236
Views
79
CrossRef citations to date
0
Altmetric
Technical Paper

Chapter 12: Generic Diagnostic Issues for a Burning Plasma Experiment

, , &
Pages 699-750 | Published online: 27 Mar 2017

References

  • A.T. Ramsey, Rev. Sci. Instrum., 66, 1, 871 (1995).
  • A. Maas et al., “Diagnostic Experience During Deuterium-Tritium Experiments in JET, Techniques and Measurements,” Fusion Eng. Des., 47, 247 (1999).
  • D. Van Houtte et al., “Recent Fully Non-Inductive Operation Results in Tore Supra with 6 Min, 1 GJ Plasma Discharges,” Nucl. Fusion, 44, L11 (2004).
  • Y. Nakamura et al., “Plasma Performance and Impurity Behaviour in Long Pulse Discharges on LHD,” Nucl. Fusion, 43, 219 (2003).
  • J.B. Lister et al., “Technical Issues Associated with the Control of Steady State Tokamaks,” Nucl. Fusion, 40, 1167 (2000).
  • H.-J. Hartfuss, R. Koenig, and A. Werner, “Diagnostics for Steady State Plasmas,” Plasma Phys. Control. Fusion, 48, R83 (2006).
  • A. Costley, “Requirements and Issues in Diagnostics for Next Step Burning Plasma Experiments,” Advanced Diagnostics for Magnetic and Inertial Fusion, p. 1, P.E. Stott et al., Eds., Kluwer Academic/Plenum Press, New York (2002).
  • S. Rollet and P. Batistoni, Rev. Sci. Instrum., 63, 4551 (1993).
  • K.M. Young, “Challenges for Plasma Diagnostics in a Next Step Device (FIRE),” Proc. 19th Symp. Fusion Engineering, p. 192, Atlantic City, New Jersey, January 22–25, 2002, Institute of Electrical and Electronics Engineers (2002).
  • “ITER Diagnostics,” ITER CDA Documentation Series No. 33, International Atomic Energy Agency (1989).
  • A.J. H. DonnÉ et al., “Progress in the ITER Physics Basis: Chapter 7: Diagnostics,” Nucl. Fusion, 47, S337 (2007).
  • “ITER Technical Basis,” ITER EDA Documentation Series No. 24, International Atomic Energy Agency (2001).
  • R. Hiwatari, Y. Asaoka, K. Okano, T. Yoshida, and K. Tomabechi, “Generation of Net Electric Power with a Tokamak Reactor Under Foreseeable Physical and Engineering Conditions,” Nucl. Fusion, 44, 106 (2004).
  • R.V. Budny, “Fusion Alpha Parameters in Tokamaks with High DT Fusion Rates,” Nucl. Fusion, 42, 1383 (2002).
  • R. Pampin, P.J. Karditsas, A. Shimizu, T. Ando, and M. Akiba, FusionEng. Des., 81, 1231 (2006).
  • A. MÖSlang et al., “Suitability and Feasibility of the International Fusion Materials Irradiation Facility (IFMIF) for Fusion Materials Studies,” Nucl. Fusion, 40, 619 (2000).
  • L.C. Johnson et al., “Fusion Product Measurements in DT Plasmas in ITER,” Diagnostics for Experimental Thermonuclear Fusion Reactors, p. 369, P.E. Stott et al., Eds., Plenum Press, New York (1996).
  • L. De Kock et al., “The Implementation of the Diagnostic Systems on ITER,” Plasma Physics Reports, 24, 97 (1998).
  • C.I. Walker et al., “Nuclear Aspects of Diagnostics forRTO/RC ITER,” Fusion Eng. Des., 5152, 377 (1998).
  • A.E. Costley et al., “Requirements for ITER Diagnostics,” Diagnostics for Experimental Fusion Reactors, p. 23, P.E. Stott et al., Eds., Plenum Press, New York (1996).
  • A.E. Costley et al., “Overview of the ITER Diagnostic System,” Diagnostics for Experimental Thermonuclear Fusion Reactors 2, p. 41, P.E. Stott et al., Eds., Plenum Press, New York (1998).
  • C.I. Walker et al., “Diagnostic Access for ITER,” Diagnostics for Experimental Thermonuclear Fusion Reactors, p. 57, P.E. Stott et al., Eds., Plenum Press, New York (1996).
  • C.I. Walker, A.E. Costley, K. Itami, T. Kondoh, T. Sugie, and G. Vayakis, “ITER Diagnostics: Integration and Engineering Aspects,” Rev. Sci. Instrum., 75, 4243 (2004).
  • G. Kalinin et al., “Assessment and Selection of Materials for ITER In-Vessel Components,” J. Nucl. Mater., 283287, 10 (2000).
  • C. Gordon et al., “An Overview of Results in the ITER Generic Site Safety Report (GSSR),” Proc. 19th Fusion Energy Conf., Lyon, France, October 14–19, 2002, IAEA-CN-94, CT/P-17 (2002).
