288
Views
42
CrossRef citations to date
0
Altmetric
Technical Paper

Chapter 5: Passive Spectroscopic Diagnostics for Magnetically Confined Fusion Plasmas

, , , &
Pages 431-486 | Published online: 27 Mar 2017

References

  • H.R. Griem, Principles of Plasma Spectroscopy, Cambridge University Press, Cambridge, England (1997).
  • A. Thorne, U. Litzén, and S. Johansson, Spectrophysics, Springer-Verlag, Berlin (1999).
  • R.C. Isler, “Impurities in Tokamaks,” Nucl. Fusion, 24, 1599 (1984).
  • C. De Michelis and M. Mattioli, “Soft X-Ray Diagnostics of Laboratory Plasmas,” Nucl. Fusion, 21, 677 (1981).
  • C. De Michelis and M. Mattioli, “Spectroscopy and Impurity Behavior in Fusion Plasmas,” Rep. Prog. Phys., 47, 1233 (1984).
  • R.W. P. Mcwhirter and H.P. Summers, “Atomic Radiation from Low Density Plasma,” Applied Atomic Collision Physics, Vol. 2, Plasmas, Academic Press, New York (1984).
  • N.J. Peacock, “Diagnostics Based on Emission Spectra,” Applied Atomic Collision Physics, Vol. 2, Plasmas, Academic Press, New York (1984).
  • N.J. Peacock, “Fusion Spectroscopy,” Astrophys. Space Sci., 237, 341 (1996).
  • T. Lovegrove et al., Proc. 22nd European Conf. Controlled Fusion and Plasma Physics, Bournemouth, 1995, Europhysics Conf. Abstracts, Vol. 19C, p. III-301, European Physical Society (1995).
  • J.L. Terry et al., “Volume Recombination and Opacity in Al-cator C-Mod Plasmas,” Phys. Plasmas, 5, 1759 (1998).
  • M.L. Adams et al., “Application of Magnetically Broadened Hydrogenic Line Profiles to Computational Modeling of a Plasma Experiment,” J. Quant. Spect. Rad. Transfer, 71, 117 (2001).
  • Lisgo et al., “OSM-EIRENE Modeling of Neutral Pressures in the Alcator C-Mod Divertor,” J. Nucl. Mater., 337339, 139 (2005).
  • B. Lipschulz et al., “Ultrahigh Densities and Volume Recombination Inside the Separatrix of the Alcator C-Mod Tokamak,” Phys. Rev. Lett., 81, 1007 (1998).
  • H.P. Summers, “Atomic Data and Analysis Structure—User Manual,” JET-IR(94)06 (1987).
  • H.P. Summers et al., “Atomic Data for Modelling Fusion and Astrophysical Plasmas,” Plasma Phys. Control. Fusion, 44, B323 (2002).
  • M. O’Mullane, University of Strathclyde, Personal Communication (Jan. 2005).
  • L. Lauro-Taroni et al., “Impurity Transport of High Performance Discharges in JET,” Proc. 21st EPS Conf. Controlled Fusion and Plasma Physics, Montpellier, Vermont, Vol. 1, p. 102 (1994).
  • J.E. Rice et al., “X-Ray and VUVObservations of Mo23+-Mo33+ Brightness Profiles from Alcator C-Mod Plasmas,” J. Phys. B, 29, 2191 (1996).
  • J. Reader et al., “Wavelengths and Transition Probabilities for Atoms and Atomic Ions, Part I. Wavelengths. Part II. Transition Probabilities,” Nat. Stand. Ref. Ser., 68 (1980); see also CRC Handbook of Chemistry and Physics; available on the Internet (http://physics.nist.gov/PhysRefData).
  • R.L. Kelly, “Atomic and Ionic Spectrum Lines Below 2000 Angstroms: Hydrogen through Krypton,” J. Phys. Chem. Ref. Data, 16, Suppl. 1 (1987); available on the Internet at (http://physics.nist.gov/PhysRefData).
  • Available on the Internet (http://www.pa.uky.edu/—peter/atomic/).
  • Available on the Internet (http://cfa-www.harvard.edu/amdata/ampdata/ampdb.shtml).
  • Available on the Internet (http://cfa-www.harvard.edu/amdata/ampdata/amdata.shtml).
  • Available on the Internet (http://www.pmp.uni-hannover.de/cgi-bin/ssi/test/kurucz/sekur.html).
  • W.J. Karzas and R. Latter, “Electron Radiative Transitions in a Coulomb Field,” Astrophys. J. Suppl. Ser., 6, 167 (1961).
  • S. Vongoeler et al., “Thermal X-Ray Spectra and Impurities in the ST Tokamak,” Nucl. Fusion, 15, 301 (1975).
  • A. Weller, Max Planck Institut für Plasmaphysik, Personal Communication (Jan. 2005).
  • A. Weller et al., “Modelling of Soft X-Ray Emission from JET Plasmas,” JET-IR(87)(1987).
  • J.A. R. Samson, Techniques of Vacuum Ultraviolet Spectroscopy, John Wiley and Sons, New York (1967).
  • J.A. R. Samson and D.L. Ederer, Vacuum Ultraviolet Spectroscopy I, Academic Press, San Diego, California (1998).
  • R.J. Fonck, A.T. Ramsey, and R.V. Yelle, “Multichannel Grazing-Incidence Spectrometer for Impurity Diagnosis,” Appl. Opt., 21, 2115 (1982).
  • T. Kita, T. Harada, and H. Kuroda, “Mechanically-Ruled Abberation-Corrected Concave Gratings for a Flat-Field Grazing Incidence Spectrograph,” Appl. Opt., 22, 512 (1983).
  • W. Biel et al., “Design of a High-Efficiency Extreme Ultraviolet Overview Spectrometer System for Plasma Impurity Studies on the Stellarator Experiment Wendelstein 7-X,” Rev. Sci. Instrum., 75, 3268 (2004).
  • DAVIS, Davis, Lasers and Electro-Optics, Cambridge University Press, Cambridge, England (1996).
  • M. Bass, Handbook of Optics, Vol. 1, Optical Society of America (1995).
  • R.E. Bell, M. Finkenthal, and H.W. Moos, “Time-Resolving Extreme Ultraviolet Spectrograph for Fusion Diagnostics,” Rev. Sci. Instrum., 52, 1806 (1981).
  • W. Hodge, B.C. Stratton, and H.W. Moos, “Grazing Incidence Time-Resolving Spectrograph for Magnetic Fusion Plasma Diagnostics,” Rev. Sci. Instrum., 55, 16 (1984).
  • J.L. Schwob, A.W. Wouters, and S. Suckewer, “High-Resolution Duo-Multichannel Spectrometer for Tokamak Plasma Diagnostics,” Rev. Sci. Instrum., 58, 1601 (1987).
  • P. Beiersdorfer et al., “Grazing-Incidence Spectrometer for Soft X-Ray and Extreme Ultraviolet Spectroscopy on the National Spherical Torus Experiment,” Rev. Sci. Instrum., 77, 10F306 (2006).
  • K. Kondo et al., “Visible and VUV Spectroscopic Diagnostics on Heliotron E,” Rev. Sci. Instrum., 59, 1533 (1988).
  • H. Kubo et al., “Multichordal Spectroscopy on JT-60,” Rev. Sci. Instrum., 59, 1515 (1988).
  • H. Nagata et al., “Module-Type Flat-Field Grazing-Incidence Spectrographs for Large Tokamak (JT-60) Plasma Diagnosis,” Nucl. Instrum. Methods Phys. Res. A, 294, 292 (1990).
  • N. Yamaguchi et al., “Space-Resolving Flat-Field Vacuum Ultraviolet Spectrograph for Plasma Diagnostics,” Rev. Sci. Instrum., 65, 3408 (1994).
  • A.R. Field et al., “A Spatially Scanning Vacuum Ultraviolet and Visible Range Spectrometer for Spectroscopy of Tokamak Plasmas in ASDEX-Upgrade,” Rev. Sci. Instrum., 66, 5433 (1995).
  • F.G. Mejier, “A High Resolution Vacuum Ultraviolet Spectrometer for Plasma Spectroscopy,” Meas. Sci. Technol., 10, 367 (1999).
  • M. Yoshikawa et al., “Space-Resolving VUV and Soft X-Ray Spectroscopy in the Tandem Mirror GAMMA 10 Plasma,” Surface Rev. Lett., 9, 555 (2002).
  • V. Piffl et al., “VUV Imaging Seya-Namioka Spectrometer,” Czech J. Phys. Suppl. D, 52, D70 (2002).
  • S. Morita and M. Goto, “Space-Resolved VUV Spectroscopy Using the 3 m Normal Incidence Spectrometer with Back-Illuminated CCD detector in the LHD,” Rev. Sci. Instrum., 74, 2036 (2003).
  • B.C. Stratton et al., “SPRED Spectrograph Upgrade: High-Resolution Grating and Improved Absolute Calibrations,” Rev. Sci. Instrum., 57, 2043 (1986).
