321
Views
61
CrossRef citations to date
0
Altmetric
Technical Paper

Chapter 3: Microwave Diagnostics

, , , , &
Pages 335-396 | Published online: 27 Mar 2017

References

  • F. F. Chen, Introduction to Plasma Physics and Controlled Fusion, 2nd ed., Vol. 1, Plenum Press (1979).
  • Z. Shen, N. Ito, E. Salata, C. W. Domier, Y. Liang, N. C. Luhmann, Jr., and A. Mase, “Frequency Selective Surface Notch Filter for Use in a Millimeter Wave Imaging System,” Proc. IEEE Antennas and Propagation Society Int. Symp., IEEE (2006).
  • T. H. Stix, Waves in Plasmas, American Institute of Physics, New York (1992).
  • T. J. M. Boyd and J. J. Sanderson, The Physics of Plasmas., Cambridge Press, Cambridge (2003).
  • M. Brambilla, Theory of Plasma Waves in Homogeneous Plasmas, p. 96, The International Series of Monographs on Physics, Oxford Science Publications (1998).
  • N. Krall and A. W. Trivelpiece, Principles of Plasma Physics, McGraw-Hill (1973).
  • D. C. Montgomery and D. A. Tidman, Plasma Kinetic Theory, McGraw-Hill (1964).
  • D. R. Nicholson, Introduction to Plasma Theory, John Wiley & Sons, New York (1983).
  • J. D. Jackson, Classical Electrodynamics, Wiley & Sons (1999).
  • I. Hutchinson, Principles of Plasma Diagnostics, Cambridge University Press, Cambridge (1987).
  • N. C. Luhmann, Jr. and W. A. Peebles, “Instrumentation for Magnetically Confined Fusion Plasma Diagnostics,” Rev. Sci. Instrum., 55, 279 (1984).
  • H. J. Hartfuss and M. HÄse. in Proc. 10th Joint Workshop Electron Cyclotron Emission and Electron Cyclotron Heating (EC-10), Ameland, The Netherlands (1997).
  • N. C. Luhmann, Jr., “Instrumentation and Techniques for Plasma Diagnostics: An Overview,” Infrared and Millimeter Waves, Academic Press, p. 1–65 (1979).
  • M. Sato et al., “Relativistic Downshift Frequency Effects on Electron Cyclotron Emission Measurement—Measurements of Electron Density in Tokamak and Electron Temperature in LHD,” Proc. 13th Joint Workshop Electron Cyclotron Emission and Electron Cyclotron Resonance Heating (EC-13), Nizhny Novgorod, Russia, 2004.
  • M. Sato, A. Isayama, N. Iwama, and K. Kawahata, “Feasibility of Electron Density Measurement Using Relativistic Downshift of Electron Cyclotron Emission in Tokamak Plasmas,” Jpn. J. Appl. Phys., 44, L672 (2005).
  • C. D. Reddy and T. Edlington, “Plasma Density Measurements on COMPASS-C Tokamak from Electron Cyclotron Emission Cutoffs,” Rev. Sci. Instrum., 67, 462 (1996).
  • S. Preische, C. Efthimion, and S. M. Kaye, “Oblique Electron Cyclotron Emission for Electron Distribution Studies,” Rev. Sci. Instrum., 68, 409 (1997).
  • T. Yamamoto et al., “Electron Temperature and Density Measurements by Harmonic Electron Cyclotron Emission from Doublet-III Tokamak Plasmas,” Phys. Rev. Lett., 55, 1, 83 (1985).
  • A. G. Lynn, P. E. Phillips, and A. Hubbard, “Electron Cyclotron Emission as a Density Fluctuation Diagnostic,” Rev. Sci. Instrum., 75, 3859 (2004).
  • H. Park et al., “Recent Advancements in Microwave Imaging Plasma Diagnostics,” Rev. Sci. Instrum., 74, 10, 4239 (2003).
  • H. Park et al., “Simultaneous Microwave Imaging System for Density and Temperature Measurements on TEXTOR,” Rev. Sci. Instrum., 75, 10, 3787 (2004).
  • A. E. Costley et al., Phys. Rev. Lett., 33, 758 (1974).
  • R. Engelmann and M. Curatolo, “Cyclotron Radiation from a Rarefied Inhomogeneous Magnetoplasma,” Nucl. Fusion, 13, 497 (1973).
  • C. M. Celata and D. A. Boyd, Nucl. Fusion, 17, 735 (1977).
  • Y. Nagayama et al., “Electron Cyclotron Emission Diagnostics in the Large Helical Device,” J. Plasma Fusion Res., 79, 6, 601 (2003).
  • P. Blanchard et al., “Improvement of the Te Profile on JET Measured by ECE,” Proc. 15th Conf. High Temperature Plasma Diagnostics, San Diego, California, 2004.
  • G. Bekefi, Radiation Processes in Plasmas, Wiley, New York (1966).
  • V. S. Udintsev, “Electron Temperature Dynamics of TEXTOR Plasmas,” Dissertation, University of Utrecht, The Netherlands (2003).
  • W. H. M. Clark, “The Precision of Electron Cyclotron Emission Measurements from DITE Tokamak,” Plasma Phys, 25, 12, 1501 (1983).
  • M. Bornatici, R. Cano, O. De Barbieri, and F. Engelmann, Nucl. Fusion, 23, 1153 (1983).
  • H. Hartfuss, T. Geist, and M. Hirsch, “Heterodyne Methods in Millimetre Wave Plasma Diagnostics with Applications to ECE, Interferometry and Reflectometry,” Plasma Phys. Control Fusion, 39, 1693 (1997).
  • E. De La Luna et al., “Impact of Bulk Non-Maxwellian Electrons on Electron Temperature Measurements,” Rev. Sci. Instrum., 19, 193 (2003).
  • M. Bornatici and U. Ruffina, “ECE Diagnostic on ITER: A Feasibility Study,” Proc. 10th Joint Workshop Electron Cyclotron Emission and Electron Cyclotron Heating, Ameland, The Netherlands, 1997.
  • V. Krivenski, “Electron Cyclotron Emission by Non-Maxwellian Bulk Distribution Functions,” Fusion Eng. Des., 53, 23 (2001).
  • T. P. Goodman, I. Klimanov, A. Mueck, and V. S. Udintsev, “First Measurements of Oblique ECE with a Real-Time Move-able Line-of-Sight on TCV,” Proc. 14th Joint Workshop Electron Cyclotron Emission and Electron Cyclotron Resonance Heating (EC-14), Santorini, Greece, 2006.
  • M. Sato and A. Isayama, “Evaluation of ECE Spectra on the Oblique Propagation and Application to Electron Temperature Measurement in a Reactor Grade Tokamak,” Proc. 14th Joint Workshop Electron Cyclotron Emission and Electron Cyclotron Resonance Heating (EC-14), Santorini, Greece, 2006.
  • G. Taylor et al., “Electron Cyclotron Emission Measurements on High b TFTR Plasmas,” Proc. 9th Joint Workshop Electron Cyclotron Emission and Electron Cyclotron Heating, Borrego Springs, California, 1995.
  • E. De La Luna et al., “Recent Developments of ECE Diagnostics at JET,” Proc. 13th Joint Workshop Electron Cyclotron Emission and Electron Cyclotron Resonance Heating (EC-13), Nizhny Novgorod, Russia, 2004.
  • E. De La Luna et al., “Diagnosing the Electron Distribution Function with Oblique Electron Cyclotron Emission on FTU,” Proc. 12th Joint Workshop Electron Cyclotron Emission and Electron Cyclotron Resonance Heating, Aix-en-Provence, France, 2002.
  • C. Sozzi, A. Bruschi, A. Simonetto, E. De La Luna, J. Fessey, V. Riccardo, and JET-EFDA CONTRIBUTORS, “Optical Design of the Oblique-ECE Antenna System for JET,” Proc. 23rd Symp. Fusion Technology, Fondazione Cini, Venice, Italy, 2004.
  • C. Sozzi, A. Bruschi, A. Simonetto, E. De La Luna, J. Fessey, V. Riccardo, and JET EFDA CONTRIBUTORS, “Optical Design of the Oblique ECE Antenna System for JET,” Fusion Eng. Des., 74, 691 (2005).
  • P. Buratti and M. Zerbini, “A Fourier Transform Spectrometer with Fast Scanning Capability for Tokamak Plasma Diagnostics,” Rev. Sci. Instrum., 66, 8, 4208 (1995).
  • E. Westerhof, P. Smeulders, and N. Lopez Cardozo, “Observations of Sawtooth Postcursor Oscillations in JET and Their Bearing on the Nature of the Sawtooth Collapse,” Nucl. Fusion, 29, 6, 1056 (1989).
  • Y. Nagayama et al., “Tomography of Full Sawtooth Crashes on Tokamak Test Fusion Reactor,” Phys. Plasmas, 3, 1647 (1996).