  • C. Gordon, H.-W. Bartels, M. Iseli, H. Okada, J. Raeder, and N. Taylor, “Safety Analysis for ITER Licensing,” Fusion Eng. Des., 7579, 1247 (2005).
  • G. Janeschitz et al., “Integration of Diagnostics into the ITER Machine,” Proc. 17th IAEA Fusion Energy Conf., Yokohama, Japan, October 19–24, 1998, IAEA-CN-69, ITERP1/15 (1998).
  • C.I. Walker et al., “Integration of In-Vessel Diagnostic Sensors in ITER,” Fusion Eng. Des., 5657, 883 (2001).
  • E. Martin et al., “Remote Maintenance of the ITER Equatorial Ports,” Proc. 20th Symp. Fusion Technology (SOFT-20), Marseille, France, September 7–11, 1998, p. 1119, Commissariat à l’Energie Atomique (1998).
  • S. Yamamoto et al., “Impact of Irradiation Effects on Design Solutions for ITER Diagnostics,” J. Nucl. Mater., 283287, 60 (2000).
  • P. Nielsen et al., “LIDAR Thomson Scattering for the ITER Core Plasma” in Diagnostics for Experimental Fusion Reactors, 2 p. 217, P.E. Stott et al., Eds., Plenum Press, New York (1998).
  • G.I. Shatalov, A. Borisov, S. Sheludjakov, and A. Serikov, “Neutronics for ITER Diagnostic Systems and Ports,” Fusion Eng. Des., 42, 221 (1998).
  • G. Shatalov, Private Communication (2000).
  • A. Borisov, C.I. Walker, G. Shatalov, and S. Sheludiako, “Neutronic Analysis of Diagnostic Systems in Ports of ITER,” 22nd Symp. Fusion Technology Book of Abstracts, p. 228, S. TÄHtinenet al., Eds., VTT Symposium 220, VTT, Finland (2002).
  • A.E. Costley, D.J. Campbell, S. Kasai, K.E. Young, and V. Zaveriaev, “ITER R&D: Auxiliary Systems: Plasma Diagnostics,” Fusion Eng. Des., 55, 331 (2001).
  • R.T. Santoro, V. Khripunov, H. Iida, and R.R. PARKER, “Radionuclide Production in the ITER Water Coolant,” 17th IEEE/NPSS Symp. Fusion Engineering, Vol. 1, p. 137, Institute of Electrical and Electronics Engineers (1997).
  • S. Sato, H. Iida, M. Yamauchi, and T. Nishitani, “Shielding Design of the ITER NBI Duct for Nuclear and Bremsstrahlung Radiation,” Radiat. Prot. Dosim., 116, 28 (2005).
  • L.H. Rovner and G.R. Hopkins, “Ceramic Materials for Fusion,” Nucl. Technol., 29, 274 (1976).
  • E.R. Hodgson, “General Radiation Problems for Insulating Materials in Future Fusion Devices,” J. Nucl. Mater., 258263, 226 (1998).
  • E.R. Hodgson, “Radiation Problems and Testing of ITER Diagnostic Components,” Diagnostics for Experimental Thermonuclear Fusion Reactors 2, p. 261, P. Stott et al., Eds., Plenum Press, New York (1998).
  • S. Yamamoto et al., “Radiation Problems and Testing of ITER Diagnostic Components,” Diagnostics for Experimental Fusion Reactors 2, p. 269, P.E. Stott et al., Eds., Plenum Press, New York (1998).
  • T. Shikama, K. Yasuda, S. Yamamoto, C. Kinoshita, S.J. Zinkle, and E.R. Hodgson, J. Nucl. Mater., 271272, 560 (1999).
  • E.R. Hodgson, “Challenges for Insulating Materials in Fusion Applications,” Nucl. Instrum. Methods Phys. Res., Sect. B: Beam Interactions with Materials and Atoms, 191, 744 (2002).
  • A. Ibarra and E.R. Hodgson, “The ITER Project: The Role of Insulators,” Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interactions with Materials and Atoms, 218, 29 (2004).
  • M. Decreton, T. Shikama, and E.R. Hodgson, “Performance of Functional Materials and Components in a Fusion Reactor: The Issue of Radiation Effects in Ceramics and Glass Materials for Diagnostics,” J. Nucl. Mater., 329333, 125 (2004).
  • “Irradiation Effects on Plasma Diagnostic Components (II),” Report JAERI-Research 2002-007, T. Nishitani, Ed., Japan Atomic Energy Research Institute (2002).
  • “12th IEA Workshop on Radiation Effects in Ceramic Insulators,” Report EUR-CIEMAT 94, E.R. Hodgson, Ed., Ciemat, Madrid (2002).
  • T. Shikama et al., Nucl. Fusion, 43, 517 (2003).
  • “TW1/2-TPD-IRRCER Final Report on Irradiation Effects in Ceramic for Heating and Current Drive and Diagnostic Systems,” report EUR-CIEMAT 95, E.R. Hodgson, Ed., Ciemat, Madrid (2003).