  • A. Nudelfuden, R. Solanki, and H.W. Moos, “Spatial Imaging in the Soft X-Ray Region (20-304 Å) Utilizing the Astigmatism of the Grazing Incidence Concave Grating,” Appl. Opt., 24, 789 (1985).
  • D. Content, D. Wroblewski, M. Perry, and H.W. Moos, “Space- and Time-Resolving Spectrograph for High-Temperature Plasma Diagnostics,” Rev. Sci. Instrum., 57, 2041 (1986).
  • K.J. Mccarthy et al., “A Toroidal Focusing Mirror Based Vacuum Ultraviolet Diagnostic for TJ-II,” Rev. Sci. Instrum., 70, 312 (1999).
  • E. Hinnov and F.W. Hoffmann, “Measurement of Absolute Radiation Intensities in the Vacuum Ultraviolet Region,” J. Opt. Soc. Am., 53, 1259 (1963).
  • E.B. Saloman, “Absolute Radiometric Calibration of Detectors Between 200-600 Å,” Appl. Opt., 14, 1391 (1975).
  • B.C. Stratton, R.J. Fonck, and A.T. Ramsey, “Synchrotron Radiation Calibration of the SPRED VUV Spectrograph at the NBS SURF II Electron Storage Ring,” SPIE Proc., “X-Ray Calibration: Techniques, Sources, and Detectors,” P.D. ROCKETT and P. LEE, Eds., 689, 77 (1986).
  • Y. Okamoto et al., “Absolute Calibration of Space- and Time-Resolving Flat-Field Vacuum Ultraviolet Spectrograph Under Both P and S Polarized Light Conditions for Plasma Diagnostics,” Rev. Sci. Instrum., 72, 4366 (2001).
  • M. May et al., “Photometric Calibration of an EUV Flat Field Spectrometer at the Advanced Light Source,” Rev. Sci. Instrum., 74, 2011 (2003).
  • M. Yoshikawa et al., “Absolute Calibration of Vacuum Ultraviolet Spectrograph System for Plasma Diagnostics,” Rev. Sci. Instrum., 75, 4088 (2004).
  • J.M. Bridges and W.R. Ott, “Vacuum Ultraviolet Radiometry. 3: The Argon Mini-arc as a New Secondary Standard of Spectral Radiance,” Appl. Opt., 16, 367 (1977).
  • K. Danzmann et al., “High Current Hollow Cathode as a Radiometric Transfer Standard Source for the Extreme Vacuum Ultraviolet,” Appl. Opt., 27, 4947 (1988).
  • V.A. Soukhanovskii et al., “Compact Collimated Vacuum Ultraviolet Diagnostics for Localized Impurity Measurements in Fusion Boundary Plasmas,” Rev. Sci. Instrum., 72, 3270 (2001).
  • B. Blagojevic et al., “Imaging Transmission Grating Spectrometer for Magnetic Fusion Experiments,” Rev. Sci. Instrum., 74, 1988 (2003).
  • V.A. Soukhanovskii et al., “Development of Phosphor Scintillator-Based Detectors for Soft X-Ray and Vacuum Ultraviolet Spectroscopy of Magnetically Confined Fusion Plasmas,” Rev. Sci. Instrum., 74, 4331 (2003).
  • S. Hokin, R. Fonck, and P. Martin, “A Simple Multifoil Spectrometer for Routine Carbon and Oxygen Measurements,” Rev. Sci. Instrum., 63, 5038 (1992).
  • D. Stutman et al., “Line Emission Tomography for CDX-U Using Filtered Diodes,” Rev. Sci. Instrum., 68, 1059 (1997).
  • C. Suzuki, B.J. Peterson, and K. Ida, “Measurement of Impurity Emission Profiles in CHS Plasma Using AXUV Photodiode Arrays and VUVBandpass Filters,” Rev. Sci. Instrum., 75, 4142 (2004).
  • R. Korde, J.S. Cable, and L.R. Canfield, “One Gigarad Passivating Nitrided Oxides for 100% Internal Quantum Efficiency Silicon Photodiodes,” IEEE Trans. Nucl. Sci., 40, 1655 (1993).
  • V.A. Soukhanovskii et al., “Multilayer Mirror and Foil Filter AXUV Diode Arrays on CDX-U Spherical Torus,” Rev. Sci. Instrum., 72, 737 (2001).
  • D.S. Gray et al., “Time Resolved Radiated Power During To-kamak Disruptions and Spectral Averaging of AXUV Photodiode Response on DIII-D,” Rev. Sci. Instrum., 75, 376 (2004).
  • J.H. Underwood and T.W. Barbee, “Layered Synthetic Microstructures as Bragg Diffractors for X Rays and Extreme Ultraviolet: Theory and Predicted Performance,” Appl. Opt., 20, 3027 (1981).
  • A.P. Zwicker et al., “Peak Reflectivity Measurements of W/C, Mo/Si, and Mo/B4C Multilayer Mirrors in the 8-190 Å Range Using both Ka Line and Synchrotron Radiation,” Appl. Opt., 29, 3694 (1990).
  • M.J. May et al., “Measurements of Molybdenum Radiation in the Alcator C-Mod Tokamak Using a Multilayer Mirror Soft X-Ray Poly-chromator,” Rev. Sci. Instrum., 66, 561 (1995).
  • D. Stutman et al., “Multilayer Mirror Based Line Emission Tomography for Spherical Tokamaks,” Rev. Sci. Instrum., 68, 1055 (1997).
  • D. Stutman et al., “High Throughput Ultrasoft X-Ray Poly-chromator for Embedded Impurity Pellet Injection Studies,” Rev. Sci. Instrum., 76, 013508 (2005).
  • D. Stutman et al., “Ultrasoft X-Ray Telescopes for Fluctuation Imaging in Fusion Plasmas,” Rev. Sci. Instrum., 72, 732 (2001).
  • K. Kadota, M. Otsuka, and J. Fujita, “Space and Time-Resolved Study of Impurities by Visible Spectroscopy in the High-Density Regime of JIPP T-II Tokamak Plasma,” Nucl. Fusion, 20, 209 (1980).
  • A.T. Ramsey and S.L. Turner, “HAIFA: A Modular, FiberOptic Coupled, Spectroscopic Diagnostic for Plasmas,” Rev. Sci. Instrum., 58, 1211 (1987).
  • H. Nozato et al., “Measurement of Bremsstrahlung Profile with a High-Spatial Resolution on LHD,” J. Plasma Fusion Res. Ser., 5, 442 (2002).
  • H. Nozato et al., “A Study of Charge Dependence of Particle Transport Using Impurity Pellet Injection and High-Spatial Resolution Bremsstrahlung Measurement on the Large Helical Device,” Phys. Plasmas, 11, 1920 (2004).
  • E.S. Marmar et al., “High Resolution Visible Continuum Imaging Diagnostic on the Alcator C-Mod Tokamak,” Rev. Sci. Instrum., 72, 940 (2001).
  • P.G. Carolan et al., “High Definition Imaging in the Mega Amp Spherical Torus from Soft X-Rays to Infrared,” Rev. Sci. Instrum., 75, 4069 (2004).
  • H. Meister et al., “Zeff from Spectroscopic Bremsstrahlung Measurements at ASDEX Upgrade and JET,” Rev. Sci. Instrum., 75, 4097 (2004).
  • H. RÖHr et al., “Measurement of Zeff Profiles from Bremsstrahlung Emission in the Near Infrared,” Rev. Sci. Instrum., 59, 1875 (1988).
  • K.-H. Steuer et al., “Bremsstrahlung Measurements in the Near Infrared on ASDEX,” Rev. Sci. Instrum., 61, 3084 (1990).
  • F. Orsitto et al., “Zeff Profiles from Bremsstrahlung Emission in the Near Infrared Spectral Region,” Rev. Sci. Instrum., 70, 925 (1999).
  • K. Anderson et al., “Direct Removal of Edge-Localized Pollutant Emission in a Near-Infrared Bremsstrahlung Measurement,” Rev. Sci. Instrum., 74, 2107 (2003).
  • V. Voitsenya et al., “Diagnostic Mirrors for Burning Plasma Experiments,” Rev. Sci. Instrum., 72, 475 (2001).
  • N.J. Peacock et al., “Spectroscopy for Impurity Control in ITER,” Diagnostics for Experimental Thermonuclear Fusion Reactors, Plenum Press, New York (1996).
  • N.C. Hawkes et al., “XUV and VUV Spectroscopy of ITER,” Diagnostics for Experimental Thermonuclear Fusion Reactors 2, Plenum Press, New York (1998).
  • K.W. Hill et al., “Analysis of Nuclear-Radiation-Induced Noise in Spectroscopic and X-Ray Diagnostics during High-Power Deuterium-Tritium Experiments on the Tokamak Fusion Test Reactor,” Rev. Sci. Instrum., 66, 913 (1995).