  • S. Sattler and H. J. Hartfuss, “Intensity Interferometry for Measurement of Electron Temperature Fluctuations in Fusion Plasmas,” Plasma Phys. Control Fusion, 35, 1285 (1993).
  • G. Cima, C. Watts, and R. F. Gandy, “Correlation Radiometry of Electron-Cyclotron Radiation in TEXT-U,” Rev. Sci. Instrum., 66, 1, 798 (1995).
  • B. H. Deng et al., “ECE Imaging of Plasma Te Profiles and Fluctuations,” Fusion Eng. Des., 53, 77 (2001).
  • A. E. Costley, U. Gasparino, and W. Kasparek, “Report on the Eighth Joint Workshop on ECE and ECRH (EC’8),” Nucl. Fusion, 33, 8, 1239 (1993).
  • D. A. Boyd, F. Skiff, and S. Gulick, “A System to Measure Suprathermal Electron Distribution Functions in Toroidal Plasmas by Electron Cyclotron Wave Absorption,” Rev. Sci. Instrum., 68, 496 (1997).
  • J. F. M. Van Gelder, H. S. Miedema, A. J. H. DonnÉ, A. A. M. Oomens, and F. C. Schuller, “The Electron Cyclotron Absorption Diagnostic at the Rijnhuizen Tokamak Project,” Rev. Sci. Instrum., 68, 4439 (1997).
  • A. Pachtman, S. M. Wolfe, and I. H. Hutchinson, Nucl. Fusion, 27, 1283 (1987).
  • N. W. B. Stone, “Expanding Field of Far Infrared Fourier Transform Spectroscopy in the Laboratory, Industry, and the Environment,” Appl. Opt., 17, 9 (1978).
  • D. H. Martin and E. Puplett, Infrared Phys., 10, 105 (1970).
  • I. H. Hutchinson and D. S. Komm, Nucl. Fusion, 17, 1077 (1977).
  • B. Walker, E. A. M. Baker, and A. E. Costley, “A Fabry-Perot Interferometer for Plasma Diagnostics,” J. Phys. E., 14, 832 (1981).
  • J. Chamberlain, The Principles of Interferometric Spectro-copy, John Wiley & Sons, Chichester, United Kingdom (1979).
  • W. R. Rutgers and D. A. Boyd, Phys. Lett., 62A, 498 (1977).
  • G. D. Tait, F. J. Stauffer, and D. A. Boyd, Phys. Fluids, 24, 719 (1981).
  • B. J. D. Tubbing et al., in 12th European Physical Socety Conf., Budapest (1985).
  • P. C. Efthimion, V. Arunasalam, R. Bitzer, L. Campbell, and J. C. Hosea, “A Fast-Scanning Heterodyne Receiver or Measurement of the Electron Cyclotron Emission for High-Temperature Plasmas,” Rev. Sci. Instrum., 50, 949 (1979).
  • K. Kawahata, M. Sakamoto, J. Fujita, H. Matsuo, and K. Sakai, “Calibration Source for Electron Cyclotron Emission Measurements,” Jpn. J. Appl. Phys., 29, part 1, 9, 1824 (1990).
  • N. Isei et al., “Electron Cyclotron Emission Measurements in JT-60U,” FusionEng. Des., 53, 213 (2001).
  • H. Bindslev and D. V. Bartlett, “A Technique for Improving the Relative Accuracy of JET ECE Temperature Profiles,” Proc. 6th Joint Workshop Electron Cyclotron Emission and Electron Cyclotron Resonance Heating, Oxford, 1987.
  • H. Bindslev and D. V. Bartlett, “A Technique for Improving the Relative Accuracy of JET ECE Temperature Profiles,” Internal JET Report (1988).
  • A. Isayama et al., “A 20-Channel Electron Cyclotron Emission Detection System for a Grating Polychromator in JT-60U,” Rev. Sci. Instrum., 73, 3, 1165 (2002).
  • A. Isayama et al., “Electron Temperature Perturbations Measured by Electron Cyclotron Emission Diagnostic Systems in JT-60U,” Fusion Eng. Des., 53, 129 (2001).
  • S. Ishida, A. Nagashima, M. Sato, N. Isea, and T. Matoba, “Twenty-Channel Grating Polychromator Diagnostic System for Electron Cyclotron Emission Measurement in JT-60,” Rev. Sci. Instrum., 61, 10, 2834 (1990).
  • M. Sato et al., “Measurements and Analysis of Electron Cyclotron Emission in JT-60U,” Fusion Eng. Des., 3435, 477 (1997).
  • R. A. Olstad, J. L. Doane, C. P. Moeller, R. C. O’Neill, and M. Di Martino, “High-Power Corrugated Waveguide Components for mm-Wave Fusion Heating Systems,” General Atomics (1996).
  • J. L. Doane, “Propagation and Mode Coupling in Corrugated and Smooth Walled Circular Waveguides,” Infrared and Millimeter Waves, K. J. Button, Ed., 1985, Academic Press: New York. p. Chapter 5.
  • M. Sato, N. Isei, and S. Ishida, “Grating Filter for Grating Polychromator on Measurement of Electron Temperature Profile from Second Harmonic Electron Cyclotron Emission,” J. Plasma Fusion Res., 71, 748 (1995).
  • R. Winston, “Light Collection Within the Framework of Geometric Optics,” J. Opt. Soc. Am., 60, 245 (1970).
  • M. Sato, H. Yokomizo, and A. Nagashima, “Fourier Transform Spectrometer System on JT-60,” J. Plasma Fusion Res. Supplement, 59, 47 (1988).
  • A. Isayama, N. Iwama, T. Showa, Y. Hosoda, N. Isei, S. Ishida, and M. Sato, “Maximum Entropy Estimation of Electron Cyclotron Emission Spectra from Incomplete Interferograms in ELMy H-Mode Tokamak Experiment,” Jpn. J. Appl. Phys., 42, 5787 (2003).
  • N. Isei, M. Sato, S. Ishida, K. Uchino, A. Nagashima, T. Matoba, and T. Oyevaar, “Development of 180 GHz Heterodyne Radiometer for Electron Cyclotron Emission Measurements in JT-66U,” Rev. Sci. Instrum., 66, 1, 413 (1995).
  • K. Kawahata, T. Tanaka, T. Tokuzawa, Y. Ito, A. Ejiril, S. Okajima, and LHD EXPERIMENTAL GROUP, “A Multichannel 118.8 mm-CH3OH Laser Interferometer for Electron Density Profile Measurements in LHD,” Proc. 28th European Physical Society Conf. Controlled Fusion and Plasma Physics, Funchal, Portugal, 2001, ECA.
  • K. Kawahata, Y. Nagayama, S. Inagaki, Y. Ito, and LHD EXPERIMENTAL GROUP, “Broadband Electron Cyclotron Emission Radiometry for the Large Helical Device,” Rev. Sci. Instrum., 74, 3, 1449 (2003).
  • Y. Nagayama et al., “ElectronCyclotronEmissionDiagnostics on the Large Helical Device,” Rev. Sci. Instrum., 70, 1, 1021 (1999).
  • V. S. Udintsev et al., “New ECE Diagnostics fortheTEXTOR-94 Tokamak,” Rev. Sci. Instrum., 72, 1, 359 (2001).
  • V. S. Udintsev, R. Jaspers, A.J.H. DonnÉ, A. KrÄMer-Flecken, J.W. Oosterbeck, M. Van De Pol, and E. Westerhof. “Non-Thermal Electrons in TEXTOR-94 Tokamak Plasmas,” Proc. 27th EPS Conf. Controlled Fusion and Plasma Physics, Budapest, 2000.
  • A. Kraemer-Flecken, G. Waidmann, and P. C. De Vries, “Measurement of 3rd Harmonic of EC-Radiation at TEXTOR-94,” Proc. 10th Joint Workshop Electron Cyclotron Emission and Electron Cyclotron Resonance Heating, Singapore, 1997, World Scientific.
  • J. F. M. Van Gelder et al., “Heterodyne Radiometer at Rijnhuizen Tokamak Project for Electron Cyclotron Emission and Absorption Measurements,” Rev. Sci. Instrum., 66, 1, 416 (1995).
  • K. Ebisawa et al., “Plasma Diagnostics for Inter-FEAT,” Rev. Sci Instrum, 72, 1, 545 (2001).
  • A. E. Costley, A. Malaquias, T. Sugie, G. Vayakis, and C. Walker, “ITER Diagnostics: Design Choices and Solutions,” IAEA (2002).
  • G. Vayakis et al., “Reflectometry on ITER,” Rev. Sci. In-strum., 68, 435 (1997).
  • H. Hartfuss, “Diagnostics for Experimental Thermonuclear Fusion Reactors,” Proc. Int. Workshop Diagnostics for ITER, Varenna, Italy, 1995, Plenum Press.
  • ITER, “ITER Physics Group: ITER Physics Basis Editors, and ITER EDA, Chapter 7: Measurement of Plasma Parameters,” Nucl. Fusion, 39, 12, 2541 (1999).