  • A.V. Bondarenko et al., “A Study of Radiation Resistance of Silica Optical Fibers under Conditions of Reactor Irradiation,” In-strum. Exp. Techn., 49, 130 (2006).
  • “13th IEA Workshop on Radiation Effects in Ceramic Insulators,” Report JAERI-Review 2004-004, T. Nishitani, Ed., Japan Atomic Energy Research Institute (2004).
  • “14th IEA Workshop on Radiation Effects in Ceramic Insulators,” report EUR-CIEMAT 96, E.R. Hodgson, Ed., Ciemat, Madrid (2004).
  • A. Gusarov et al., “In Situ In-Reactor Testing of Fusion Materials and Components,” Fusion Eng. Des., 7579, 819 (2005).
  • “15th IEA Workshop on Radiation Effects in Ceramic Insulators, Dec 2005,” report EUR-CIEMAT 98, E.R. Hodgson, Ed., Ciemat, Madrid (2006).
  • A. Rose, Phys. Rev., 97, 322 (1955).
  • R.C. Hughes, “Generation, Transport, and Trapping of Excess Charge Carriers in Czochralski-Grown Sapphire,” Phys. Rev. B, 19, 5318 (1979).
  • R.W. Klaffky, B.H. Rose, A.N. Goland, and G.J. Dienes, “Radiation-Induced Conductivity of Al2O3: Experiment and Theory,” Phys. Rev. B, 21, 3610 (1980).
  • E.R. Hodgson and S. Clement, “The Effect of Iron on the Radiation Induced Conductivity in Gamma- and Electron-Irradiated MgO” Radiat. Eff. Defects Solids, 97, 251 (1986).
  • G.P. Pells, Radiat. Effects, 97, 39 (1986).
  • A. Morono and E.R. Hodgson, “An Initial Model for the RIED Effect,” J. Nucl. Mater., 283287, 880 (2000).
  • T. Shikama and S.J. Zinkle, J. Nucl. Mater., 258263, 1861 (1998).
  • K. Yasuda, K. Tanaka, M. Shimada, T. Yamamoto, S. Matsumura, and C. Kinoshita, J. Nucl. Mater., 329333, 1451 (2004).
  • G.P. Pells and E.R. Hodgson, J. Nucl. Mater., 226, 286 (1995).
  • W. Kesternich, “Radiation-Induced Electrical Degradation: An Effect of Surface Conductance and Microcracking,” J. Nucl. Mater., 253, 167 (1998).
  • A. Morono and E.R. Hodgson, “Surface and Volume Electrical Degradation in Wesgo AL995,” J. Nucl. Mater., 233237, 1299 (1996).
  • A. Morono and E.R. Hodgson, “Role of Environment on the Surface Degradation of Wesgo AL995,” J. Nucl. Mater., 258263, 1798 (1998).
  • H. Ooms et al., 24th Symp. Fusion Technology (SOFT), Warsaw, Poland, September 11-15, 2006, FusionEng. Des., 82, 253 (2007).
  • G. Haas and H.S. Bosch, “In Vessel Pressure Measurement in Nuclear Fusion Experiments with Asdex Gauges,” Vacuum, 51, 39 (1998).
  • “European Fusion Technology Programme 1998-2001 T492 Final Report on Irradiation Effects in Ceramic for Heating and Current Drive and Diagnostic Systems,” report EUR-CIEMAT93, p. 12, E.R. Hodgson, Ed., Ciemat, Madrid (2001).
  • R. Van Nieuwenhove, “Study of Radiation Effects on a Pressure Gauge,” Report SCK«CEN R-3714, Mol, Belgium (2003).
  • R. Reichle et al., “Bolometer for ITER,” Diagnostics for Experimental Thermonuclear Fusion Reactors, p. 559, P.E. Stott et al., Eds., Plenum Press, New York (1996).
  • K.F. Mast, J.C. Vallet, C. Andelfinger, P. Betzler, H. Kraus, and G. Schramm, “A Low Noise Highly Integrated Bolometer Array for Absolute Measurement of VUV and Soft X Radiation,” Rev. Sci. Instrum., 62, 744 (1991).
  • R. Reichle et al., “Radiation Hardness Test of Mica Bolometers for ITER in JMTR,” 28th EPS Conf. Controlled Fusion and Plasma Physics, Funchal, Portugal, June 18–22, 2001, Europhysics Conference Abstracts 25A, p. 1293 (2001).
  • M. Gonzalez and E.R. Hodgson “Radiation Resistant Alternative Substrates for ITER Bolometers,” Fusion Eng. Des., 6668, 881 (2003).
  • M. Gonzalez and E.R. Hodgson, “Radiation Resistant Bolometers Using Platinum on Al2O3 and AlN,” Fusion Eng. Des., 74, 875 (2005).