  • R. Barnsley et al., “JET Beamline with Integrated X-Ray, VUV, and Visible Spectrometers for Burning Plasma Experiments,” Rev. Sci. Instrum., 74, 1969 (2003).
  • I.H. Coffey et al., “First Operation of ITER-Prototype VUV Spectroscopy on JET,” Rev. Sci. Instrum., 75, 3737 (2004).
  • K. Ebisawa et al., “Vacuum Ultraviolet Impurity Monitor for the International Thermonuclear Experimental Reactor,” Rev. Sci. Instrum., 70, 328 (1999).
  • D. R Parsignault et al., “A Shielded, Multichannel, Extreme Ultraviolet Spectrograph for Fusion Plasma Diagnostics,” Rev. Sci. Instrum., 64, 1014 (1993).
  • L. RodríGuez-Barquero et al., “Preparation and Characterization of Pixelated Phosphor Screens for High-Resolution Imaging in the Vacuum Ultraviolet and X-Ray Ranges,” Rev. Sci. Instrum., 75, 3998 (2004).
  • D. Stutman et al., “Spectroscopic Imaging Diagnostics for Burning Plasma Experiments,” Rev. Sci. Instrum., 76, 023505–1 (2005).
  • J.D. Joanopoulos, P.R. Villeneuve, and S. Fan, “Photonic Crystals: Putting a New Twist on Light,” Nature, 386, 143 (1997).
  • M. Ibanescu et al., “An All-Dielectric Coaxial Waveguide,” Sci., 289, 415 (2000).
  • S.A. Flodstrom and R.Z. Bachrach, “Simple Far UV Transmission Grating Monochromator for Use with Resonance Radiation Lamps,” Rev. Sci. Instrum., 47, 1464 (1976).
  • P.J. Caldwell, E.T. Arakawa, and T.A. Callcott, “Extreme Ultraviolet Transmission Grating Spectrometer,” Appl. Opt., 20, 3047 (1981).
  • L. Kipp et al., “Sharper Images by Focusing Soft X-Rays with Photon Sieves,” Nature, 414, 184 (2001).
  • J.M. Bendickson et al., “Metallic Surface-Relief On-Axis and Off-Axis Focusing Diffractive Cylindrical Mirrors,” J. Opt. Soc. Am. A, 16, 113 (1999).
  • S.P. Regan et al., “An Evaluation of Multilayer Mirrors for the Soft X-Ray and Extreme Ultraviolet Wavelength Range that were Irradiated with Neutrons,” Rev. Sci. Instrum., 68, 757 (1997).
  • F.C. Jahoda et al., “Continuum Radiation in the X-Ray and Visible Regions from a Magnetically Compressed Plasma (Scylla),” Phys. Rev., 119, 843 (1960).
  • S. Von Goeler, W. Stodiek, and N. Sauthoff, “Studies of Internal Disruptions and m = 1 Oscillations in Tokamak Discharges with Soft X-Ray Techniques,” Phys. Rev. Lett., 33, 1201 (1974).
  • EQUIPE TFR, “Electron Temperature and Zeff Measurements in the Hot Plasma of TFR by Soft X-Ray Analysis,” Nucl. Fusion, 17, 213 (1977).
  • S. Von Goeler, “Soft X-Ray Measurements,” Diagnostics for Fusion Experiments, E. Sindoni and C. Wharton, Eds., Pergamon Press, New York (1979).
  • M. Bitter et al., “Doppler-Broadening Measurements of X-Ray Lines for Determination of the Ion Temperature in Tokamak Plasmas,” Phys. Rev. Lett., 42, 304 (1979).
  • K.W. Hill et al., “Tokamak Fusion Test Reactor X-Ray Imaging Diagnostic,” Rev. Sci. Instrum., 56, 830 (1985).
  • K. Mcguire et al., “Diagnostic Applications of the TFTR XIS System,” Rev. Sci. Instrum., 57, 2136 (1986).
  • S. Von Goeler et al., “Tangential Imaging for Fluctuation Studies,” Rev. Sci. Instrum., 61, 3055 (1990).
  • R.D. Gill et al., “Soft X-Ray Measurements of the Impurity Density in DITE,” Nucl. Fusion, 19, 1003 (1979).
  • K. Brau et al., “Observations of Giant Recombination Edges on the Princeton Large Torus Tokamak Induced by Particle Transport,” Phys. Rev., A22, 2769 (1980).
  • E.H. Silver et al., “Soft X-Ray Measurements from the PDX Tokamak,” Rev. Sci. Instrum., 53, 1198 (1982).
  • S. Von Goeler et al.., “X-Ray Diagnostics for TFTR,” Proc. Course Diagnostics for Fusion Reactor Conditions, Varenna, Italy, September 1982, Vol. I, p 69.
  • J.E. Rice et al., “Continuum X-Ray Emission from the Alcator A Tokamak,” Phys. Rev., A25, 1645 (1982).
  • K.W. Hill et al., “Tokamak Fusion Test Reactor Prototype X-Ray Pulse-Height Analyzer Diagnostic,” Rev. Sci. Instrum., 56, 840 (1985).
  • S. Sesnic et al., “Measurement of the Wall Radiationin the Soft X-Ray Region in PDX,” Rev. Sci. Instrum., 56, 1160 (1985).
  • K.W. Hill et al., “Studies of Impurity Behavior in TFTR,” Nucl. Fusion, 26, 1131 (1986).
  • D. Pasini et al., “JET X-Ray Pulse-Height Analysis System,” Rev. Sci. Instrum., 59, 693 (1988).
  • T. Cho et al., “X-Ray Studies of Various Shapes of Electron-Velocity Distribution Functions and of Electron Confinement Affected by Kilovolt-Range Electrostatic Potentials,” Phys. Rev. A, 45, 2532 (1992).
  • S. Muto et al., “First Measurements of Hard X-Ray Spectrum Emitted from High-Energy Electrons in Electron-Cyclotron Heated Plasmas of LHD,” Rev. Sci. Instrum., 74, 1993 (2003).
  • Y. Shi et al., “Application of Avalanche Photodiode for Soft X-Ray Pulse-Height Analyses in the HT-7 Tokamak,” Nucl. Instrum. Methods A, 488, 566 (2002).
  • R. O’Connell et al., “Measurement of Fast Electron Distribution Using a Flexible, High Time-Resolution Hard X-Ray Spectrometer,” Rev. Sci. Instrum., 74, 2001 (2003).
  • AMPTEK Corp. available on the Internet (http://www.amptek.com/).
  • C.S. Rossington, J.T. Walton, and J.M. Jakelvic, “Si(Li) Detectors with Thin Dead Layers for Low Energy X-ray Detection,” IEEE Trans. Nucl. Sci., 38, 239 (1991).
  • P. Lechner et al., “Novel High Resolution Silicon Drift Detectors,” X-Ray Spectrom., 33, 256 (2004).
  • A. Longoni et al., “A Portable XRF Spectrometer for NonDestructive Analyses in Archaeometry,” Nucl. Instrum. Methods A, 409, 407 (1998).
  • Y. Shi et al., “Soft X-Ray Pulse Height Analyzer in the HT-7 Tokamak,” Rev. Sci. Instrum., 75, 4930 (2004).
  • Z.Y. Chen et al., “A Compact Soft X-Ray PHA in the HT-7 Tokamak,” Nucl. Instrum. Methods A, 527, 604 (2004).
  • Y. Liang et al., “Energy and Spatial Resolved Measurement of Soft X-Ray Emission with Photon Counting X-Ray Charge Coupled Device Camera in Compact Helical System,” Rev. Sci. Instrum., 71, 3711 (2000).
  • Y. Liang et al., “Photon Counting CCD Detector as a Tool of X-Ray Imaging,” Rev. Sci. Instrum., 72, 717 (2001).
  • J.M. R. Cardoso et al., “A Portable XRF Spectrometer for Non-Destructive Analyses in Archaeometry,” Nucl. Instrum. Methods A, 422, 400 (1999).
  • D. Stutman et al., “Ultrasoft X-Ray Imaging System for the National Spherical Tokamak Experiment,” Rev. Sci. Instrum., 70, 572 (1999).
  • P. Franz et al., “Compact Soft X-Ray Multichord Camera: Design and Initial Operation,” Rev. Sci. Instrum., 74, 2152 (2003).
  • E.T. Powell, R. Kaita, and R.J. Fonck, “Technique for Relating Internal Plasma Shape to Plasma Current Profiles in Noncir-cular Tokamaks,” Rev. Sci. Instrum., 61, 3301 (1990).
  • V.A. Vershkov and S.V. Mirnov, “Role of Impurities in Current Tokamak Experiments,” Nucl. Fusion, 14, 383 (1974).
  • G.L. Jahns et al., “Dynamic Behavior of Intrinsic Impurities in Doublet III Discharges,” Nucl. Fusion, 22, 1049 (1978).