  • J. Y. L. Ma and L. C. Robinson, “Night Moth Eye Window for the Millimetre and Sub-Millimetre Wave Region,” J. Mod. Opt., 30, 12, 1685 (1983).
  • A. J. H. DonnÉ and A. E. Costley, “Key Issues in Diagnostics for Burning Plasma Experiments,” IEEE Trans. Plasma Sci., 32, 1, 177 (2004).
  • G. Vayakis et al., “ECE Diagnostics for RTO/RC-FEAT,” Fusion Eng. Des., 53, 221 (2001).
  • D. V. Bartlett et al., in Proc. 14th European Conf. Controlled Fusion and Plasma Physics, Madrid, Spain, 1987.
  • I. B. Bernstein, “Waves in a Plasma in a Magnetic Field,” Phys. Rev., 109, 10 (1958).
  • A. K. Ram and S. D. Schultz, “Excitation, Propagation, and Damping of Electron Bernstein Waves in Tokamaks,” Phys. Plasmas, 7, 4084 (2000).
  • J. Preinhaelter and V. KopÉCky, “Penetration of High-Frequency Waves into a Weakly Inhomogeneous Magnetized Plasma at Oblique Incidence and Their Transformation to Bernstein Modes,” J. Plasma Phys., 10, 1 (1973).
  • H. P. Laqua, H. J. Hartfuss, and W7-AS TEAM, “Electron Bernstein Wave Emission from an Overdense Plasma at the W7-AS Stellarator,” Phys. Rev. Lett., 81, 2060 (1998).
  • F. Volpe and H. P. Laqua, “BXO Mode-Converted Electron Bernstein Emission Diagnostic,” Rev. Sci. Instrum., 74, 1409 (2003).
  • V. Shevchenko et al., “Electron Bernstein Wave Studies on Compass-D and MAST,” AIP Conf. Proc., 694, 359 (2003).
  • J. Preinhaelter et al., “Influence of Antenna Aiming on ECE in MAST,” Rev. Sci. Instrum., 75, 3804 (2004).
  • G. Taylor et al., “Efficient Coupling of Thermal Electron Bernstein Waves to the Ordinary Electromagnetic Mode on the National Spherical Torus Experiment,” Phys. Plasmas, 12, 052511 (2005).
  • J. Preinhaelter et al., “EBW Simulation for MAST and NSTX Experiments,” AIP Conf. Proc., 787, 349 (2005).
  • V. Shevchenko et al., “EBW Emission Observations on Compass-D and MAST,” Proc. 28th EPS Conf. Controlled Fusion and Plasma Physics, ECA, Vol. 25A, p. 1285 (2001).
  • P. K. Chattopadhyay et al., “Electron Bernstein Wave Emission from an Overdense Reversed Field Pinch Plasma,” Phys. Plasmas, 9, 752 (2002).
  • B. Jones et al., “Controlled Optimization of Mode Conversion from Electron Bernstein Waves to Extraordinary Mode in Magnetized Plasma,” Phys. Rev. Lett., 90, 165001 (2003).
  • T. Munsat et al., “Transient Transport Experiments in the Current-Drive Experiment Upgrade Spherical Torus,” Phys. Plasmas, 9, 480 (2002).
  • B. Jones, G. Taylor, P. C. Efthimion, and T. Munsat, “Measurement of the Magnetic Field in a Spherical Torus Plasma via Electron Bernstein Wave Emission Harmonic Overlap,” Phys. Plasmas, 11, 1028 (2004).
  • G. Taylor et al., “Enhanced Conversion of Thermal Electron Bernstein Waves to the Extraordinary Electromagnetic Mode on the National Spherical Torus Experiment,” Phys. Plasmas, 10, 1395 (2003).
  • S. Shiraiwa et al., “Electron Bernstein Wave Emission Diagnostic Assisted by Reflectometry on TST-2 Spherical Tokamak,” Rev. Sci Instrum, 74, 3, 1453 (2003).
  • K. G. Budden, Radio Waves in the Ionosphere: The Mathematical Theory of the Reflection of Radio Waves from Stratified Ionised Layers, Cambridge University Press, London (1961).
  • V. L. Ginzburg, Propagation of Electromagnetic Waves in Plasmas, Gordon and Breach, New York (1961).
  • F. Simonet, “Measurement of Electron Density Profile by Microwave Reflectometry on Tokamak,” Rev. Sci. Instrum., 56, 664 (1985).
  • H. Bottollier-Curtet and G. Ichtchencko, “Determination of the Electron Density Profile of Petula-B,” Rev. Sci. Instrum., 58, 539 (1987).
  • A. E. Hubbard, A. E. Costley, and C. W. Gowers, “A Simple Fixed-Frequency Reflectometer for Plasma Density Profile Measurements on JET,” J. Phys. E., 20, 423 (1987).
  • E. Mazzucato, “Microwave Reflectometry for Magnetically Confined Plasmas,” Rev. Sci. Instrum., 69, 2201 (1998).
  • H. Bindslev, PlasmaPhys. Control Fusion, 35, 1093 (1993).
  • C. Laviron, A. J. H. DonnÉ, M. E. Manso, and J. Sanchez, “Reflectometry Techniques for Density Profile Measurements on Fusion Plasmas,” Plasma Phys. Control Fusion, 38, 905 (1996).
  • P. Varela et al., “Initialization of Plasma Density Profiles from Reflectometry,” Rev. Sci. Instrum., 66, 4942 (1995).
  • V. Zhuravlev, J. Sanchez, and E. De La Luna, “Two-Dimensional Effects of Turbulence in Density Profile Measurements by Reflectometry,” Plasma Phys. Control Fusion, 38, 2231 (1996).
  • L. G. Bruskin, A. Mase, T. Tamano, and K. Yatsu, “Application of One-Dimensional Wentzel-Kramers-Brillouin Approximation in Microwave Reflectometry of Plasma Density Profiles,” Rev. Sci. Instrum., 69, 2184 (1998).
  • A. Silva et al., “Performance of the Microwave Reflectometry Diagnostic for Density Profile Measurements on ASDEX Upgrade,” Rev. Sci. Instrum., 72, 307 (2001).
  • G. Wang, L. Zeng, E. J. Doyle, T. L. Rhodes, and W. A. Peebles, “Improved Reflectometer Electron Density Profile Measurements on DIII-D,” Rev. Sci. Instrum., 74, 1525 (2003).
  • K. W. Kim, E. Doyle, W. A. Peebles, A. Ejiril, N. C. Luhmann, Jr., and C. L. Rettig, “Advances in Reflectometric Density Profile Measurements on the DIII-D Tokamak,” Rev. Sci. Instrum., 66, 2, 1229 (1995).
  • K. W. Kim, E. Doyle, T. L. Rhodes, W. A. Peebles, C. Rettig, and N. C. Luhmann, Jr., “Development of a Fast Solid-State High Resolution Density Profile Reflectometer System on the DIII-D Tokamak,” Rev. Sci. Instrum., 68, 1, 466 (1997).
  • G. Cunningham, T. Edlington, A. Silva, and L. Meneses, “Profile Reflectometry on MAST,” Proc. 7th Int. Reflectometry Workshop Fusion Plasma Diagnostics (IRW7), Garching, Germany, 2005.
  • L. Meneses, L. Cupido, A. A. Ferreira, S. Hacquin, M. Manso, and JET EFDACONTRIBUTORS, “New Reflectometer Design for Density Profile Measurements on JET,” Rev. Sci. Instrum., 77 (2006).
  • Y. Lin et al., “Upgrade of Reflectometry Profile and Fluctuation Measurements in Alcator C-Mod,” Rev. Sci. Instrum., 70, 1078 (1999).
  • T. Estrada et al., “Density Profile Measurements by AM Reflectometry in TJ-II,” Plasma Phys. Control Fusion, 43, 1535 (2001).
  • T. Estrada, J. Sanchez, V. Zhuravlev, E. Delaluna, and Branas, “Turbulence and Beam Size Effects on Reflectometry Measurements,” Phys. Plasmas, 8, 6, 2657 (2001).
  • G. R. Hanson et al., “Differential-Phase Reflectometry for Edge Profile Measurements on Tokamak Fusion Test Reader,” Rev. Sci. Instrum., 66, 1, part 2, 863 (1995).
  • G. R. Hanson et al., “Microwave Reflectometry for Edge Density Profile Measurements on TFTR,” Plasma Phys. Control Fusion, 36, 12, 2073 (1994).
  • C. A. J. Hugenholtz et al., “Pulsed Radar Reflectometry for the Textor Tokamak,” Rev. Sci. Instrum., 70, 1034 (1999).
  • C. W. Domier, N. C. Luhmann, Jr., A. E. Chou, W.-M. Zhang, and A. J. Romanowsky, “Ultrashort-Pulse Reflectom-etry,” Rev. Sci. Instrum., 66, 1, 399 (1995).