  • M. Gonzalez and E.R. Hodgson, “Electrical and Mechanical Behaviour of Improved Platinum on Ceramic Bolometers,” Proc. 24th Symp. Fusion Technology (SOFT), Warsaw, Poland, September 11–15, 2006, FusionEng. Des., 82, 1277 (2007).
  • A. Gusarov, S. Huysmans, L. Vermeeren, E.R. Hodgson, and M. DecrÉTon, “In Situ In-Reactor Testing of Potential Bolometer Materials for ITER Plasma Diagnostics,” Fusion Eng. Des., 82, 1179 (2007).
  • R. Gianella, Private Communication (2005).
  • M. Di Maio, R. Reichle, and R. Gianella “Design of a Ferroelectric Bolometer,” Proc. 17th IEEE/NPSS Symp. Fusion Engineering, Vol. 2, San Diego, California, October 6–10, 1997, p. 775, Institute of Electrical and Electronics Engineers (1997).
  • R. Bittner et al., “Dielectric Properties of Irradiated Ferroelectric and Antiferroelectric Thin Films,” Integrated Ferroelectrics, 47, 143 (2002).
  • D.V. Kulikov et al., “The Effect of Neutron Irradiation on the Curie-Weiss Temperature of an Antiferroelectric Lead Zirconate Film,” Tech. Phys. Lett., 28, 628 (2002).
  • R. Bittner et al., “Radiation-Induced Defects in Antiferroelectric Thin Films,” Fusion Eng. Des., 6668, 833 (2003).
  • A. Sternberg et al., “Antiferroelectric PbZrO3 Thin Films: Structure, Properties and Irradiation Effects,” J. Eur. Ceram. Soc., 24, 1653 (2004).
  • T. Shikama et al., Nucl. Instr. Meth. in Phys. Res., B122, 650 (1997).
  • G. Vayakis et al., Rev. Sci. Instrum., 74, 2409 (2003).
  • C. Allan and G.F. Lynch, IEEE Trans. Nucl Sci., NS-27 1, 764 (1980); see also U.S. Patent 4, 284, 893 (1981).
  • T. Shikama et al., FusionEng. Des., 5152, 171 (2000).
  • S.E. Bender, V.M. Chernov, P.V. Demenkov, O.A. Plaksin, and V.A. Stepanov, “Investigation of RIEMF Nature in Magnetic Sensors for ITER,” Fusion Eng. Des., 5657, 911 (2001).
  • S.E. Bender, V.M. Chernov, P.V. Demenkov, O.A. Plaksin, and V.A. Stepanov, “Electrophysical Processes in MI-Cables During Pulsed Irradiation at BARS-6 Fission Reactor,” Plasma Devices and Operations, 11, 185 (2003).
  • S.E. Bender, P.V. Demenkov, O.A. Plaksin, V.A. Stepanov, and V.M. Chernov, “Effect of the Dose Rate and Temperature on Radiation-Induced Charge Separation in Cables with Mineral Insulation under Pulsed Reactor Irradiation,” Instrum. Exp. Tech., 47, 163 (2004).
  • L. Vermeeren, “Experimental Study of Radiation-Induced Currents in Copper and Stainless Steel Core Mineral-Insulated Cables in the BR2 Research Reactor,” Fusion Eng. Des., 74, 885 (2005).
  • L. Vermeeren and R. Van Nieuwenhove, Rev. Sci. In-strum., 74, 4667 (2003).
  • R. Van Nieuwenhove and L. Vermeeren, Rev. Sci. In-strum., 74, 4675 (2003).
  • T. Nishitani et al., J. Nucl. Mater., 329333, 1461 (2004).
  • G. Vayakis et al., Rev. Sci. Instrum., 75, 4324 (2004).
  • R. Vila and E.R. Hodgson, J. Nucl. Mater., 329333, 1524 (2004).
  • R. Vila and E.R. Hodgson, Private Communication (2005).
  • R. Vila and E.R. Hodgson, Private Communication; see also R. Vila, “Update on RIEMF/TIEMF,” Proc. 15th IEA Workshop on Radiation Effects in Ceramic Insulators, Santa Barbara, California, December 2005, Report EUR-CIEMAT 98 (2006), p.67 (2006).
  • L. Vermeeren and M. WÉBer, “Induced Voltages and Currents in Copper and Stainless Steel Core Mineral Insulated Cables Due to Radiation and Thermal Gradients,” Fusion Eng. Design, 82, 1185 (2007).
  • R. Vila and E.R. Hodgson, “Thermally Induced EMF in Unirradiated MI Cables,” J. Nucl. Mater., 367370, 1044 (2007).
  • R. Vila and E.R. Hodgson, “TIEMF in Unirradiated Cu Cored MI Cables: Microstructure,” FusionEng. Des., 82, 1271 (2007).
  • G. Chitarin, L. Grando, N. Pomaro, S. Peruzzo, and C. Taccon, “Design Developments for the ITER In-Vessel Equilibrium Pick-Up Coils and Halo Current Sensors,” Proc. 24th Symp. Fusion Technology, Fusion Eng. Des., 82, 1341 (2007).