  • R. Petrasso et al., “Fully Ionized and Total Silicon Abundances in the Alcator-C Tokamak,” Phys. Rev. Lett., 49, 1826 (1982).
  • F.H. Seguin et al., “Effects of Internal Disruptions on Impurity Transport in Tokamaks,” Phys. Rev. Lett., 51, 455 (1983).
  • R.D. Petrasso et al., “Using X-Ray Arrays to Measure Impurity Transport in the Alcator-C Tokamak,” Rev. Sci. Instrum., 56, 843 (1985).
  • A. Compant La Fontaine et al., “Q = 1 Magnetohydro-dynamic Activity in PLT Studied with Aluminum Impurity Injection as a Diagnostic Tool,” Plasma Phys. Control. Fusion, 27, 229 (1985).
  • K.W. Wenzel and R.D. Petrasso, “X-ray Imaging Arrays for Impurity-Transport Studies on the Texas Experimental Tokamak,” Rev. Sci. Instrum., 61, 693 (1990).
  • H. Weisen et al., “Measurement of Light Impurity Densities and Zeff in JET using X-Ray Tomography,” Rev. Sci. Instrum., 62, 1531 (1991).
  • L. Marrelli et al., “Development and Tests of a Simple Mul-tifoil Spectrometer for Highly Time-Resolved Line Intensity Measurements in the RFX Experiment,” Meas. Sci. Technol., 6, 1690 (1995).
  • D. Stutman et al., “Integrated Impurity Diagnostic Package for Magnetic Fusion Experiments,” Rev. Sci. Instrum., 74, 1982 (2003).
  • L.A. Shmaenok et al., “Novel Instrumentation for Spectrally Resolved Soft X-Ray Plasma Tomography: Development and Pilot Results on TEXTOR,” Rev. Sci. Instrum., 72, 1411 (2001).
  • M. De Bock et al., “Measuring One-Dimensional and Two-Dimensional Impurity Density Profiles on TEXTOR using Combined Charge-Exchange, Beam-Emission Spectroscopy and Ultrasoft X-Ray Tomography,” Rev. Sci. Instrum., 75, 4155 (2004).
  • H. Takenaga et al., “Relationship Between Particle and Heat Transport in JT-60U Plasmas with Internal Transport Barrier,” Nucl. Fusion, 43, 1235 (2003).
  • H. Kubo et al., “Radiation Enhancement and Impurity Behavior in JT-60U Reversed Shear Discharges,” J. Nucl. Mater., 313316, 1197 (2003).
  • T.P. Donaldson, “Theory of Foil-Absorption Techniques for Plasma X-Ray Continuum Measurements,” Plasma Phys., 20, 1279 (1978).
  • J. Kiraly et al., “Fast Multichannel Electron-Temperature Diagnostic for TFTR Using X-Ray Imaging,” Rev. Sci. Instrum., 56, 827 (1985).
  • J. Kiraly et al., “Multichord Time Resolved Electron Temperature Measurements by the X-Ray Absorber Foil Method on TFTR,” Nucl. Fusion, 27, 397 (1987).
  • R.T. Snider, “Active Silicon X-Ray Filter for Measuring Electron Temperature,” Rev. Sci. Instrum., 66, 546 (1995).
  • P. Martin, A. Murari, and L. Marrelli, “Electron-Temperature Measurements with High Time Resolution in RFX,” Plasma Phys. Control. Fusion, 38, 1023 (1996).
  • R.K. Paul et al., “Electron-Temperature Estimation in the Saha Institute of Nuclear Physics Tokamak from the Soft X-Ray Imaging System,” Rev. Sci. Instrum., 69, 1378 (1998).
  • A. Murari et al., “An Optimized Multifoil Soft X-Ray Spectrometer for the Determination of the Electron Temperature with High Time Resolution,” Rev. Sci. Instrum., 70, 581 (1999).
  • A. Weller, C. Gorner, and D. Gonda, “X-ray Diagnostics on WENDELSTEIN 7-AS,” Rev. Sci. Instrum., 70, 484 (1999).
  • R. Bartiromo et al., “Electron-Temperature Diagnostics in the RFX Reversed Field Pinch Experiment,” Plasma Phys. Control. Fusion, 42, 881 (2000).
  • H. Koguchi et al., “Spatially Resolved Bolometric Measurement and Electron-Temperature Measurement using Diode Arrays,” Rev. Sci. Instrum., 75, 4007 (2004).
  • H.A. B. Bodin, “The Reversed Field Pinch,” Nucl. Fusion, 30, 1717 (1990).
  • J.S. Sarff et al., “Tokamak-Like Confinement at a High Beta and Low Toroidal Field in the MST Reversed Field Pinch,” Nucl. Fusion, 43, 1684 (2003).
  • R. Kaita and S. Sesnic, “Mode Number Identification with a Soft X-Ray Array,” Rev. Sci. Instrum., 68, 750 (1997).
  • B.C. Stratton et al., “Initial Operation of the National Spherical Torus Experimental Fast Tangential Soft X-Ray Camera,” Rev. Sci. Instrum., 75, 3959 (2004).
  • D. Pacella, R. Bellazzini, A. Brez, and M. Finkenthal, “Energy Resolved Two-Dimensional X-Ray Imaging for MFE Plasmas,” Rev. Sci. Instrum., 75, 3926 (2004).
  • L. Delgado-Aparicio et al., “Optical Soft X-Ray Arrays for Fluctuation Diagnostics in Magnetic Fusion Energy Plasmas,” Rev. Sci Instrum., 75, 4020 (2004).
  • L. Delgado-Aparicio, The Johns Hopkins University, Personal Communication (Jan. 2007).
  • K.W. Hill et al., “ITER X-Ray Diagnostic Studies,” Rev. Sci. Instrum., 63, 5032 (1992).
  • D. Parsignault and A.S. Krieger, “X-Ray Fiber Optics from 60 eV to 10 keV,” X-Ray Detector Physics and Applications, R. HOOVER, Ed., Proc. SPIE, 1736 (1992).
  • D.H. Bilderback, “Review of Capillary X-Ray Optics from the 2nd Int. Capillary Optics Mtg.,” X-Ray Spectrom., 32, 195 (2003).
  • Bjeoumikhov et al., “New Generation of Polycapillary Lenses: Manufacture and Applications,” X-Ray Spectrom., 32, 172 (2003).
  • M. Goldman et al., “Gridded Ionization Chamber for Detection of X-Ray Wave Activity in Tokamak Plasmas,” Rev. Sci. Instrum., 56, 349 (1985).
  • K. Yamashita et al., “Supermirror Hard-X-Ray Telescope,” Appl. Opt., 37, 8067 (1998).
  • R.M. Ambrosi et al., “Point Spread Function and Centroiding Accuracy Measurements with the JET-X Mirror and MOS CCD Detector of the SWIFT Gamma-Ray-Burst Explorer’s X-Ray Telescope,” Nucl. Instrum. Methods A, 488, 543 (2002).
  • D.N. Burrows et al., “The SWIFT X-Ray Telescope,” Space Sci. Rev., 120, 165 (2005).
  • V.K. Sysoev, “Design of the SODART Multimirror X-Ray Telescope,” J. Opt. Technol., 73, 42 (2006).
  • K.D. Joensen et al., “Design of Grazing-Incidence Multilayer Supermirrors for Hard-X-Ray Reflectors,” Appl Opt., 34, 7935 (1995).
  • P. Hoghoj et al., “Focusing of Hard X Rays with a W/Si Supermirror,” Nucl. Instrum. Methods B, 132, 528 (1997).
  • K.D. Joensen et al., “Broad-Band Hard X-Ray Reflectors,” Nucl. Instrum. Methods B, 132, 221 (1997).
  • B.L. Henke et al., “X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30, 000 eV, Z = 1-92,” At. Dat. Nucl. Dat. Tab., 54, 181 (1993).
  • E. Silver et al., “An NTD Germanium-Based Microcalorimeter with 3.1 eV Energy resolution at 6 keV,” Nucl. Instrum. Methods A, 545, 683 (2005).
  • F.S. Porter et al., “High Resolution X-Ray Microcalorim-eters,” Nucl. Instrum. Methods A, 559, 436 (2006).
  • C. Hollerith et al., “Energy-Dispersive X-Ray Spectroscopy with Microcalorimeters,” Nucl. Instrum. Methods A, 520, 606 (2004).
  • R. Fujimoto et al., “TES Microcalorimeter Development for Future Japanese X-Ray Astronomy Missions,” Nucl. Instrum. Methods A, 520, 431 (2004).
  • K. Shinozaki et al., “Soft X-Ray Measurement of the Toroidal Pinch Experiment RX Reversed Field Pinch Plasma using Transition Edge Sensor Calorimeter,” Rev. Sci. Instrum., 77, 043104 (2006).
  • M.P. Bruijn et al., “Development of and Array of Transition-Edge Sensors for Application in X-Ray Astronomy,” Nucl. Instrum. Methods A, 520, 443 (2004).