  • B. I. Cohen, L. L. Lodestro, E. Bickford, and T. A. Casper, “Simulations of Broadband Short-Pulse Reflectometry for Diagnosing Plasma Density and Magnetic-Field Profiles,” Plasma Phys. Control Fusion, 40 (PII), 75 (1998).
  • Y. Roh, C. W. Domier, and N. C. Luhmann, Jr., “Ultrashort Pulse Reflectometry for Density Profile and Fluctuation Measurements on SSPX,” Rev. Sci. Instrum., 74, 3, 1518 (2003).
  • Y. Kogi et al., “Ultrashort-Pulse Reflectometer on LHD,” Rev. Sci. Instrum., 75, 3837 (2004).
  • T. Tokuzawa, K. Kawahata, T. Tanaka, and LHD EXPERIMENTAL GROUP, “Electron Density Profile Measurement Using Ka-Band Microwave Impulse Radar Reflectometer on LHD,” Nucl. Fusion, 46, S670 (2006).
  • C. W. Domier, N. C. Luhmann, Jr., Y. Roh, H. S. Mclean, E. B. Hooper, and D. N. Hill, “Ultrashort Pulse Reflectometer Performance on the Sustained Spheromak Physics Experiment,” Rev. Sci. Instrum., 75, 10, 3868 (2004).
  • A. Mase et al., “Remote Experiment of Ultrashort-Pulse Re-flectometry for Large Helical Device Plasmas,” Rev. Sci. Instrum., 77, 10E916 (2006).
  • P. Varela, M. Manso, A. Silva, CFN TEAM, and ASDEX UPGRADE TEAM, “Review of Data Processing Techniques for Density Profile Evaluation from Broadband FM-CW Reflectometry on ASDEX Upgrade,” Nucl. Fusion, 46, S693 (2006).
  • I. Nunes et al., “Characterization of the Density Profile Collapse of Type I ELMs in ASDEX Upgrade with High Temporal and Spatial Resolution Reflectometry,” Nucl. Fusion, 44, 883 (2004).
  • B. P. Van Milligen et al., “Ballistic Transport Phenomena in TJ-II,” Nucl. Fusion, 42, 787 (2002).
  • J. Santos, M. Manso, Varela, and J. Neuhauser, “Plasma Position Measurements From Ordinary FM-CW Reflectom-etry on ASDEX Upgrade,” Rev. Sci. Instrum., 74, 1489 (2003).
  • L. Zheng, E. J. Doyle, T. C. Luce, and W. A. Peebles, “Implementation of Reflectometry as a Standard Density Profile Diagnostic on DIII-D,” Rev. Sci. Instrum., 72, 320 (2001).
  • F. Wagner et al., Plasma Phys. Control Fusion, 36, A-61 (1994).
  • M. Manso et al., “H-Mode Studies with Microwave Reflec-tometry on ASDEX Upgrade,” Plasma Phys. Control Fusion, 40, 747 (1998).
  • T. L. Rhodes et al., “Comparison of Turbulence Measurements from DIII-D Low-Mode and High-Performance Plasmas to Turbulence Simulations and Models,” Phys. Plasmas, 9, 5, 2141 (2002).
  • N. Oyama and K. Shinohara, “Heterodyne O-Mode Reflectometer on the JT-60U Tokamak,” Rev. Sci. Instrum., 73, 1169 (2002).
  • R. Nazikian, G. J. Kramer, and E. Valeo, “A Tutorial on the Basic Principles of Microwave Reflectometry Applied to Fluctuation Measurements in Fusion Plasmas,” Phys. Plasmas, 8, 1840 (2001).
  • B. B. Afeyant, A. Chou, and B. I. Cohen, “The Scattering Phase Shift due to Bragg Resonance in One-Dimensional Fluctuation Reflectometry,” Plasma Phys. Control Fusion, 37, 315 (1995).
  • N. L. Bretz, “One-Dimensional Modeling of the Wavelength Sensitivity, Localization, Measurements of Plasma Fluctuations,” Phys. Fluids, B4, 2414 (1992).
  • J. Sanchez, T. Estrada, and H. J. Hartfuss, “Broadband Heterodyne Reflectometry: Application to W7AS,” Proc. 1st IAEA Technical Committee Mtg. Microwave Reflectometry on Fusion Plasma Diagnostics, Abingdon, 1992.
  • V. V. Bulanin and D. Korneev, “Tokamak Plasma Cross-Detection Reflectometry,” Plasma Phys. Rep, 2, 014 (1994).
  • T. L. Rhodes, R. J. Taylor, E. J. Doyle, N. C. J. Luhmann, and W. A. Peebles, “Poloidally Asymmetric Response of Turbulence to the H-Mode on the CCT Tokamak,” Nucl. Fusion, 12, 1787 (1993).
  • E. Mazzucato and R. Nazikian, “Radial Scale Length of Turbulent Fluctuations in the Main Core of TFTR Plasmas,” Phys. Rev. Lett., 71, 1840 (1993).
  • G. D. Conway, “2D Modelling of Radial Correlation Reflectometry,” Plasma Phys. Control Fusion, 39, 407 (1997).
  • Y. Lin, R. Nazikian, H. Irby, and E. S. Marmar, “Plasma Curvature Effects on Microwave Reflectometry Fluctuation Measurements,” Plasma Phys. Control Fusion, 43, L1 (2001).
  • J. H. Irby, S. Horne, I. H. Hutchinson, and P. C. Stek, “2D Full-Wave Simulation of Ordinary Mode Reflectometry”, Plasma Phys. Control Fusion, 35, 601 (1993).
  • E. Z. Gusakov and B. O. Yakovlev, “Two-Dimensional Linear Theory of Radial Correlation Reflectometry Diagnostics,” Plasma Phys. Control Fusion, 44, 2525 (2002).
  • E. Z. Gusakov and A. Y. Popov, “Two-Dimensional NonLinear Theory of Radial Correlation Reflectometry,” Plasma Phys. Control Fusion, 46, 1393 (2004).
  • L. G. Bruskin et al., “Application of a Stratified Plasma Model to Microwave Reflectometry of Density Fluctuations,” Plasma Phys. Control Fusion, 47, 1379 (2005).
  • M. Hirsch et al., “Doppler Reflectometry for the Investigation of Propagating Density Perturbations,” Plasma Phys. Control Fusion, 43, 1641 (2001).
  • E. Holzhauer, M. Hirsch, T. Grossmann, B. Banas, and F. Serra, “Theoretical and Experimental Investigation of the Phase-Runaway in Microwave Reflectometry,” Plasma Phys. Control Fusion, 40, 1869 (1998).
  • G. D. Conway, J. Schirmer, S. Klenge, W. Suttrop, E. Holzhauer, and ASDEX UPGRADE TEAM, “Plasma Rotation Profile Measurements Using Doppler Reflectometry,” Plasma Phys. Control Fusion, 46, 951 (2004).
  • E. Blanco, T. Estrada, and J. Sanchez, “Doppler Re-flectometry Studies Using a Two-Dimensional Full-Wave Code,” Plasma Phys. Control Fusion, 48, 699 (2006).
  • E. Z. Gusakov and A. V. Surkov, “Spatial and Wavenumber Resolution of Doppler Reflectometry,” Plasma Phys. Control Fusion, 46, 1143 (2004).
  • A. V. Surkov, “Nonlinear Regime of Doppler Reflectometry in Cylindrical Plasmas,” Plasma Phys. Control Fusion, 48, 901 (2006).
  • M. Hirsch and E. Holzhauer, “Doppler Reflectometry with Optimized Temporal Resolution for the Measurement of Turbulence and Its Propagation Velocity,” Plasma Phys. Control Fusion, 46, 593 (2004).
  • M. Hirsch, J. Baldzhun, H. Ehmler, E. Holzhauer, and F. Wagner, “Dynamics of Poloidal Flows and Turbulence at the H-Mode Transition in W7-AS,” Plasma Phys. Control Fusion, 48, S155 (2006).
  • V. V. Bulanin et al., “Plasma Rotation Evolution Near the Peripheral Transport Barrier in the Presence of Low-Frequency MHD Burss in TUMAN-3M Tokamak,” Plasma Phys. Control Fusion, 48, A101 (2006).
  • P. Hennequin, C. HonorÉ, A. Truc, A. QuÉMenÉUr, and N. Lemoine, “Doppler Backscattering System for Measuring Fluctuations and Their Perpendicular Velocity in Tore Supra,” Rev. Sci. Instrum., 75, 3881 (2004).
  • T. Estrada, E. Blanco, L. Cupido, M. Manso, and J. Sanchez, “Velocity Shear Layer Measurements by Reflectometry in TJ-II Plasmas,” Nucl. Fusion, 86, S792 (2006).
  • G. Vayakis et al., “Status and Plans for Reflectometry in ITER,” Proc. 7th Int. Reflectometry Workshop for Fusion Plasma Diagnostics (IRW-7), Garching, Germany, 2005.