  • H. Takahashi et al., “Magnetic Probe Construction Using Thick-Film Technology,” Rev. Sci. Instrum., 72, 3249 (2001).
  • A. Encheva, G. Vayakis, R. Chavan, A. Karpushov, and J-M Moret, “Design Optimisation of the ITER Divertor Magnetic Probes Using FEM Analyses,” Fusion Eng. Des. ( to be published).
  • A. Morono and E.R. Hodgson, “Radioluminescence Problems for Diagnostic Windows,” J. Nucl. Mater., 224, 216 (1995).
  • D. Orlinski et al., J. Nucl. Mater., 212215, 1059 (1994).
  • M. Garcia-Matos, A. Morono, and E.R. Hodgson, “KU1 Quartz Glass for Remote Handling and LIDAR Diagnostic Optical Transmission Systems,” J. Nucl. Mater., 283287, 890 (2000).
  • A. Morono and E.R. Hodgson, “KU1 and KS-4V Quartz Glass Lenses for Remote Handling and Diagnostic Optical Transmission Systems,” J. Nucl. Mater., 329333, 1438 (2004).
  • T. Nishitani, T. Sugie, N. Morishita, and N. Yokoo, Fusion Eng. Des., 74, 871 (2005).
  • T. Sugie, T. Nishitani, S. Kasai, J. Kaneko, and S. Yama-Moto, J. Nucl. Mat., 307311, 1264 (2002).
  • K. YU. Vukolov and B.A. Levin, Fusion Eng. Des., 6668, 861 (2003).
  • A.T. Ramsey and K.W. Hill, “Nuclear Radiation Effects in Fused SiO2 Lightguides,” Rev. Sci. Instrum., 63, 4735 (1992).
  • A.O. Volchek, V.M. Lisitsyn, A.I. Gusarov, V. YU. Yakovlev, and V.I. Arbuzov, “Transient Optical Transmission Changes Induced by Pulsed Electron Radiation in Commercial Crown Silicate Glasses,” Nucl. Instrum. Methods in Phys. Res., Sect. B: Beam Interactions with Materials and Atoms, 211, 100 (2003).
  • P. Martin, A. Morono, and E.R. Hodgson, “Surface Degradation Effects on Laser Damage in KU1 Quartz Glass Windows for LIDAR Applications,” J. Nucl. Mater., 307311, 1260 (2002).
  • P. Martin, A. Morono, and E.R. Hodgson, “Laser Induced Damage Enhancement Due to Stainless Steel Deposition on KS-4V and KU1 Quartz Glasses,” J. Nucl. Mater., 329333, 1442 (2004).
  • A.V. Gorbunov, N.V. Klassen, D.V. Orlinski, and K. YU Vukolov, “Laser Damage of KU-1 Quartz Glass Coated with Hydrocarbon Films,” Fusion Eng. Des., 74, 815 (2005).
  • S.M. Gonzalez, A. Morono, and E.R. Hodgson, “Optical and Electrical Degradation of H+ Implanted KS-4V Quartz Glass,” Fusion Eng. Des., 74, 831 (2005).
  • F. Sat, T. Iida, Y. Oyama, F. Maekawa, and Y. Ikeda, J. Nucl. Mater., 258263, 1897 (1998).
  • T. Yoshida, T. Ii, T. Tanabe, H. Yoshida, and K. Yamaguchi, J. Nucl. Mater., 307311, 1268 (2002).
  • A. Morono and E.R. Hodgson, “Radiation Induced Optical Absorption and Radioluminescence in Electron Irradiated SiO2,” J. Nucl. Mater., 258263, 1889 (1998).
  • B. Brichard et al., “Radiation-Hardening Techniques of Dedicated Optical Fibres Used in Plasma Diagnostic Systems in ITER,” J. Nucl. Mater., 329333, 1456 (2004).
  • B. Brichard, “Experiment SMIRNOV V Absorption and Luminescence Spectroscopy,” Report SCK’CEN R-4082 (2005).
  • A.F. Kosolapov, S.L. Semjonov, and A.L. Tomashuk, “Improvement of Radiation Resistance of Multimode Silica-Core Holey Fibers,” Proc. SPIE, 6193, 61931E (2006).
  • S. Nagata, K. Toh, B. Tsuchiya, N. Ohtsu, and T. Shikama, Proc. 50th Annual Mtg. International Society for Optical Engineering, San Diego, California, Proc. 5199, 132 (2004).
  • K. Okamoto et al., J. Nucl. Mater., 329333, 1503 (2004).
  • O.A. Plaksin, N. Kishimoto, and T. Shikama J. Nucl. Mater., 329333, 1490 (2004).
  • D. Sporea, A. Sporea, and B. Constantinescu, Fusion Eng. Des., 74, 763 (2005).
  • K. Toh et al., J. Nucl. Mater., 329333, 1495 (2004).