  • Friedrich et al., “A Multichannel Superconducting Tunnel Junction Detector for High Resolution X-Ray Spectroscopy of Magnesium Diboride Films,” IEEE Trans. Appl. Superconduct., 13, 1114 (2003).
  • M.A. Lindeman et al., “Performance of Compact TES Arrays with Integrated, High Fill-Fraction X-Ray Absorbers,” Nucl. Instrum. Methods A, 520, 411 (2004).
  • J. Cottam et al., “Characterization of the Astro-E2 X-Ray Spectrometer,” Nucl. Instrum. Methods A, 520, 368 (2004).
  • C.K. Stahle et al., “Cosmic Ray Effects in Microcalorimeter Arrays,” Nucl. Instrum. Methods A, 520, 472 (2004).
  • G.C. Hilton et al., “X-Ray Microcalorimeter Arrays Fabricated by Surface Micromachining,” Nucl. Instrum. Methods A, 520, 435 (2004).
  • C.A. Kilbourne, “The Science and Technology of Micro-calorimeter Arrays,” Nucl. Instrum. Methods A, 520, 402 (2004).
  • Y. Ishisaki et al., “Performance Analyses of TES Microcalo-rimeters with Mushroom Shaped X-Ray Absorbers made of Sn or Bi,” Nucl. Instrum. Methods A, 520, 452 (2004).
  • P. Gorenstein and S. Mickiewicz, “Reduction of Cosmic Background in an X-Ray Proportional Counter through Risetime Discrimination,” Rev. Sci. Instrum., 39, 816 (1968).
  • S. Von Goeler et al., “X-Ray Analysis of NonMaxwellian Distributions (Current Drive),” Proc. Course on Diagnostics for Fusion Reactor Conditions, Varenna, Italy, 1982, Vol. I, p. 87, P. Stott et al., Eds., Commission of the European Communities (1983)
  • S. Von Goeler et al., “X-Ray Spectroscopy on Tokamaks,” Proc. Course on Diagnostics for Fusion Reactor Conditions, Varenna, Italy, 1982, Vol. I, p. 109, P. Stott et al., Eds., Commission of the European Communities (1983).
  • S. Von Goeler et al., “X-Ray Measurements on the ST Tokamak,” Proc. European Conf. Controlled Fusion and Plasma Physics, Lausanne, Switzerland, September 1–5, 1975, Vol. II, p. 71.
  • A.L. Merts, R.D. Cowan, and N.H. Magee, Jr., LA-6220-MS, Los Alamos National Laboratory (1976).
  • K.W. Hill et al., “Determination of Fe Charge-State Distributions in the Princeton Large Torus by Bragg Crystal Spectroscopy,” Phys. Rev. A, 19, 1770 (1979).
  • H. Johann, “Intense X-Ray Spectra Obtained with Concave Crystals,” Z. Phys., 69, 185 (1931).
  • A.H. Gabriel, “Dielectronic Satellite Spectra for Highly Charged Helium-Like Ion Lines,” Mon. Not. R. Astr. Soc., 160, 99 (1972).
  • C.P. Bhalla, A.H. Gabriel, and L.P. Presnyakov, “Dielectronic Satellite Spectra for Highly-Charged Helium-Like Ions—II Improved Calculations,” Mon. Not. R. Astr. Soc., 172, 359 (1975).
  • L.A. Vainshtein and U.I. Safranova, “Wavelengths and Transition Probabilities of Satellites to Resonance Lines of H- and He-Like Ions,” At. Data Nucl. Data Tab., 21, 49 (1978).
  • F. Bely-Dubau, A.H. Gabriel, and S. Volanté, “Dielectronic Satellite Spectra for Highly-Charged Helium-Like Ions— III. Calculations of n= 3 Solar Flare Iron Lines,” Mon. Not. R. Astr. Soc., 186, 405 (1979).
  • F. Bely-Dubau, A.H. Gabriel, and S. Volanté, “Dielectronic Satellite Spectra for Highly-Charged Helium-Like Ions—V. Effect of Total Satellite Contribution on the Solar Flare Iron Spectra,” Mon. Not. R. Astr. Soc., 189, 801 (1979).
  • F. Bely-Dubau, J. Dubau, P. Faucher, and A.H. Gabriel, “Dielectronic Satellite Spectra for Highly-Charged HeliumLike Ions—VI. Iron Spectra with Improved Inner-Shell and HeliumLike Excitation Rates,” Mon. Not. R. Astr. Soc., 198, 239 (1982).
  • M. Bitter et al., “Dielectronic Satellite Spectrum of Heliumlike Iron (Fe XXV),” Phys. Rev. Lett., 43, 129 (1979).
  • P. Platz et al., “High-Throughput, High-Resolution Soft X-Ray Crystal Spectrometer for Tokamak Plasma Studies,” J. Phys. E: Sci. Instrum., 14, 448 (1981).
  • TFR GROUP, J. Dubau, and M. Loulerge, “High-Resolution Spectra from Inner-Shell Transitions in Highly-Ionised Chromium (Cr XIX-XXIII),” J. Phys. B: At. Mol. Phys., 15, 1007 (1982).
  • TFR GROUP et al., “Dielectronic Satellite Spectrum of Heliumlike Argon: A Contribution to the Physics of Highly-Charged Ions and Plasma Impurity Transport,” Phys. Rev. A, 32, 2374 (1985).
  • TFR GROUP, M. Cornille, J. Dubau, and M. Loulerge, “Charge-Dependent Wavelength Shifts and Line Intensities in the Di-electronic Satellite Spectrum of Helium-Like Ions,” Phys. Rev. A, 32, 3000 (1985).
  • P. Platz, M. Cornille, and J. Dubau, “High-Precision Wavelength Measurements of X-Ray Lines Emitted from TS-Tokamak Plasmas,” J. Phys. B: At. Mol. Opt. Phys., 29, 3787 (1996).
  • P. Platz et al., “X-Ray Line Diagnostics on the Tore Supra Tokamak,” Rev. Sci. Instrum., 70, 308 (1999).
  • A. Romannikov et al., “Measurement of Central Toroidal Rotation in Ohmic Tore Supra Plasmas,” Nucl. Fusion, 40, 319 (2000).
  • P. Platz et al., “Toroidal Velocity and Ripple Losses in Tore Supra with LH, ICRF, and Combined Additional Heating,” Proc. 22nd European Conf. Controlled Fusion and Plasma Physics, Bournemouth, 1995, Europhys. Conf. Abstr., 19C, 111–337.
  • P. Platz et al., “Determination of Absolute Metal Densities in Tore Supra,” Proc. 22nd European Conf. Controlled Fusion and Plasma Physics, Bournemouth, 1995, Europhys. Conf. Abstr., 19C, 11–385.
  • L. Von HÁMos, “X-Ray Spectroscopy with Curved Crystalline Reflectors,” Ann. Phys., 17, 716 (1933).
  • J. Rice et al., “Five Chord High Resolution X-Ray Spectrometer for Alcator C-Mod,” Rev. Sci. Instrum., 61, 2753 (1990).
  • J. Rice et al., “Observations of Alcator C-Mod Plasmas from a Five Chord High Energy Resolution X-Ray SpectrometerArray,” Rev. Sci. Instrum., 66, 752 (1995).
  • J. Rice et al., “The Dependence of Core Rotation on Magnetic Configuration and the Relation to the H-mode Power Threshold in Alcator C-Mod Plasmas with no Momentum Input,” Nucl. Fusion, 45, 251 (2005).
  • J. Rice et al., “Toroidal Rotation and Momentum Transport in Alcator C-Mod Plasmas with No Momentum Input,” Phys. Plasmas, 11, 2427 (2004).
  • J. Rice et al., “Observations of Anomalous Momentum Transport in Alcator C-Mod Plasmas with no Momentum Input,” Nucl. Fusion, 44, 379 (2004).
  • W.D. Lee et al., “Observation of Anomalous Momentum Transport in Tokamak Plasmas with No Momentum Input,” Phys. Rev. Lett., 91, 205003 (2003).
  • J. Rice et al., “Double Transport Barrier Plasmas in Alcator C-Mod,” Nucl. Fusion, 42, 510 (2002).
  • R. Bartiromo et al., “Time Resolving Bent Crystal Spectrometer for Tokamak Plasma Diagnostics,” Nucl. Instrum. Methods Phys. Res., 225, 378 (1984).
  • A.H. Gabriel and K.J. H. Phillips, “Dielectronic Spectra for Highly Charged Helium-Like Ions—IV. Iron Satellite Lines as a Measure of Non-Thermal Electron Energy Distributions,” Mon. Not. R. Astron. Soc., 189, 319 (1979).
  • R. Bartiromo, F. Bombarda, and R. Giannella, “Spectroscopic Study of Nonthermal Plasmas,” Phys. Rev. A, 32, 531 (1985).