  • J. Sheffield, Plasma Scattering of Electromagnetic Radiation, Academic Press (1975).
  • H. Bindslev, Recent Developments in Theory of Wave Scattering in Plasmas, p. 109, A. G. Litvak, Ed., Russian Academy of Sciences, Institute of Applied Physics, Nizhny Novgorod, Russia (1996).
  • H. Bindslev, J. Atmos. Terr. Phys., 58, 983 (1996).
  • E. Holzhauer and J. H. Massig, “An Analysis of Optical Mixing in Plasma Scattering Experiments,” Plasma Phys., 20, 867 (1978).
  • D. Gresillon, C. Stern, A. Hemon, A. Truc, and T. Lehner, “Density Fluctuation Measurement by Far Infrared Light Scattering,” Physica Scripta, T2/2, 459 (1982).
  • R. E. Slusher and C. M. Surko, “Study of Density Fluctuations in Plasmas by Small-Angle CO2 Laser Scattering,” Phys. Fluids, 23, 472 (1980).
  • T. Tsukishima, “Measurements of the Density Fluctuations Using Microwave Scattering Method,” Diagnostics for Fusion Experiments, p. 225, E. Sindoni and C. Wharton, Eds., Pergamon Press, Oxford and New York (1979).
  • A. E. Siegman, “The Antenna Properties of Optical Heterodyne Receivers,” Appl. Opt., 5, 1588 (1966).
  • J. Brown, Proc. IEE, 105C, 343 (1958).
  • M. Moresco and E. Zilli, “Coherent Scattering Theory with Gaussian Beams in Plasma Diagnostics,” J. Phys. D., 17, 307 (1984).
  • N. L. Bretz, P. Efthimion, J. Doane, and A. Kritz, “X-Mode Scattering for the Measurement of Density Fluctuations on TFTR,” Rev. Sci. Instrum., 59, 1539 (1988).
  • J. P. Dougherty and D. T. Farley, “A Theory of Incoherent Scattering of Radio Waves By a Plasma,” Proc. R. Soc. London, A259, 79 (1960).
  • A. G. Sitenko, Electromagnetic Fluctuations in Plasma, Academic Press, New York (1967).
  • D. M. Simonich and K. C. Yeh, “A Theory of Scattering from Irregularities in a Magneto-Ionic Medium,” Radio Sci., 7, 291 (1972).
  • N. L. Bretz, “Geometrical Effects in X-Mode Scattering,” J. Plasma Phys., 38, 79 (1987).
  • T. P. Hughes and S. R. P. Smith, “Effects of Plasma Dielectric Properties on Thomson Scattering of Millimetre Waves in Tokamak Plasmas,” J. Plasma Phys., 42, 215 (1989).
  • A. Truc et al., “ALTAIR: An Infrared Laser Scattering Diagnostic on the TORE SUPRA Tokamak,” Rev. Sci. Instrum., 63, 3716 (1992).
  • P. Devynck et al., “Localized Measurements of Turbulence in the TORE SUPRA Tokamak,” Plasma Phys. Control Fusion, 35, 63 (1993).
  • C. L. Rettig, E. J. Doyle, W. A. Peebles, K. H. Burrell, R. J. Groebner, T. H. Osborne, and N. C. Luhmann, Jr., “Enhanced Spatial Localization of Collective Scattering Measurements in the DIII-D Tokamak,” Rev. Sci. Instrum., 66, 848 (1995).
  • C. L. Rettig, W. A. Peebles, K. H. Burrell, E. J. Doyle, R.J. Groebner, N. C. Luhmann, Jr., and R. Philipona, “Edge Turbulence Reduction at the L-H Transition in DIII-D,” Nucl. Fusion, 33, 643 (1993).
  • C. L. Rettig, W. A. Peebles, K. H. Burrell, R. J. La Haye, E. J. Doyle, R. J. Groebner, and N. C. Luhmann, Jr., “Microturbulence Damping Mechanisms in the DIII-D Tokamak,” Phys. Fluids, B5, 2428 (1993).
  • E. Mazzucato, “Localized Measurement of Turbulent Fluctuations in Tokamaks with Coherent Scattering of Electromagnetic Waves,” Phys. Plasmas, 10, 753 (2003).
  • D. R. Smith et al., “Microwave Scattering System Design for pe Scale Turbulence Measurements on NSTX,” Rev. Sci. Instrum., 75, 3840 (2004).
  • D. R. Smith et al., “Investigation of Electron Gyroscale Fluctuations on NSTX with a Millimeter-Wave Scattering System,” Proc. 16th High Temperature Plasma Diagnostics Conf. Williamsburg, Virginia, 2006.
  • J. L. Doane, “Broadband Superheterodyne Tracking Circuits for Millimeter-Wave Measurements,” Rev. Sci. Instrum., 51, 317 (1980).
  • C. L. Rettig, S. Burns, R. Philipona, W. A. Peebles, and N. C. Luhmann, Jr., “Development and Operation of a Backward Wave Oscillator Based FIR Scattering System for DIII-D,” Rev. Sci. Instrum., 61, 3010 (1990).
  • T. Tsukishima and O. Asada, “A Homodyne Method for Detecting Asymmetric Spectra in Electromagnetic Wave Scatterings from Plasmas,” Jpn. J. Appl. Phys., 17, 2059 (1978).
  • O. Asada, A. Inoue, and T. Tsukishima, “Homodyne Method for Detecting Asymmetric Spectra,” Rev. Sci. Instrum., 51, 1308 (1980).
  • D. L. Brower, C. P. Ritz, W. A. Peebles, N. C. Luhmann, Jr., and E. J. Powers, “The Application of Homodyne Spectroscopy to the Study of Low-Frequency Microturbulence in the TEXT Tokamak,” Int. J. Infrared Millimeter Waves, 7, 447 (1986).
  • E. Mazzucato, “Small-Scale Density Fluctuations in the Adi-abatic Toroidal Compressor,” Phys. Rev. Lett., 36, 792 (1976).
  • R. J. Goldston, E. Mazzucato, R. E. Slusher, and C. M. Surko, “Plasma Physics and Controlled Nuclear Fusion Research,” Proc. 6th Int. Conf. Plasma Physics and Controlled Nuclear Fusion Research, Vienna, Austria, 1977, IAEA.
  • E. Mazzucato, “Low-FrequencyMicroinstabilities inthePLT Tokamak,” Phys. Fluids, 21, 1063 (1978).
  • E. Mazzucato, “Spectrum of Small-Scale Density Fluctuations in Tokamaks,” Phys. Rev. Lett., 48, 1828 (1982).
  • C. M. Surko and R. E. Slusher, “Study of the Density Fluctuations in the Adiabatic Toroidal Compressor Tokamak Using CO2 Laser Scattering,” Phys. Rev. Lett., 37, 1747 (1976).
  • R. Cano, “A Review of Microwave Scattering on Toroidal Plasma,” Diagnostics for Fusion Experiments, p. 177, E. S. A. C. Wharton, Ed., Pergamon Press, Oxford (1978).
  • N. C. Luhmann, Jr. and W. A. Peebles, “Laser Diagnostics of Magnetically Confined Thermonuclear Plasmas,” Laser Handbook, p. 455, M. B. A. M. L. Stitch, Ed., Elsevier Science Publisher B.V. (1985).
  • D. L. Brower, H. K. Park, W. A. Peebles, and N. C. Luhmann, Jr., “Multichannel Far-Infrared Collective Scattering System for Plasma Wave Studies,” Topics in Millimeter Wave Technology, p. 83, K. J. Button, Ed., Academic Press, New York (1988).
  • N. C. Luhmann, Jr. et al., “Millimeter and Submillimeter Wave Diagnostic Systems for Contemporary Fusion Experiments,” Diagnostics for Contemporary Fusion Experiments, p. 135, P. E. Stott, G. Gorini, and E. Sindoni, Eds., SIF, Bologna (1991).
  • N. L. Bretz, “Instrumentation for Microturbulence in Toka-maks,” Rev. Sci. Instrum., 68, 2927 (1997).
  • P. C. Liewer, “Measurements of Microturbulence in Tokamaks and Comparisons with Theories of Turbulence and Anomalous Transport,” Nucl. Fusion, 25, 543 (1985).
  • A. J. Wootton et al., “Fluctuations and Anomalous Transport in Tokamaks,” Phys. Fluids, B2, 2879 (1990).
  • D. L. Brower, W. A. Peebles, N. C. Luhmann, Jr., and R. L. Savage, “Multichannel Scattering Studies of the Spectra and Spatial Distribution of Tokamak Microturbulence,” Phys. Rev. Lett., 54, 689 (1985).
  • D. L. Brower, W. A. Peebles, and N. C. Luhmann, Jr., “The Spectrum, Spatial Distribution and Scaling of Microturbulence in the TEXT Tokamak,” Nucl. Fusion, 27, 2055 (1987).
