruptions,” J. Nucl. Mater., 196–198, 680 (1992).
  • G. PIAZZA, B. GOEL, W. HÖBEL, H. WÜRZ, and I. LANDMAN, “The Magnetic Vapour Shield Effect at Divertor Plates During Plasma Disruptions,” Fusion Technology 1994, p. 319, K. HERSCHBACH, W. MAUER, and J. E. VETTER, Eds., Elsevier Science, New York (1995).
  • A. HASSANEIN, A. KONKASHBAEV, and I. KONKASHBAEV, “Erosion of Melt Layers Developed During a Plasma Disruption,” Fusion Technology 1994, p. 223, K. HERSCHBACH, W. MAUER, and J. E. VETTER, Eds., Elsevier Science, New York (1995).
  • A. HASSANEIN, “Plasma Disruption Modelling and Simulation,” Fusion Technol., 26, 532 (1994).
  • J. M. GAHL, J. M. McDONALD, A. ZAKHAROV, V. TSEREVITINOV, V. BARABASH, and M. GUSEVA, “Heat Load Material Studies: Simulated Tokamak Disruptions,” J. Nucl. Mater., 191–194, 454 (1992).
  • E. TUCKER and J. GILLIGAN, “Transport of Energetic Ion and Electron Energy Through the Vapor Shield During a Tokamak Plasma Disruption,” Fusion Technol., 26, 1265 (1994).
  • J. G. GILLIGAN and D. HAHN, “The Magnetic Vapour Shield (MVS) Mechanism for Protection of High-Heat Flux Components in High-Field Tokamaks,” J. Nucl. Mater., 145–147, 391 (1987).
  • J. G. GILLIGAN, D. HAHN, and R. MOHANTI, “Vapour Shielding of Surfaces Subjected to High Heat Fluxes During a Plasma Disruption,” J. Nucl. Mater., 162–164, 957 (1989).
  • W. HÖBEL, B. GOEL, M. KÜCHLE, and W. WÜRZ, “Numerical Simulation of Vapour Shielding and Range Shortening for Ions Impinging on a Divertor During Plasma Disruption,” J.Nucl. Mater., 196–198, 537 (1992).
  • A. HASSANEIN and I. KONKASHBAEV, “An Assessment of Disruption Erosion in the ITER Environment,” Fusion Eng. Des., 28, 27 (1995).
  • A. HASSANEIN and D. SMITH, “Analysis of Beam-on-Target Interaction in a Neutron-Source Test Facility,” J. Nucl. Mater., 212–215, 1671 (1994).
  • A. M. HASSANEIN, D. A. EHST, and J. GAHL, “Beryllium and Graphite Performance in ITER During a Disruption,” J. Nucl. Mater., 212–215, 1272 (1994).
  • A. M. HASSANEIN, “Erosion and Redeposition of Divertor and Wall Materials During Abnormal Events,” Fusion Technol., 19, 3, part 2B, 1789 (1991).
  • D. SANZO, “An Approximate Analytical Solution of the Problem of Melting and Evaporation During Disruptions in Magnetic Fusion Reactors,” Nucl. Eng. Des., 4, 191 (1987).
  • S. YAMAZAKI, M. SEKI, and T. KOBAYASHI, “Two-Dimensional Disruption Thermal Analysis Code DREAM,” JAERI-M 88–163, Japan Atomic Energy Research Institute (1988).
  • T. KUNUGI, M. AKIBA, and M. OQAWA, “Sensitivity Study on Some Parameters of Disruption Erosion Analysis,” Fusion Technol., 21, 3, part 2B, 1863 (1992).
  • H. TH. KLIPPEL, “Thermal Response to the First Wall of a Fusion Reactor Blanket to Plasma Disruptions,” ECN-C-90-003, ECN (1989).
  • H. TH. KLIPPEL, “Thermal Behaviour of Bare and Coated First Walls Under Severe Plasma-Disruption Conditions,” Fusion Eng. Des., 9, 49 (1989).