  • R. Bartiromo et al., “Space Resolving Bent Crystal Spectrometer for FTU,” Proc. Workshop ISPP-9 Int. School Plasma Physics ’Piero Caldirola, ’ Diagnostics for Contemporary Fusion Experiments, p. 959, P.E. Stott, D.K. Akulina, G. Gorini, and E. Sindoni, Eds. (1991).
  • R. Bartiromo, “X-Ray Spectroscopy,” Proc. Workshop ISPP-9 Int. School Plasma Physics ’Piero Caldirola,’ Diagnostics for Contemporary Fusion Experiments, p. 377, P.E. Stott, D.K. Akulina, G. Gorini, and E. Sindoni, Eds. (1991).
  • K.W. Hill et al., “Tokamak Fusion Test Reactor Horizontal High-Resolution Bragg X-Ray Spectrometer (Abstract),” Rev. Sci. Instrum., 56, 1165 (1985).
  • M. Bitter et al., “Vertical High-Resolution Bragg X-Ray Spectrometer for the Tokamak Fusion Test Reactor,” Rev. Sci. Instrum., 57, 2145 (1986).
  • M. Bitter et al., “Measurements of Radial Profiles of the Ion Temperature and Plasma Rotation Velocity with the TFTR Vertical X-Ray Crystal Spectrometer,” Rev. Sci. Instrum., 59, 2131 (1988).
  • R. Bartiromo et al., “JET High Resolution Bent Crystal Spectrometer,” Rev. Sci. Instrum., 60, 237 (1989).
  • M. Bitter et al., “High Power Neutral Beam Heating Experiments on TFTR with Balanced and Unbalanced Momentum Input,” Plasma Phys. Control. Fusion, 29, 1235 (1987).
  • F. Bombarda et al., “Observations and Comparisons with Theory of the Heliumlike and Hydrogenlike Resonance Lines and Satellites of Nickel from the JET Tokamak,” Phys. Rev. A, 37, 504 (1987).
  • M. Mattioli et al., “Impurity Ion Temperature and Toroidal Rotation Velocity in JET from High-Resolution X-Ray and XUV Spec-troscopy,” J. Appl. Phys., 64, 3345 (1988).
  • K.-D. Zastrow, E. KÄLlne, and H.P. Summers, “Measurement and Comparison with Theory of the Temperature Dependence of Satellite-to-Resonance Line Ratios of Heliumlike Nickel from the JETTokamak,” Phys. Rev A, 41, 1427 (1990).
  • M. Bitter et al., “Satellite Spectra for Heliumlike Titanium. II,” Phys. Rev. A, 32, 3011 (1985).
  • M. Bitter et al., “X-Ray Diagnostics of Tokamak Plasmas,” Phys. Script., T47, 87 (1993).
  • H. Hsuan et al., “Satellite Spectra of Heliumlike Nickel,” Phys. Rev. A, 35, 4280 (1987).
  • H. Hsuan et al., “Measurements of the Ion Temperature and Plasma Rotation from Ka Emission with the TFTR Horizontal X-Ray Crystal Spectrometer,” Rev. Sci. Instrum., 59, 2127 (1988).
  • M. Bitter et al., “Satellite Spectra of the Ka Resonance Line of Heliumlike Nickel, Ni XXVII, from Tokamak-Fusion-Test-Reactor Plasmas: Comparison Between Theory and Experiment”, Phys. Rev. A, 44, 1796 (1991).
  • M. Bitter et al., “Spectrum of Heliumlike Krypton from To-kamak Fusion Test Reactor Plasmas,” Phys. Rev. Lett., 71, 1007 (1993).
  • S. Morita and M. Goto, “X-Ray Crystal Spectrometer with a Charge-Coupled Device Detector for Ion Temperature Measurements in the Large Helical Device,” Rev. Sci. Instrum., 74, 2375 (2003).
  • S. Morita, M. Goto, S. Muto, H. Nozato, and LHD EXPERIMENTAL GROUP, “Introduction of LHD Spectroscopy,” Proc. 13th Int. Stellarator Workshop, Canberra, Australia, PIIA/13 (2002).
  • S. Morita et al., “Experimental Study on Ion Temperature Behaviors in ECH, ICRF and NBI H2, He and Ne Discharges of the Large Helical Device,” Nucl. Fusion, 43, 899 (2003).
  • S. Morita and M. Goto et al., “Behavior of Ion Temperature in Electron and Ion Heating Regimes Observed with ECH, NBI and ICRF Discharges of LHD,” Nucl. Fusion, 42, 1179 (2002).
  • G. Bertschinger et al., “X-Ray Spectroscopy at the TEXTOR-94 Tokamak,” Phys. Script., T83, 132 (1999).
  • J. Weinheimer, et al., “High-Resolution X-Ray Crystal Spectrometer/Polarimeter at Torus Experiment for Technology Oriented Research-94,” Rev. Sci. Instrum., 72, 2566 (2001).
  • O. Marchuk et al., “Cascades Between Doubly Excited Levels in Helium-Like Argon,” J. Phys. B: At. Mol./Opt. Phys., 37, 1951 (2004).
  • G. Bertschinger et al., “X-ray Spectroscopy at TEXTOR,” Fusion Sci. Technol., 47, 253 (2005).
  • M. Bitter et al., “Imaging X-Ray Crystal Spectrometers for the National Spherical Torus Experiment,” Rev. Sci. Instrum., 70, 292 (1999).
  • M. Bitter et al, “Results from the National Spherical Torus Experiment X-Ray Crystal Spectrometer,” Rev. Sci. Instrum., 74, 1977 (2003).
  • M. Bitter et al., “New Benchmarks from Tokamak Experiments for Theoretical Calculations of the Dielectronic Satellite Spectra of Heliumlike Ions”, Phys. Rev. Lett., 91, 265001-1 (2003).
  • P. Beiersdorfer et al., “Charge-Exchange-ProducedíT-Shell X-Ray Emission from Ar16+ in a Tokamak Plasma with Neutral Beam Injection,” Phys. Rev. A, 72, 032725 (2005).
  • E.S. Marmar et al., “Precision Measurement of the 1s Lamb Shift in Hydrogenlike Argon,” Phys. Rev. A, 33, 774 (1986).
  • E. KÄLlne, et al., “X-ray Satellites of High-n Rydberg Transitions in Ar16+,” Phys, Rev. A, 38, 2056 (1988).
  • J.E. Rice et al., “Observation of Charge-Transfer Population of High-n Levels in Ar+16 from Neutral Hydrogen in the Ground and Excited States in a Tokamak Plasma,” Phys. Rev. Lett., 56, 50 (1986).
  • J. Rice et al., “X-ray Observations of 2l-nV Transitions from Zr, Nb, Mo, and Pd in Near-Neonlike Charge States,” Phys. Rev. A, 53, 3953 (1996).
  • R. Barnsley et al., “Versatile High Resolution Crystal Spectrometer with X-Ray Charge Coupled Device Detector,” Rev. Sci. Instrum., 74, 2388 (2003).
  • T.E. Cravens, “X-Ray Emission from Comets,” Sci., 296, 1042 (2002).
  • M. Bitter et al., “Unresolved Dielectronic Satellites of the Resonance Lines of Heliumlike Iron (Fe XXV),” Phys. Rev. Lett., 47, 921 (1981).
  • P. Beiersdorfer et al., “Measurements of the Contributions from High-n Dielectronic Satellites to the Ka Resonance Line in Heliumlike Fe24+,” Rev. Sci. Instrum., 63, 5029 (1992).
  • J. Dubau and M. Loulerge, “High Resolution Spectra from Inner-Shell Transitions in Highly Ionized Chromium (Cr XIX-XXIII),” J. Phys. B: At. Mol. Phys., 15, 1007 (1982).
  • F. Bely-Dubau et al., “Satellite Spectra for Heliumlike Titanium,” Phys. Rev. A, 26, 3459 (1982).
  • M. Bitter et al., “Dielectronic Satellite Spectra of Hydrogenlike Titanium (Ti XXII)”, Phys. Rev. A, 29, 661.
  • V. Decaux et al., “Dielectronic Satellite Spectra of Hydrogenlike Iron from the Tokamak Fusion Test Reactor,” Phys. Rev. A, 43, 228 (1991).
  • K. Widmann et al., “Measurements of the Ka Transition Energies of Heliumlike Krypton,” Phys. Rev. A., 53, 2200 (1996).
  • M.R. Tarbutt et al., “Wavelength Measurements of the Satellite Transitions to the n = 2 Resonance Lines of Helium-Like Argon,” J. Phys. B: At. Mol./Opt. Phys., 34, 3979 (2001).
  • C. Biedermann, R. Radtke, and K.B. Fournier, “Spectroscopy of Heliumlike Argon Resonance and Satellite Lines for Plasma Temperature Diagnostics,” Phys. Rev. E, 66, 066404-1 (2002).