  • D. L. Brower, W. A. Peebles, and N. C. Luhmann, Jr., “Observation of Large-Amplitude, Narrow-Band Density Fluctuations in the Interior Region of an Ohmic Tokamak Plasma,” Phys. Rev. Lett., 55, 2579 (1985).
  • D. L. Brower, W. A. Peebles, S. K. Kim, N. C. Luhmann, Jr., W. M. Tang, and P. E. Phillips, “Observation of a High-Density Ion Mode on Tokamak Microturbulence,” Phys. Rev. Lett., 59, 48 (1987).
  • D. L. Brower et al., “Experimental Evidence for Ion Pressure Gradient Driven Turbulence in TEXT,” Nucl. Fusion, 29, 1247 (1989).
  • D. L. Brower et al., “Experimental Evidence for Coupling of Plasma Particle and Heat Transport in the TEXT Tokamak,” Phys. Rev. Lett., 65, 337 (1990).
  • D. L. Brower et al., “Confinement Degradation and Enhanced Microturbulence as Long-Time Precursors to High-Density-Limit Tokamak Disruptions,” Phys. Rev. Lett., 67, 200 (1991).
  • C. X. Yu et al., “Comparison of the Density Fluctuation Spectrum and Amplitude in TEXT with Expectation for Electron Drift Waves,” Phys. Fluids, b4, 381 (1992).
  • C. X. Yu et al., “Tearing Instabilities and Microturbulence in TEXT,” Nucl. Fusion, 32, 1545 (1992).
  • R. Philipona et al., “Far-Infrared Heterodyne Scattering to Study Density Fluctuations on the DIII-D Tokamak,” Rev. Sci. In-strum., 61, 3007 (1990).
  • T. L. Rhodes et al., “Comparison of Broad Spectrum Turbulence Measurements and Gyrokinetic Code Prediction on the DIII-D Tokamak,” Proc. 20th IAEA Fusion Energy Conf., Vilmoura, Portugal, 2004, IAEA.
  • N. L. Bretz, R. Nazikian, W. Bergin, M. Diesso, J. Feit, and M. Mccarthy, “Instrumental Aspects of Extraordinary Mode Scattering on TFTR,” Rev. Sci. Instrum., 61, 3031 (1990).
  • K. L. Wong, N. L. Bretz, T. S. Hahm, and E. Synakowski, “Short Wavelength Fluctuations and Electron Heat Conductivity in Enhanced Reversed Shear Plasmas,” Phys. Lett., A236, 339 (1997).
  • D. E. Evans, M. Von Hellermann, and E. Holzhauer, “Fourier Optics Approach to Far Forward Scattering and Related Refractive Index Phenomena in Laboratory Plasmas,” Plasma Phys., 24, 819 (1982).
  • W. R. Klein and B. D. Cook, “Unified Approach to Ultrasonic Light Diffraction,” IEEE Trans. Sonics Utrasonics, SU–14, 123 (1967).
  • D. E. Evans, E. J. Doyle, D. Frigione, M. Von Hellermann, and A. Murdoch, “Measurement of Long Wavelength Turbulence in a Tokamak by Extreme Far Forward Scattering,” Plasma Phys., 25, 617 (1983).
  • H. W. H. Van Andel, A. Boileau, and M. Von Hellermann, “Study of Microturbulence in the TEXTOR Tokamak Using CO2 Laser Scattering,” Plasma Phys. Control Fusion, 29, 49 (1987).
  • K. Matsuo, H. Nitta, Y. Sonoda, K. Muraoka, M. Akazaki, and RFC-XX-M GROUP, “Identification and Role of Low-Frequency Microinstability in RFC-XX-M Studied by the Fraunhofer-Diffraction Method,” J. Phys. Soc. Jpn., 56, 150 (1987).
  • C. X. Yu, J. X. Cao, X. M. Shen, and Z. S. Wang, “Diffraction of Electromagnetic Wave by a Damped Plasma Wave,” Plasma Phys. Control Fusion, 30, 1821 (1988).
  • A. R. Thompson, J. M. Moran, and G. W. Swenson, Jr., Interferometry and Synthesis in Radio Astronomy, Wiley and Sons, New York (1986).
  • L. E. Sharp, “The Measurement of Large-Scale Density Fluctuations in Toroidal Plasmas from the Phase Scintillation of a Probing Electromagnetic Wave,” Plasma Phys., 25, 781 (1983).
  • R. Nazikian and L. E. Sharp, “CO2 Laser Scintillation Interferometer for the Measurement of Density Fluctuations in Plasma Confinement Devices,” Rev. Sci. Instrum., 58, 2086 (1987).
  • B. W. James and C. X. Yu, “Diffraction of Laser Radiation by a Plasma Wave—The Near Field and Far Field Limiting Cases,” Plasma Phys., 27, 557 (1985).
  • J. Howard and L. E. Sharp, “Diffraction Analysis of Forward-Angle Scattering in Plasmas,” Plasma Phys. Control Fusion, 34, 1133 (1992).
  • H. Weisen, “Imaging Methods for the Observation of Plasma Density Fluctuations,” Plasma Phys. Control Fusion, 28, 1147 (1986).
  • H. Weisen, C. Hollenstein, and R. Behn, “Turbulent Density Fluctuations in the TCA Tokamak,” Plasma Phys. Control Fusion, 30, 309 (1988).
  • H. Weisen, “The Phase Contrast Method as an Imaging Diagnostic for Plasma Density Fluctuations,” Rev. Sci. Instrum., 59, 1544 (1988).
  • A. D. Piliya, Phys. Tech. Phys., 11, 1680 (1966).
  • K. M. Novik and A. D. Piliya, “Enhanced Microwave Scattering in Plasmas,” Plasma Phys. Control Fusion, 36, 357 (1993).
  • I. Fidone, “Enhanced Incoherent Scattering at the Upper-Hybrid Resonance. I. Cold Plasma Theory,” Phys. Fluids, 16, 1680 (1973).
  • I. Fidone and G. Granata, “Enhanced Incoherent Scattering at the Upper-Hybrid Resonance. II. Warm Plasma Theory,” Phys. Fluids, 16, 1685 (1973).
  • E. Z. Gusakov and A. D. Piliya, “The Possibility of Determining the Spatial Spectrum of Plasma Oscillations by the Method of Enhanced Scattering of Microwave,” Sov. Tech. Phys. Lett, 18, 325 (1992).
  • B. Brusehaber, E. Z. Gusakov, M. Kramer, and A. D. Piliya, “Enhanced Microwave Scattering with Time-Flight Resolution,” Plasma Phys. Control Fusion, 36, 997 (1994).
  • B. Brusehaber and M. Kramer, “Enhanced Microwave Pulse Backscattering off Externally Excited Low-Hybrid Waves,” Plasma Phys. Control Fusion, 37, 497 (1995).
  • B. Brusehaber and M. Kramer, “Study of RADAR-Enhanced Scattering on a Magnetized RF Discharge,” Plasma Phys. Control Fusion, 39, 389 (1997).
  • D. G. Bulyginskiy et al., “RADAR Upper Hybrid Resonance Scattering Diagnostics of Small-Scale Fluctuations and Waves in Tokamak Plasmas,” Phys. Plasmas, 8, 2224 (2001).
  • A. D. Gurchenko, E. Z. Gusakov, M. M. Larionov, K. M. Novik, A. N. Savel’Ev, V. L. Selenin, and A. Y. Stepanov, “Spectra of Enhanced Scattering by Spontaneous Density Fluctuations in a Tokamak,” Plasma Phys., 30, 807 (2004).
  • V. I. Arkhipenko, V. N. Budnikov, E. Z. Gusakov, V. L. Selenin, and L. V. Simonchik, “Measurement of the Wavelength of Plasma Fluctuations by the Correlation Enhanced Scattering Method,” Tech. Phys. Lett., 19, 20 (1993).
  • E. Z. Gusakov, N. M. Kaganskaya, M. Kraemer, and V. L. Selenin, “Correlation Enhanced-Scattering Diagnostics of Small Scale Plasma Turbulence,” Plasma Phys. Control Fusion, 42, 1033 (2000).
  • A. B. Altukhov, E. Z. Gusakov, M. A. Irza, M. Kramer, B. Loreanz, and V. L. Selenin, “Investigations of Short-Scale Fluctuations in a Helicon Plasma by Cross-Correlation Enhanced Scattering,” Phys. Plasmas, 12, 022310 (2005).
  • A. D. Gurchenko et al., “Correlation Upper Hybrid Resonance Scattering Diagnostics of Small Scale Turbulence in FT-1 To-kamak,” Proc. 29th EPS Conf. Controlled Fusion and Plasma Physics, Budapest, 2000.
  • E. Z. Gusakov, N. M. Kaganskaya, M. A. Lvov, and V. L. Selenin, in Proc. 1996 Int. Conf. Plasma Physics (Japan Society of Plasma Science and Nuclear Fusion Research), Nagoya, Japan, 1996.