  • A.T. Ramsey et al., Rev. Sci. Instrum., 68, 632 (1997).
  • D.L. Griscom, J. Appl. Phys., 77, 5008 (1995).
  • T. Hernandez, A. Morono, and E.R. Hodgson, “Radiation Enhanced Degradation of Aluminium Mirrors for Remote Handling and Diagnostics Applications: Effect of Humidity,” Fusion Eng. Des., 69, 177 (2003).
  • T. Hernandez, A. Morono, and E.R. Hodgson, “Radiation Enhanced Degradation of SiO Overcoated Aluminium Mirrors,” Fusion Eng. Des., 74, 793 (2005).
  • T. Hernandez, A. Morono, and E.R. Hodgson, “Mirrors for Diagnostic and Remote Handling Applications in ITER: Problems with Specifications for Commercial Mirrors,” Proc. 24th Symp. Fusion Technology (SOFT), Warsaw, Poland, September 11–15, 2006, FusionEng. Des., 82, 1258 (2007).
  • W. Dienst, “Investigations on Ceramic Materials for Fusion Technology,” J. Nucl. Mater., 174, 102 (1990).
  • W. Dienst, “Reduction of the Mechanical Strength of Al2O3, AIN and SiC Under Neutron Irradiation,” J. Nucl. Mater., 191194, 555 (1992).
  • W. Dienst, “Mechanical Properties of Neutron-Irradiated Ceramic Materials,” J. Nucl. Mater., 211, 186 (1994).
  • G.P. Pells and R.M. Boothby, J. Nucl. Mater., 256, 25 (1998).
  • G.P. Pells, “European Technology Fusion Programme, T246 Final report,” Report EUR-CIEMAT92, E.R. Hodgson, Ed. (1998).
  • R. Heidinger, “Mechanical Strength of Neutron-Irradiated Window Materials,” J. Nucl. Mater., 307311, 2, 1254 (2002).
  • A. Nagashima et al., Diagnostics for Experimental Thermonuclear Fusion Reactors 2, p. 257, P. Stott et al., Eds., Plenum Press, New York (1998).
  • M. Missirlian, J. Schlosser, M. Lipa, R. Mitteau, PH. Chappuis, and C. Portafaix, “Methodology for the Design of Diagnostic Windows for Tore Supra,” Fusion Eng. Des., 6668, 911 (2003).
  • B. Schulz., J. Nucl. Mater., 155157, 348 (1988).
  • M. Rohde and B. Schulz, J. Nucl. Mater., 173, 289 (1990).
  • R. Heidinger et al., “Design and Analysis of Windows and Structural Components for the ITER ECRH Upper Port Plug,” Proc. 13th Joint Workshop on ECE and ECRH (EC-13), Nizhny Novgorod, Russia, May 17–20, 2004 (2004); available online at http://www.ec13.iapras.ru/
  • “15th IEA Workshop on Radiation Effects in Ceramic Insulators, Dec 2005,” Report EUR-CIEMAT 98, E.R. Hodgson, Ed. (2006).
  • S.B. Gilliam et al., “Retention and Surface Blistering of Helium Irradiated Tungsten as a First Wall Material,” J. Nucl. Mater., 347, 289 (2005).
  • N. Yoshida, H. Iwakiri, K. Togunaga, and T. Baba, “Impact of Low Energy Irradiation on Plasma Facing Metals,” J. Nucl. Mater., 337339, 946 (2005).
  • N. Ohno, S. Kajita, DAI Nishijima, and S. Takamura “Surface Modification at Tungsten and Tungsten Coated Graphite Due to Low Energy and High Fluence Plasma and Laser Pulse Irradiation,” J. Nucl. Mater., 363365, 1153 (2007).
  • A. Ebihara, M. Tokitani, K. Tokunaga, T. Fuji-Wara, A. Sagara, and N. Yoshida, “Irradiation Effects of Low Energy Helium Ions on Optical Reflectivity of Metallic Mirror,” J. Nucl. Mater., 363365, 1195 (2007).
  • R. Behrish, G. Federici, A. Kukushkin, and D. Reiter, “Material Erosion at the Vessel Walls of Future Fusion Devices,” J. Nucl. Mater., 313316, 388 (2003).
  • A. Kukushkin, Private Communication (2006).
  • G. Federici et al., “Plasma-Material Interactions in Current Tokamaks and Their Implications for Next Step Fusion Reactors,” Nucl. Fusion, 41, 1967 (2001).
  • V. Voitsenya et al., “Diagnostic First Mirrors for Burning Plasma Experiments (Invited),” Rev. Sci. Instrum., 72, 475 (2001).
  • A.F. Bardamid et al., “Ion Energy Distribution Effects on Degradation of Optical Properties of Ion-Bombarded Copper Mirrors,” Surface and Coatings Technology, 103104, 365 (1998).
  • M. Balden et al., “Surface Roughening and Grain Orientation Dependence of the Erosion of Polycrystalline Stainless Steel by Hydrogen Irradiation,” J. Nucl. Mater., 329333, 1515 (2004).