  • F. Bely-Dubau et al., “Measurement of the FeXXV Dielec-tronic Recombination Rate Coefficient in the PLT Tokamak Plasma,” Phys. Lett., 93A, 189 (1983).
  • TFR GROUP et al., “Charge-Dependent Wavelength Shifts and Line Intensities in the Dielectronic Satellite Spectrum of Heliumlike Ions,” Phys. Rev. A, 32, 3000 (1985).
  • P. Beiersdorfer et al., “High-Resolution n=3 to n=2 Spectra of Neonlike Silver,” Phys. Rev. A, 34, 1297 (1986).
  • P. Beiersdorfer et al., “Experimental Study of the X-Ray Transitions in the Heliumlike Isoelectronic Sequence,” Phys. Rev. A, 40, 150 (1989).
  • E. KÄLlne et al., “Precision Measurement of the H-Like X-Ray Spectrum of Cl and the 1s Lamb Shift,” J. Phys. B: At. Mol. Phys., 17, L115-1L120 (1984).
  • L.A. Vainshtein and U.I. Safronova, “Energy Levels of He- and Li-Like Ions (States 1snl, 1s2nl with n=2-5),” Phys. Script., 31, 519 (1985).
  • P. Indelicato, “Multiconfiguration Dirac-Fock Calculations of Transition Energies in Two Electron Ions with 10<Z<0092,” Nucl. Instrum. Methods, B31, 14 (1988).
  • P. Beiersdorfer et al., “X-ray Transitions in Highly Charged Neonlike Ions,” Phys. Rev. A, 37, 4153 (1988).
  • R. Barnsley et al., “Bragg Rotor Spectrometer for Tokamak Diagnostics,” Rev. Sci. Instrum., 57, 2159 (1986).
  • R. Bartiromo et al., “High Counting Rate Soft X-Ray Spectrometer for Tokamak Plasma Diagnostics,” Nucl. Instrum. Methods Phys. Res., B95, 537 (1995).
  • D.L. Mckenzie et al., “Solar Flare Spectra between 7.8 and 23.0 Angstroms”, Ap. J., 241, 409 (1980).
  • M. Bitter et al., “Spatially Resolved Spectra from a New X-Ray Imaging Spectrometer for Measurements of Ion and Electron Temperature Profiles,” Rev. Sci. Instrum., 75, 3660 (2004).
  • G. Bertschinger et al., “Compact Imaging Bragg Spectrometer for Fusion Devices,” Rev. Sci. Instrum., 75, 3727 (2004).
  • G. Bertschinger et al., “Space Resolved Measurements of Plasma Parameters Using X-Ray Spectra of He-Like Argon” Proc. 33rd European Physical Society Conf. Plasma Physics, Rome, Italy, June 19–23, 2006, Vol. 30I, P-2.153.
  • S.G. Lee et al., “Research and Development of X-ray Imaging Crystal Spectrometers for KSTAR,” Rev. Sci. Instrum., 75, 3693 (2004).
  • Ch. Broennimann et al., “The PILATUS 1M Detector,” J. Synchrotron Rad., 13, 120 (2006).
  • M. Bitter, Ch. Broennimann, E.F. Eikenberry, K.W. Hill, A. Ince-Cushman, S.G. Lee, J.E. Rice, and S. Scott, Proc. Nuclear Science Symp., Medical Imaging Conf. and 15th Int. Room Temperature Semiconductor Workshop, San Diego, California, October 29–November 4, 2006.
  • R. Barnsley et al., “Design Study for International Thermonuclear Experimental Reactor High-Resolution X-Ray Spectroscopy Array,” Rev. Sci. Instrum., 75, 3743 (2004).
  • P.C. Stangeby, The Plasma Boundary of Magnetic Fusion Devices, Institute of Physics Publishing, Philadelphpia (2000).
  • C.S. Pitcher and P.C. Stangeby, “Experimental Divertor Physics,” Plasma Phys. Control. Fusion, 39, 799 (1997).
  • ITER PHYSICS BASIS EDITORS, “Chapter 1: Overview and Summary,” Nucl. Fusion, 39, 2137 (1999).
  • H. Kubo et al., “Spectroscopic Study of Hydrogen Neutral Behavior in Attached and Detached Divertor Plasmas of JT-60U,” J. Nucl. Mater., 337339, 161 (2005).
  • A. Pospieszczyk et al., “Molecular Deuterium Sources in the outer Divertor of JET,” J. Nucl. Mater., 337339, 500 (2005).
  • S. Brezinsek et al., “Identification of Molecular Carbon Sources in the JET Divertor by Means of Emission Spectroscopy,” J. Nucl. Mater., 337339, 1058 (2005).
  • M. Czerny and A.F. Turner, “Astigmatism in Mirror Spectrometers,” Z. Phys., 61, 792 (1930).
  • P.D. Morgan et al., “Spectroscopic Measurements on the Joint European Torus using Optical Fibers to Relay Visible Radiation,” Rev. Sci. Instrum., 56, 862 (1985).
  • R.P. Seraydarian et al., “Multichordal Visible/Near-UV Spectroscopy on the DIII-D Tokamak,” Rev. Sci. Instrum., 59, 1530 (1988).
  • R.P. Seraydarian et al., “Multichordal Charge Exchange Recombination Spectroscopy on the Doublet III Tokamak,” Rev. Sci. Instrum., 57, 155 (1986).
  • K.H. Burrell et al., “Improved Charge-Coupled Device Detectors for High-Speed, Charge Exchange Spectroscopy Studies on the DIII-D Tokamak,” Rev. Sci. Instrum., 75, 3455 (2004).
  • M. Stamp, U.K. Atomic Energy Authority, Personal Communication (January 2006).
  • R.E. Bell, “Exploiting a Transmission Grating Spectrometer,” Rev. Sci. Instrum., 75, 4158 (2004).
  • H. Owen et al., “New Spectroscopic Instrument based on Volume Holographic Optical Elements,” Proc. SPIE Conf., Practical Holography, 2406, 260 (1995).
  • KAISER_OPTICAL_SYSTEMS, available on the Internet (http://www.kosi.com/).
  • R.E. Bell et al., “Tokamak Fusion Test Reactor Poloidal Rotation Diagnostic,” Rev. Scien. Instrum., 70, 821 (1999).
  • D.L. Hillis et al., “A High Throughput Spectrometer System for Helium Ash Detection on JET,” Rev. Sci. Instrum., 75, 3449 (2004).
  • T.M. Biewer et al., “Edge Rotation and Temperature Diagnostic on the National Spherical Torus Experiment,” Rev. Sci. Instrum., 75, 650 (2004).
  • T.N. Carlstrom et al., “Evidence for the Role of Velocity Shear on the L-H Transition in DIII-D,” Plasma Phys. Control. Fusion, 44, A333 (2002).
  • A. Gibson, “Deuterium-Tritium Plasmas in the Joint European Torus (JET)—Behavior and Implications,” Phys. Plasmas, 5, 1839 (1998).
  • Y.-K. Peng and D. Strickler, “Features of Spherical Torus Plasmas,” Nucl. Fusion, 26, 1839 (1986).
  • T.M. Biewer et al., “Observations of Anisotropic Ion Temperature in the NSTX Edge during RF Heating”, Proc. 31st EPS Conf. Controlled Fusion and Plasma Physics, London, 2004, Vol. 28G, p. P-2.198.
  • T.M. Biewer et al., “Edge Ion Heating by Launched High Harmonic Fast Waves in the National Spherical Torus Experiment,” Phys. Plasmas, 12, 056108 (2005).
  • R.A. Bamford et al., “Combination of Multichannel Detection and Fast Time Response in a Multichord Spectrometer,” Rev. Sci. Instrum., 63, 4963 (1992).
  • A. Graf et al., “High Resolution Transmission Grating spectrometer for Edge Toroidal Rotation Measurements of Tokamak Plasmas,” Rev. Sci. Instrum., 75, 4165 (2004).
  • M. Yoshinuma et al., “Observations of Edge Radial Electric Field Transition in LHD Plasmas,” Plasma Phys. Control. Fusion, 46, 1021 (2004).
  • R. Isler et al., “Carbon Sources in the DIII-D Tokamak,” J. Nucl. Mater., 313316, 873 (2003).
  • R.C. Isler et al., “Characterization of Impurities in Tokamak Divertor Plasmas from Analysis of Spectral Profiles”, 16th Int. Conf. Spectral Line Shapes, Vol. 12, CP645, p. 3, American Institute of Physics (2002).
  • R.C. Isler et al., “Spectroscopic Determinations of Carbon Fluxes, Sources, and Shielding in the DIII-D Divertors,” Phys. Plasmas, 8, 4470 (2001).
  • A. Huber et al., “Comparison of Impurity Production, Recycling and Power Deposition on Carbon and Tungsten Limiters in TEXTOR-94,” J. Nucl. Mater., 290293, 276 (2001).
  • R. Neu et al., “Plasma Operation with Tungsten Tiles at the Central Column of ASDEX Upgrade,” J. Nucl. Mater., 290293, 206 (2001).