  • E. Z. Gusakov, N. M. Kaganskaya, M. Kraemer, P. Morsinchik, and V. L. Selenin, “Experiments on Interferometric Enhanced Scattering in a Plasma with a Nonuniform Magnetic Field,” Tech. Phys. Lett., 24, 806 (1998).
  • E. Z. Gusakov, N. M. Kaganskaya, M. Kraemer, P. Morcinczy, and V. L. Selenin, “Interferometer Enhanced Scattering Diagnostics of Small-Scale Plasma Waves,” Plasma Phys. Control Fusion, 41, 899 (1999).
  • A. R. Thompson, J. Plasma Phys., 5, 225 (1971).
  • T. Lehner, J. M. Rax, and X. L. Zou, “Linear Mode Conversion by Magnetic Fluctuations in Inhomogeneous Magnetized Plasmas,” Europhys. Lett., 8, 759 (1989).
  • F. A. Hass and D. E. Evans, “Proposal for Measuring Magnetic Fluctuations in Tokamaks by Thomson Scattering,” Rev. Sci. Instrum., 61, 3541 (1990).
  • X. L. Zou, L. Laurent, and J. M. Rax, “Scattering of an Electromagnetic Wave in a Plasma Close to a Cut-Off Layer. Application to Fluctuation Measurements,” Plasma Phys. Control Fusion, 33, 903 (1991).
  • L. Vahala, G. Vahala, and N. Bretz, “Electromagnetic Wave Scattering from Magnetic Fluctuations in Tokamaks,” Phys. Fluids, B4, 619 (1992).
  • L. G. Bruskin, A. Mase, and T. Tamano, “Two-Dimensional Microwave Scattering by Fluctuations of Plasma Density and Magnetic Field,” Plasma Phys. Control Fusion, 37, 255 (1995).
  • X. L. Zou, L. Colas, M. Paume, M. Chareau, L. Laurent, P. Devynck, and D. Gresillon, “Internal Magnetic Turbulence Measurement in Plasma by Cross Polarization Scattering,” Phys. Rev. Lett., 75, 1090 (1995).
  • L. Colas et al., “Internal Magnetic Fluctuations and Electron Heat Transport in the TORE SUPRA Tokamak: Observation by Cross-Polarization Scattering,” Nucl. Fusion, 38, 903 (1998).
  • Y. Kogi et al., “Cross-Polarization Scattering from Low-Frequency Electromagnetic Waves in the GAMMA-10 Tandem Mirror,” Rev. Sci. Instrum., 70, 991 (1999).
  • E. Z. Gusakov, “Theory of Cross-Polarization Scattering from Magnetic Fluctuations in the Upper Hybrid Resonance,” Proc. 25th EPS Conf. Controlled Fusion and Plasma Physics, Prague, 1998.
  • D. G. Bulyginskiy et al., “Observation of Cross Polarization Scattering in the Upper Hybrid Resonance and New Possibilities for Tokamak Magnetic Turbulence Diagnostics,” Proc. 25th Conf. Controlled Fusion and Plasma Physics, Prague, 1998.
  • A. D. Gurchenko, E. Z. Gusakov, M. M. Larionov, K. M. Novik, V. L. Selenin, and A. Yu. Stepanov, “Experiments on Cross-Polarization Scattering in the Upper Hybrid Resonance Region,” Plasma Phys. Report, 31, 521 (2005).
  • E. E. Salpeter, Phys. Rev., 1, 1528 (1960).
  • M. N. Rosenbluth and N. Rostoker, Phys. Fluids, 5, 776 (1962).
  • N. Rostoker and M. N. Rosenbluth, “Test Particles in a Completely Ionized Plasma,” Phys. Fluids, 3, 1 (1960).
  • A. G. Sitenko and Y. A. Kirochkin, Sov. Phys. Uspekhi, 9, 430 (1966).
  • R. E. Aamodt and D. A. Russell, Nucl. Fusion, 32, 745 (1992).
  • S. C. Chiu, Phys. Fluids B., 3, 1374 (1991).
  • A. G. Sitenko, Fluctuations and Non-Linear Wave Interactions in Plasma, Academic Press, New York (1982).
  • Y. L. Klimontovich, Kinetic Theory of Nonideal Gases and Nonideal Plasmas, Pergamon Press, Oxford (1982).
  • H. Bindslev, J. A. Hoekzema, J. Egedal, J. A. Fessey, T. P. Hughes, and J. S. Machuzak, Phys. Rev. Lett., 83, 3206 (1999).
  • S. Michelsen et al., “Fast Ion Millimeter Wave Collective Thomson Scattering Diagnostics on TEXTOR and ASDEX Upgrades,” Rev. Sci. Instrum., 75, 10, 3634 (2004).
  • H. Bindslev et al., “Fast-Ion Dynamics in the TEXTOR Tokamak Measured by Collective Thomson Scattering,” Phys. Rev. Lett., 97, 205005 (2006).
  • H. Bindslev et al., Rev. Sci. Instrum., 75, 3598 (2004).
  • F. Meo et al., “Design of the Collective Thomson Scattering Diagnostic for International Thermonuclear Experimental Reactor at the 60 GHz Frequency Range,” Rev. Sci. Instrum., 75, 3585 (2004).
  • J. Egedal, H. Bindslev, R. V. Budny, and P. Woskov, “Impact of Beam Ions on a-Particle Measurements by Collective Thomson Scattering In ITER,” Nucl. Fusion, 45, 191 (2005).
  • H. Z. Cummins and H. L. Swinney, Progress in Optics, North-Holland, Amsterdam (1970).
  • T. Blackman and J. W. Tukey, The Measurement of Power Spectra, Dover, New York (1959).
  • K. L. Bowles, “Vertical-Incidence Scatter from the Ionosphere at 41 Mc/sec,” Phys. Rev. Lett., 1, 454 (1958).
  • R. Behn et al., Phys. Rev. Lett., 62, 2833 (1989).
  • P. Woskoboinikow, “Development of Gyrotrons for Plasma Diagnostics,” Rev. Sci. Instrum., 57, 8, 2113 (1986).
  • H. Bindslev, Rev. Sci. Instrum., 70, 1093 (1999).
  • R. J. Umstattd, C. W. Domier, N. C. Luhmann, Jr., and B. I. Cohen, “A Four Wave Mixing Based Diagnostic for Confined Alpha Particles,” Bull. Am. Phys. Soc. (1996).
  • R. J. Umstattd, C. W. Domier, N. C. Luhmann, Jr., and B. I. Cohen, “An Optical Mixing Based Confined Alpha Particle Diagnostic,” Rev. Sci. Instrum., 68, 439 (1997).
  • H. Bindslev, F. Meo, and S. B. Korsholm, “ITER Fast Ion Collective Thomson Scattering Feasibility Study and Conceptual Design” (2003).
  • G. W. Watson and W. W. Heidbrink, “Density Interferometer Using the Fast Alfven Wave,” Rev. Sci. Instrum., 74, 1605 (2003).
  • H. Izeki, R. I. Pinsker, S. C. Chiu, and J. S. De Grassie, “Fast Wave Propagation Studies in the DIII-D Tokamak,” Phys. Plasmas, 3, 2306 (1996).
  • H. Izeki, J. S. De Grassie, R. I. Pinsker, and R. T. Snider, “PlasmaMass Density, Species Mix, and Fluctuation Diagnostics Using a Fast Alfvén Wave,” Rev. Sci. Instrum., 68, 478 (1997).
  • G. W. Watson, W. W. Heidbrink, K. H. Burrell, and G. J. Kramer, “Plasma Species Mix Diagnostic Using Ion-Ion Hybrid Layer Reflectometry,” Plasma Phys. Control Fusion, 46, 471 (2004).
  • W. W. Heidbrink, G. W. Watson, and K. H. Burrell, “Ion Species Mix Measurements in DIII-D and International Thermonuclear Experimental Reactor Using Ion-Ion Hybrid Layer Reflectometry,” Rev. Sci. Instrum., 75, 3862 (2004).
  • J. A. Snipes, D. Schmittdiel, A. Fasoli, R. S. Granetz, and R. R. Parker, “Initial Active MHD Spectroscopy Experiments Exciting Stable Alfvén Eigenmodes in Alcator C-Mod,” Plasma Phys. Control Fusion, 46, 611 (2004).
  • D. D. Testa, A. Fasoli, and E. Solano, “Diagnosis and Study of Alfvén Eigenmodes Stability in JET,” Rev. Sci. Instrum., 74, 1694 (2003).
  • J. Candy et al., Phys. Plasmas, 6, 1822 (1999).
  • Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang, and R. B. White, “Transport Reduction by Zonal Flows: Massively Parallel Simulations,” Science, 281, 1835 (1998).
  • W. Park et al. in Proc. 16th Int. Conf. Fusion Energy, Montreal, 1996, IAEA.