  • K.YU. Vukolov, Private Communication (2003); see also A.A. Medvedev, E.V. Alexandrov, A.V. Gorshkov, and K.YU. Vukolov, Proc. 10th Int. Conf. and School on Plasma Physics and Controlled Fusion, Alushta, Crimea, Ukraine, September 13–18, 2004, p. 224 (2004).
  • T. Sugie et al., J. Plasma Fusion Res., 79, 1051 (2003).
  • E.E. Mukhin and G.T. Razdobarin, Proc. 30th EPS Conf. Controlled Fusion and Plasma Physics, Europhysics Conference Abstracts, St. Petersburg, Russia, July 7–11, 2003, 27A, O-1.5A (2003).
  • S. Tugarinov et al., Rev. Sci. Instrum., 74, 3, 2075 (2003).
  • A. Malaquias et al., “Active Beam Spectroscopy Diagnostics for ITER: Present Status (Invited),” Rev. Sci. Instrum., 75, 3393 (2004).
  • V.S. Voitsenya et al., “Simulation of Environment Effects on Retroreflectors in ITER,” Rev. Sci. Instrum., 76, 083502 (2005).
  • V.S. Voitsenya et al., Proc. 12th Int. Congress on Plasma Physics, Nice, France, October 25–29, 2004, available online at http://hal.ccsd.cnrs.fr/ICPP2004/en/ (2004).
  • H. Yoshida, O. Naito, T. Hatae, and A. Nagashima, “Solution for a Window Coating Problem Developed in the JT-60U Thomson Scattering System,” Report JAERI-Research 96-062, Japan Atomic Energy Research Institute (1996).
  • V.S. Voitsenya et al., Rev. Sci. Instrum., 70, 790 (1999).
  • G. De Temmerman, R.A. Pitts, V.S. Voitsenya, L. Marot, G. Veres, M. Maurer, and P. Oelhafen, “First Mirror Tests for ITER: Influence of Material Choice on the Erosion/Deposition Mechanisms Affecting Optical Reflectivity,” J. Nucl. Mater., 363365, 259 (2007).
  • V.S. Voitsenya, Rev. Sci. Instrum., 70, 787 (1999).
  • W. Bohmeyer, G. Fussman, C. Ibott, A. Markin, and H.-D. REITER, “Formation of Hydrocarbon Films in the Plasma Generator PSI-2,” 30th EPS Conf. Controlled Fusion and Plasma Physics, St. Petersburg, Russia, July 7–11, 2003, Europhysics Conference Abstracts 27A, European Physical Society, P-3.184 (2003).
  • A. Litnovski et al., “Diagnostic Mirrors for ITER: A Material Choice and an Impact of Erosion and Deposition on Their Performance.” J. Nucl. Mater., 363365, 1395 (2007).
  • M.M. Kochergin et al., “Research on Mirror Cleaning in Inductively and Capacitively Driven Radio-Frequency Discharges,” Plasma Devices and Operations, 14, 171 (2006).
  • K. Vukolov, A. Gorshkov, and S. Zvonkov, “Cleaning of Metal Mirrors from Contaminations by the Radiation of Eximer Laser. Problems for Atomic Science and Technology,” Thermonuclear Fusion, 1, 61 (2001)(in Russian).
  • K. YU. Vukolov, M.I. Guseva, S.A. Evstigneev, A.A. Medvedev, and S.N. Zvonkov, Plasma Devices and Operations, 12, 193 (2004).
  • D. Naujoks and W. Eckstein, J. Nucl. Mater., 230, 93 (1996).
  • K. Ohya et al., J. Nucl. Mater., 337339, 882 (2005).
  • T. Kondoh, Y. Kowano, A.E. Costley, A. Malaquias, T. Sugie, and C. Walker, “Toroidal Interferometer/Polarimeter Density Measurement System for Long Pulse Operation on ITER,” 30th EPS Conf. Controlled Fusion and Plasma Physics, St. Petersburg, Russia, July 7–11, 2003, Europhysics Conference Abstracts 27A, European Physical Society, P-4.64 (2003).
  • V. Rohde et al., J. Nucl. Mater., 337339, 847 (2005).
  • A.E. Costley, “Laser-Based Diagnostics for ITER and Beyond,” Proc. 12th Int. Symp. Laser Aided Plasma Diagnostics, Snowbird, Utah, September 26–29, 2005 (2005).
  • T. Nishitani et al., Fusion Eng. Des., 5152, 153 (2000).
  • L.C. Ingesson et al., Fusion Sci. Technol., 53, 528 (2008).
  • G. Vayakis et al., “Status and Prospects for mm-Wave Reflectometry in ITER,” Nucl. Fusion, 46, S836 (2006).
  • ITER PHYSICS EXPERT GROUP ON DIAGNOSTICS and ITER PHYSICS BASIS EDITORS, “Chapter 7: Measurement of Plasma Parameters,” Nucl. Fusion, 39, 2541 (1999).