  • G. TSOTRIDIS, H. ROTHER, and E. D. HONDROS, “On Modelling of Marangoni Convection Flows in Simulated Plasma Disruptions,” Fusion Eng. Des., 15, 155 (1991).
  • G. TSOTRIDIS and H. ROTHER, “The Role of Surface-Tension-Driven Convective Flows on the Molten Depths in Simulated Plasma Disruptions,” Fusion Technol., 27, 389 (1995).
  • G. TSOTRIDIS and H. ROTHER, “On Modeling of Beryllium Molten Depths in Simulated Plasma Disruptions,” Fusion Technol., 30, 104 (1996).
  • G. TSOTRIDIS, “The Melting of Tungsten During Plasma Disruptions,” J. Nucl. Mater., 233–237, 758 (1996).
  • G. TSOTRIDIS, “The Influence of Beam Diameter on Molten Depths in Tungsten During Simulated Plasma Disruptions,” Fusion Technol., 32, 35 (1997).
  • Y. R. CRUTZEN and G. RUBINACCI, “Evaluation of the Electromagnetic Effects on a Tokamak First Wall Caused by a Plasma Disruption Using a Thin Shell Formulation,” Fusion Eng. Des., 11, 293 (1989).
  • S. CHIOCCHIO, Y. CRUTZEN, E. CASTILLO HIDALGO, and J. WU, “Eddy Currents, Electromagnetic Forces and Related Mechanical Effects in the NET Plasma Facing Components,” Proc. 16th Symp. Fusion Technology (SOFT), London, United Kingdom, September 3–7, 1990, North Holland Publishing Company, Amsterdam, The Netherlands (1990).
  • L. V. BOCCACCINI, “Electromagnetic Forces Caused by Disruptions in the Karlsruhe Demo Solid Breeder Blanket and in the Test Module for NET/ITER,” Fusion Eng. Des., 17, 153 (1991).
  • R. ALBANESE, L. BOTTURE, E. COCCORESE, R. MARTONE, and G. RUBINACCI, “Electromagnetic Effects Induced by Plasma Disruptions in the NET Vacuum Vessel,” Fusion Eng. Des., 15, 201 (1992).
  • T. JORDAN and D. SCHNEIDER, “Effects of an Electrically Conducting First Wall on the Blanket Loading During a Tokamak Plasma Disruption,” Fusion Eng. Des., 31, 313 (1996).
  • H. HASHIZUME and K. MIYA, “Electromagneto-Thermomechanical Behaviour of the First Wall,” Fusion Eng. Des., 7, 293 (1989).
  • H. HASHIZUME and K. MIYA, “Magnetothermohydraulic Behaviour of the Molten Layer of a First Wall Due to Plasma Disruption,” Fusion Eng. Des., 9, 219 (1989).
  • G. I. TAYLOR, “The Instability of Liquid Surfaces When Accelerated in a Direction Perpendicular to Their Planes,” Proc. Roy. Soc. A, 201, 192 (1950).
  • S. FELDMAN, “On the Instability Theory of the Melted Surface of an Ablating Body When Entering the Atmosphere,” J. Fluid Mech., 6, 131 (1959).
  • H. J. PALMER, “The Hydrodynamic Stability of Rapidly Evaporating Liquids at Reduced Pressure,” J. Fluid Mech., 75, 3, 487 (1976).
  • R. BELLMANN and R. H. PENNINGTON, “Effects of Surface Tension and Viscosity on Taylor Instability,” Q. Appl. Math., 12, 151 (1954).
  • W. G. WOLFER and A. M. HASSANEIN, “On Melt Layer Stability Following a Plasma Disruption,” J. Nucl. Mater., 111–112, 560 (1982).
  • G. TSOTRIDIS, “The Influence of External Body Forces on the Molten Depths in Tungsten During Simulated Plasma Disruptions,” Fusion Technol., 34, 187 (1998).
  • T. IDA and R. I. L. GUTHRIE, The Physical Properties of Liquid Metals, Clarendon Press, Oxford (1988).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.