  • E. Mazzucato, “Microwave Imaging Reflectometry for the Visualization of Turbulence in Tokamaks,” Nucl. Fusion, 41, 203 (2001).
  • N. J. Lopes Cardozo et al., “Instrumentation for Magnetically Confined Fusion Plasma Diagnostics,” Rev. Sci. Instrum., 55, 279 (1994).
  • A. J. H. DonnÉ, “New Physics Insights Through Diagnostics Advances,” Plasma Phys. Control Fusion, 48, 12B, B483 (2006).
  • B. H. Deng et al., “ECE Imaging of Electron Temperature and Electron Temperature Fluctuations,” Rev. Sci. Instrum., 72, 301 (2001).
  • B. H. Deng, D. L. Brower, G. Cima, C. W. Domier, N. C. Luhmann, Jr., and C. Watts, “Mode Structure of Turbulent Electron Temperature Fluctuations in the Texas Experimental Tokamak Upgrade,” Phys. Plasmas, 5, 4117 (1998).
  • B. H. Deng, “Electron Cyclotron Emission Imaging Diagnostics of Te Profiles and Fluctuations,” Phys. Plasmas, 8, 5, 2163 (2001).
  • V. Bravenec and A. J. Wootton, “Effects of Limited Spatial Resolution on Fluctuations Measurements,” Rev. Sci. Instrum., 66, 802 (1995).
  • R. P. Hsia, B. H. Deng, W. R. Geck, C. Liang, C. W. Domier, and N. C. Luhmann, Jr., “Hybrid ECE Imaging Array System for TEXT-U,” Rev. Sci. Instrum., 68, 488 (1997).
  • B. H. Deng et al., “Electron Cyclotron Emission Imaging Diagnostic System for Rijnhuizen Tokamak Project,” Rev. Sci. Instrum., 70, 998 (1999).
  • B. H. Deng, C. W. Domier, N. C. Luhmann, Jr., A. J. H. DonnÉ, and M. J. Van De Pol, “Electron Cyclotron Emission Imaging Diagnostic on TEXTOR,” Rev. Sci. Instrum., 72, 368 (2001).
  • A. Mase et al., “ECE-Imaging Work on GAMMA 10 and LHD,” Fusion Eng. Des., 53, 87 (2001).
  • A. Mase et al., “Application of Millimeter-Wave Imaging System to LHD,” Rev. Sci. Instrum., 72, 1, 375 (2001).
  • G. Cima et al., “Core Temperature Fluctuations and Related Heat Transport in the Texas Experimental Tokamak-Upgrade,” Phys. Plasmas, 2, 3, 720 (1995).
  • B. H. Deng et al., “Imaging of Core Electron Temperature Fluctuations of Tokamak Plasmas,” IEEE Trans. Plasma Sci., 30, 1, 72 (2002).
  • C. Watts et al., “Poloidal Asymmetry and Gradient Drive in Core Electron Density and Temperature Fluctuations on the Texas Experimental Tokamak-Upgrade,” Phys. Plasmas, 3, 2013 (1996).
  • C. L. Rettig et al., “Electron Temperature Fluctuation Measurements and Techniques in the DIII-D Tokamak,” Rev. Sci. Instrum., 68, 484 (1997).
  • G. Cima et al., “Fusion Energy and Design,” Proc. 7th Int. Toki Conf. Plasma Physics and Controlled Nuclear Fusion, Toki, Japan, 1997.
  • J. A. Wesson, “Quasi-Interchange Model,” Plasma Phys. Control Fusion, 28, 243 (1986).
  • H. Park et al., “Observation of the High Field Side Crash and Heat Transfer During Sawtooth Oscillation in Magnetically Confined Plasmas,” Phys. Rev. Lett., 96, 19 (2006).
  • H. Park et al., “Comparison Study of 2-D Images of Temperature Fluctuations During the Sawtooth Oscillation with Theoretical Models,” Phys. Rev. Lett., 96, 19 (2006).
  • E. Mazzucato, “Small-Scale Density Fluctuations in the Adi-abatic Toroidal Compressor,” Bull. Am. Phys. Soc., 20, 1241 (1975).
  • A. E. Costley, “Diagnostics for Contemporary Fusion Experiments,” Proc. Int. School of Plasma Physics, p. 113, (ISPP-9), Piero Caldirola, 1991.
  • J. L. Doane, E. Mazzucato, and G. L. Schmidt, “Plasma Density Measurements Using FM-CW Millimeter Wave Radar Techniques,” Rev. Sci. Instrum., 52, 12 (1981).
  • E. Mazzucato and R. Nazikian, “Microwave Reflectometry forthe Study of Density Fluctuations in Tokamak Plasmas,” Plasma Phys. Control Fusion, 33, 261 (1991).
  • E. Mazzucato and R. Nazikian, “Scale Length of Turbulent Fluctuations in the Main Core of TFTR Plasmas,” Phys. Rev. Lett., 71, 1840 (1993).
  • B. I. Cohen, B. B. Afeyan, A. E. Chou, and N. C. Luhmann, Jr., “Computation Study of Ultra-Short-Pulse Reflectom-etry,” Plasma Phys. Control Fusion, 37, 329 (1995).
  • E. Mazzucato et al., “Turbulent Fluctuations in TFTR Configurations with Reversed Magnetic Shear,” Phys. Rev. Lett., 77, 15, 3145 (1996).
  • G. Vayakis et al., “Status and Prospects for MM-Wave Reflectometry in ITER,” Fusion Special Issue Nucl. Fusion, 46, S836 (2006).
  • E. Mazzucato et al., “Fluctuation Measurements in Tokamaks with Microwave Imaging Reflectometry,” Phys. Plasmas, 9, 5, 1955 (2002).
  • T. Munsat et al., “Microwave Imaging Reflectometer for TEXTOR,” Rev. Sci. Instrum., 74, 1426 (2003).
  • H. Park et al., “Characteristics of the Textor Microwave Imaging Reflectometry System,” Proc. 29th EPS Conf. Plasma Physics and Controlled Fusion, Montreux, Switzerland, 2002.
  • T. Munsat, E. Mazzucato, H. Park, C. W. Domier, N. C. Luhmann, Jr., A. J. H. DonnÉ, and M. Van De Pol, “Laboratory Characterization of an Imaging Reflectometer System,” Plasma Phys. Control Fusion, 45, 4, 469 (2003).
  • T. De Graauw and F. P. Helmich, “Herschel-HIFI: The Heterodyne Instrument for the Far Infrared,” Proc. Symp. “The Promise of the Herschel Space Observatory,” Toledo, Spain, 2001.
  • S. Yamaguchi, Y. Nagayama, S. Pavlichenko, Y. In-Agaki, Y. Kogi, and A. Mase, “Microwave Imaging Reflectometry in LHD,” Rev. Sci. Instrum., 77, 10E930 (2006).
  • P. Siegel, R. R. J. Dengler, and J. C. Chen, IEEE Microwave and Guided Wave Lett., 1, 8 (1991).
  • H. H. Javadi and P. H. Siegel, “JPL New Technology Report,” pp. 1–8, JPL (2001).
  • G. S. Lee et al., “Design and Construction of the KSTAR Tokamak,” Nucl. Fusion, 41, 1515 (2001).
  • Y.-K. Oh, “Status of the KSTAR Project,” Proc. KPS 2006 Fall Symp., Exco, Daegu, Korea, 2006.
  • C. Sozzi et al., “The Multichannel Extension of the Martin-Puplett Interferometer for Perpendicular and Oblique ECE Measurements on Jet,” Proc. 14th Joint Workshop Electron Cyclotron Emission and Electron Cyclotron Resonance Heating (EC-14), Santorni, Greece, 2006.
  • I. Mehdi, E. Schlecht, G. Chattopadhyay, and P. H. Siegel. “THz Local Oscillator Sources,” Proc. Far-Infrared and Submillimeter and Millimeter Detector Technology Workshop, Monterey, California, 2002.
  • R. Gaier et al., “Amplifier Technology for Astrophysics,” Proc. Far-Infrared and Submillimeter and Millimeter Detector Technology Workshop, Monterey, California, 2002.
  • P. H. Siegel, “THz Technology,” IEEE Trans. Microwave Theory Techniques, 50, 3, 910 (2002).
  • “Task on ITER Reflectometry,” CIEMAT (2005).
  • E. Mazzucato, “Microwave Imaging Reflectometry for the Measurement of Turbulent Fluctuations in Tokamaks,” Plasma Phys. Control Fusion, 46, 1271 (2004).
  • G. J. Kramer, R. Nazikian, and E. J. Valeo, “Simulation of Optical and Synthetic Imaging Using Microwave Reflectometry,” Plasma Phys. Control Fusion, 46, 695 (2004).
  • “ITER Design Description Document Diagnostics, 5.5.F Microwave,” DDD 5.5F, N 55 DDD 6 01-06-01 W 0.3, ITER.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.