  • J.B. Lister, J.W. Farthing, M. Greenwald, and I. Yonekawa, “The ITER CODAC Conceptual Design,” Fusion Eng. Des., 82, 1167 (2007).
  • R. Reichle et al., “Concept for Spectrally Resolved ITER Divertor Thermography with Fibres,” 32nd EPS Conf. Plasma Physics, Europhysics Conference Abstracts, 29, P4.083 (2005).
  • L. De Kock et al., “Langmuir Probes and Optical Diagnostics for the ITER Divertor,” Diagnostics for Experimental Thermonuclear Reactors, p. 591, P. Stott et al., Eds., Plenum Press, New York (1996).
  • A. Morabito, Private Communication (2005).
  • G. Vayakis et al., “The ITER ECE Diagnostic Front End Design,” Diagnostics for Experimental Fusion Reactors 2, P.E. Stott et al., Eds., Plenum, New York (1998).
  • G. Vayakis, D.V. Bartlett, A.E. Costley, and the ITER JCT and HOME TEAMS, “ECE Diagnostics for RTO/RC ITER,” Fusion Eng. Des., 53, 221 (2001).
  • D.V. Bartlett and H. Bindslev, “Physics Aspects of ECE Te Measurements in ITER,” Diagnostics for Experimental Fusion Reactors 2, p. 171, P.E. Stott et al., Eds., Plenum Press, New York (1998).
  • M. Austin, Private Communication (2007).
  • P. Nielsen et al., “LIDAR Thomson Scattering for the ITER Core Plasma,” Diagnostics for Experimental Thermonuclear Fusion Reactors 2, p. 217, P.E. Stott et al., Eds., Plenum Press, New York (1998).
  • M.J. Walsh et al., “Design Challenges and Analysis of the ITER Core LIDAR Thomson Scattering System,” Rev. Sci. Instrum., 77, 10E525 (2006).
  • T. Hatae, O. Naito, M. Nakatsuka, and H. Yoshida, “Applications of Phase Conjugate Mirror to Thomson Scattering Diagnostics (Invited),” Rev. Sci. Instrum., 77, 10E508 (2006).
  • E. De La Luna et al., “Recent Developments of ECE Diagnostics at JET,” Proc. 13th Joint Workshop on ECE and ECRH (EC-13), Nizhny Novgorod, Russia, May 17–20, 2004 (2004); available online at http://www.ec13.iapras.ru/
  • V.S. Voitsenya et al., Rev. Sci. Instrum., 70, 2016 (1999).
  • A. Gorshkov, I. Bel’Bas, V. Sannikov, and K. Vukolov, “Frequency Laser Damage of Mo Mirrors,” 22nd Symp. Fusion Technology Book of Abstracts, p. 238, S. TÄHtinen et al., Eds., VTT Symposium 220, VTT, Finland (2002).
  • V.S. Voitsenya and D.V. Orlinski, Bulletin on Atomic Energy, 5, 53 (2006)(in Russian).
  • V.S. Voitsenya, “Problems of In-Vessel Mirrors in ITER and Their Possible Solution,” AIP Conference Proceedings, 812, 211 (2006).
  • G. Vayakis et al., “Plasma Diagnostics in ITER Control,” 1998 International Congress on Plasma Physics combined with the 25th European Physical Society Conference on Controlled Fusion and Plasma Physics, Europhysics Conference Abstracts, 22C, P3.095 (1998).
  • D.L. Brower, Private Communication (2007).
  • F. Najmabadi, “Spherical Torus Concept as Power Plants— The ARIES-ST Study,” Fusion Eng. Des., 65, 143 (2003).
  • K. Tobita et al., Fusion Eng. Des., 81, 1151 (2006).
  • P. Sardain et al., Fusion Eng. Des., 81, 2673 (2006).
  • F. Najmabadi, A.R. Raffray, and the ARIES TEAM, “Recent Progress in the ARIES Compact Stellarator Study,” Fusion Eng. Des., 81, 2679 (2006).
  • D. King et al., “Conclusions of the Fusion Fast Track Experts Meeting Held on 27 November 2001 on the Initiative of Mr. De Don-nea, President of the Research Council,” report available from http://ec.europa.eu/research/energy/pdf/kingreport_en.pdf.
  • “IFMIF CDA Team IFMIF Conceptual Design Activity, Final Report,” ENEA Frascati Report RT/ERG/FUS/96/11, M. Mar-Tone, Ed. (1996).
  • T. Kondo, “IFMIF, Its Facility Concept and Technology,” J. Nucl. Mater. 258263, 1, 47 (1998).
  • E.F. Eikenberry et al., “PILATUS: A Two-Dimensional X-Ray Detector for Macromolecular Crystallography,” Nucl. Instrum. Methods Phys. Res. Sect. A: Accelerators, Spectrometers, Detectors and Associated Equipment, 501, 1, 260 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.