  • B. Lipschultz et al., “Operation of Alcator C-Mod with High-Z Plasma Facing Components and Implications,” Phys. Plasmas, 13, 056117 (2006).
  • J. Howard et al., “Optical Coherence Techniques for Plasma Spectroscopy,” Rev. Sci. Instrum., 72, 888 (2001).
  • J. Howard, “High-Speed High Resolution Spectroscopy Using Spatial-Multiplex Coherence Imaging Techniques,” Rev. Sci. Instrum., 77, 10F111-1 (2006).
  • R.J. Colchin et al., “The Filterscope,” Rev. Sci. Instrum., 74, 2068 (2003).
  • R.J. Colchin et al., “Method of Neutral Density Determination Near the X-point in DIII-D”, Proc. 25th EPS Conf. Controlled Fusion and Plasma Physics, Prague, Czech Republic, p. 818 (1998).
  • R.J. Colchin et al., “Measurement of Neutral Densities near the X Point in the DIII-D Tokamak,” 27th EPS Conf. Control. Fusion Plasma Phys., 24B, 760 (2000).
  • R.J. Colchin et al., “Slow L-H Transition in DIII-D Plasmas”, Phys. Rev. Lett., 88, 255002-255001 (2002).
  • R.J. Colchin, Oak Ridge National Laboratory, Personal Communication (Jan. 2006).
  • D.N. Hill, “A Review of ELMs in Divertor Tokamaks,” J. Nucl. Mater., 241243, 182 (1997).
  • M. Stamp et al., “Divertor Impurity Sources; Effects of Hot Surfaces and Thin Films on Impurity Production,” J. Nucl. Mater., 337339, 1038 (2005).
  • H. Kugel et al., “Overview of Impurity Control and Wall Conditioning in NSTX,” J. Nucl. Mater., 290293, 1185 (2001).
  • M.E. Fenstermacher et al., “ATangentially Viewing Visible TV System for the DIII-D Divertor,” Rev. Sci. Instrum., 68, 974 (1997).
  • M. Groth et al., “Diagnosis of Edge Localized Mode Evolution in DIII-D Using Fast-Gated CID and Infrared Cameras,” Rev. Sci. Instrum., 74, 2064 (2003).
  • A. Patel et al., “Versatile Multiwavelength Imaging Diagnostic in the MAST Spherical Tokamak,” Rev. Sci. Instrum., 75, 4145 (2004).
  • N. Nishino et al., “High Speed 2-D Image Measurement for Plasma-Wall Interaction Studies,” J. Nucl. Mater., 337339, 1073 (2005).
  • V.A. Soukhanovskii et al., “High-Resolution Spectro-scopic Diagnostic for Divertor and Scrape-Off Layer Neutral and Impurity Emission Measurements in the National Spherical Torus Experiment,” Rev. Sci. Instrum., 74, 2094 (2003).
  • J. Terry et al., “Visible Imaging of Turbulence in the SOL of the Alcator C-Mod Tokamak,” J. Nucl. Mater., 290293, 757 (2001).
  • J.L. Terry et al., “High Speed Movies of Turbulence in Alcator C-Mod,” Rev. Sci. Instrum., 75, 4196 (2004).
  • D.E. Post, “A Review of Recent Developments in Atomic Processes for Divertors and Edge Plasmas,” J. Nucl. Mater., 220222, 143 (1995).
  • G. Janeschitz et al., “The ITER Divertor Concept,” J. Nucl. Mater., 220222, 73 (1995).
  • TFR GROUP, “Isotope Exchange Experiments on TFR,” J. Nucl. Mater., 9394, 173 (1980).
  • U. Samm, “Plasma Edge Research on TEXTOR,” PlasmaPhys. Control. Fusion, 29, 1321 (1987).
  • U. Samm et al., “Plasma Edge Physics in the Textor Tokamak with Poloidal and Toroidal Limiters,” J. Nucl. Mater., 162164, 24 (1989).
  • D. Reiter et al., “Measurement and Monte Carlo Computations of Ha Profiles in Front of a TEXTOR Limiter,” J. Nucl. Mater., 196198, 1059 (1992).
  • C.H. Skinner et al., “Spectroscopic Diagnostics of Tritium Recycling in TFTR,” Rev. Sci. Instrum., 66, 646 (1995).
  • H. Kubo et al., “The Spectral Profile of the Da Line Emitted from the Divertor Region of JT-60U,” Plasma Phys. Control. Fusion, 40, 1115 (1998).
  • H. Kubo et al., “High Resolution Visible Spectrometer for Divertor Study in JT-60U,” Fusion Eng. Des., 3435, 277 (1997).
  • A. Escarguel et al., “Spectral Profile Analysis of the D Alpha Line in the Divertor Region of Tore Supra,” J. Nucl. Mater., 290293, 854 (2001).
  • A. Escarguel et al., “Atomic and Molecular Deuterium Edge Density Evaluation from Spectral Analysis of the D Alpha Line Shape,” Plasma Phys. Control. Fusion, 43, 1733 (2001).
  • D. Lumma et al., “Radiative and Three-Body Recombination in the Alcator C-Mod Divertor,” Phys. Plasmas, 4, 2555 (1997).
  • B. Napiontek et al., “Line and Recombination Emission in the ASDEX Upgrade Divertor at High Density”, Proc. 24th EPS Conf. Controlled Fusion and Plasma Physics, Berchtesgaden, Germany, 1997.
  • R.C. Isler et al., “Signatures of Deuterium Recombination in the DIII-D Divertor,” Phys. Plasmas, 4, 2989 (1997).
  • A.G. Meigs et al., “Spectroscopic Electron Density Measurements and Evidence of Recombination in High Density JET Divertor Discharges”, Proc. 25th EPS Conf. Controlled Fusion and Plasma Physics, Prague, Czech Republic, 1998, p. 373.
  • A.G. Meigs et al., “Density and Temperature Measurements in Detached Recombining JET Divertors”, Proc. 27th EPS Conf. Controlled Fusion and Plasma Physics, Budapest, Hungary, 2000, Vol. 24B, p. 1264.
  • C.H. Skinner et al., “Plasma Wall Interaction and Tritium Retention in TFTR,” J. Nucl. Mater., 241243, 214 (1997).
  • D.L. Hillis et al., “Deuterium-Tritium Concentration Measurements in the Divertor of a Tokamak via a Modified Penning Gauge,” FusionEng. Des., 3435, 347 (1997).
  • A.T. Ramsey, “D-T Radiation Effects on TFTR Diagnostics (Invited),” Rev. Sci. Instrum., 66, 871 (1995).
  • A.T. Ramsey et al., “Radiation Effects on Heated Optical Fibers,” Rev. Sci. Instrum., 68, 632 (1997).
  • D.V. Orlinski, Diagnostics for Experimental Thermonuclear Fusion Reactors, p. 51, P.E. Stott, G. Gorini, and E. Sindoni, Eds., Plenum Press, New York (1996).
  • J.H. Weaver and H.P. R. Frederikse, CRC Handbook of Chemistry and Physics, Chemical Rubber Corp., Boca Raton, Florida (1994).
  • T. Sugie et al., “Divertor Impurity Monitor for the International Thermonuclear Experimental Reactor,” Rev. Sci. Instrum., 70, 351 (1999).
  • S.J. Tobin, Carbon Impurity Production and Transport from the Inertially Cooled Horizontal Limiter in the Tore Supra Tokamak, PhD Thesis, University of Michigan (1996).
  • C.H. Skinner et al., “Time Resolved Deposition Measurements in NSTX,” J. Nucl. Mater., 337339, 129 (2005).
  • S. Yamamoto et al., “Irradiation Tests on ITER Diagnostic Components”, Diagnostics for Experimental Thermonuclear Fusion Reactors 2, Plenum Press, New York (1998).
  • M.N. Rosenbluth and S.V. Putvinski, “Theory for Avalanche of Runaway Electrons in Tokamaks,” Nucl Fusion, 37, 1355 (1997).
  • S.V. Putvinski et al., “Halo Current, Runaway Electrons, and Disruption Mitigation in ITER,” Plasma Phys. Control. Fusion, 39, B157 (1997).
  • K.H. Finken et al., “Observation of Infrared Synchrotron Radiation from Tokamak Runaway Electrons in TEXTOR,” Nucl. Fusion, 30, 859 (1990).
  • R. Jaspers et al., “A Synchrotron Radiation Diagnostic to Observe Relativistic Runaway Electrons in a Tokamak Plasma,” Rev. Sci. Instrum., 72, 466 (2001). (See also references cited herein.)
  • I.M. Pankratov, “Analysis of the Synchrotron Radiation Spectra of Runaway Electrons,” Plasma Phys. Rep., 25, 145 (1999).
  • J. Schwinger, “On the Classical Radiation of Accelerated Electrons,” Phys. Rev., 75, 1912 (1949).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.