14
Views
13
CrossRef citations to date
0
Altmetric
Overview

Thermal, Fluid Flow, and Tritium Release Problems in Fusion Blankets

, &
Pages 165-200 | Published online: 09 May 2017

References

  • M. A. ABDOU, et al., “FINESSE: A Study of the Issues, Experiments, and Facilities for Fusion Nuclear Technology Research and Development (Interim Report)” PPG-821, UCLA-ENG-84-30, University of California, Los Angeles (Oct. 1984).
  • J. K. GARNER and M. A. ABDOU, “Uncertainties in Liquid Metal Fusion Blanket Design Windows,” Fusion Technol., 10, Part 2, 837 (1986).
  • G. CASINI, “Thermal and Structural Design Issues of Breeding Blankets for Testing in the Next European Tours,” Fusion Eng. Des., 6, 2, 95 (1988).
  • B. F. PICOLOGLOU, Y. S. CHA, and S. MAJUMDAR, “Lithium-Cooled Blankets for Advanced Tokamaks,” Fusion Technol., 10, Part 2, 848 (1986).
  • S. MALANG et al., “Self-Cooled Liquid-Metal Blanket Concept,” Fusion Technol., 14, 1343 (1988).
  • D. L. SMITH et al., “Blanket Comparison and Selection Study —Final Report,” ANL/FPP-84-1, Argonne National Laboratory (Sep. 1984).
  • D. EHST et al., “Tokamak Power Systems Studies — FY1986: A Second Stability Power Reactor,” ANL/FPP-86-1, Argonne National Laboratory (1986).
  • A. MAJID and M. A. ABDOU, “Thermomechanical Aspects of the Liquid Metal Cooled Limiter,” Fusion Technol., 15, Part 2, 1192 (1989).
  • V. N. DEM’YANENKO et al., “Liquid Metal in the Magnetic Field of Tokamak Reactor,” Magnetohydrodynamics, 1, 104 (1988).
  • W. M. WELLS, “A System for Handling Divertor Ion and Energy Flux Based on a Lithium Droplet Cloud,” Nucl. Technol./Fusion, 1, 20 (1981).
  • R. W. MOIR, “Rotating Liquid Blanket with No First Wall for Fusion Reactors,” Fusion Technol., 15, Part 2, 674 (1989).
  • A. M. HASSANEIN and D. L. SMITH, “Evaluation of Liquid Metal Protection of a Limiter/Divertor in Fusion Reactors,” Fusion Technol., 15, Part 2, 1196 (1989).
  • “UWMAK-I: A Wisconsin Toroidal Fusion Reactor Design,” UWFDM-68, University of Wisconsin (Nov. 20, 1973).
  • “Tokamak Power Systems Studies,” ANL/FPP-85-2, Argonne National Laboratory (1985).
  • B. F. PICOLOGLOU, “Magnetohydrodynamic Considerations for the Design of Self-Cooled Liquid-Metal Fusion Reactor Blankets,” Fusion Technol., 8, Part 2, 276 (1985).
  • J. S. WALKER and B. F. PICOLOGLOU, “Comparison of Three MHD Flow Control Methods for Self-Cooled Liquid Metal Blankets,” Fusion Technol., 10, Part 2, 866 (1986).
  • B. F. PICOLOGLOU, C. B. REED, T. Q. HUA, L. BARLEONE, H. KREUZINGER, and J. S. WALKER, “Experimental Investigations of MHD Flow Tailoring for First Wall Coolant Channels of Self-Cooled Blankets,” Fusion Technol., 15, Part 2, 1180 (1989).
  • M. A. HOFFMAN, “Magnetic Field Effects on the Heat Transfer of Potential Fusion Reactor Coolants,” UCRL-73993, Lawrence Livermore National Laboratory (June 1972).
  • R. A. GARDNER and P. S. LUKOUDIS, “Magneto-Fluid-Mechanic Pipe Flow in Transverse Magnetic Field: Part 2, Heat Transfer,” J. Fluid Mech., 48, 129 (1971).
  • H. BRANOVER and P. GERSHON, “Experimental Investigation of the Origin of Residual Disturbances in Turbulent MHD Flows After Laminarization,” J. Fluid Mech., 94, 629 (1979).
  • Yu. B. KOLESNIKOV, “Two-Dimensional Turbulent Flow in a Channel with Inhomogeneous Electrical Conductivity at the Walls,” Magnetohydrodynamics, 8, 3, 308 (July-Sep. 1972).
  • J. C. R. HUNT, “Magnetohydrodynamic Flow in Rectangular Ducts,” J. Fluid Mech., 21, 4, 577 (1965).
  • B. LEHNERT, “An Instability of Laminar Flow of Mercury Caused by an External Magnetic Field,” Proc. Royal Soc. A., 233 (Dec. 1955).
  • H. BRANOVER et al., “Turbulence and the Feasibility of Self-Cooled Liquid Metal Blankets for Fusion Reactors,” Fusion Technol., 10, Part 2, 822 (1986).
  • C. B. REED and B. F. PICOLOGLOU, “Sidewall Flow Instabilities in Liquid Metal MHD Flow Under Blanket Relevant Conditions,” Fusion Technol., 15, Part 2, 705 (1989).
  • K. FUJIMURA, “Stability of a MHD Flow Through a Square Duct,” UCLA-FNT-023, University of California, Los Angeles (Apr. 1989).
  • B. F. PICOLOGLOU, C. B. REED, T. Q. HUA, and A. S. LAVINE, “The Design of a Heat Transfer Liquid Metal MHD Experiment for ALEX,” Fusion Technol., 15, Part 2, 1186 (1989).
  • T. IDA, A. SERIZAWA, O. TAKAHASHI, and I. MICHIYOSHI, “Heat Transfer and Flow Properties in Liquid-Metal-Gas Two-Phase MHD Flow,” JSME, 864-2, 65 (1986).
  • P. GHERSON and P. S. LYKOUDIS, “Local Measurements in Two-Phase Liquid-Metal Magneto-Fluid-Mechanic-Flow,” J. Fluid Mech., 147, 81 (1984).
  • L. BLUMEAU et al., “Liquid Metal MHD Energy Conversion in Fusion Reactors,” Fusion Technol., 10, Part 2, 914 (1986).
  • G. FABRIS et al., “High-Power-Density Liquid-Metal MHD Generator Results,” Proc. 18th Symp. Engineering Aspects of Magnetohydrodynamics, Butte, Montana, June 18–20, 1979, p. D2.2.
  • P. F. DUNN et al., “High-Power-Density Liquid-Metal MHD Generator Experiments,” Proc. 18th Symp. Engineering Aspects of Magnetohydrodynamics, Butte, Montana, June 18–20, 1979, p. D2.2.7.
  • C. B. REED, B. F. PICOLOGLOU, and P. V. DAUZVARDIS, “Experimental Facility for Studying MHD Effects in Liquid Metal Cooled Blankets,” Fusion Technol., 8, 257 (1985).
  • L. BARLEONE et al., “Experimental and Theoretical Work on MHD at Kernforschungszentrum Karlsruhe, The MEKKA Program,” Proc. IUTAM Symp. Liquid Metal MHD, Riga, USSR, May 16–20, 1988.
  • Ja. DEKEYSER et al., “Status of the Liquid Metal Breeder Research Programme at CEN/SCK-MOL (Belgium),” Proc. 4th Technical Committee Mtg. and Workshop Fusion Reactor Design and Technology, May 25–June 6, 1986, Yalta, USSR.
  • J. C. R. HUNT and R. HANCOX, “The Use of Liquid Lithium as Coolant in a Toroidal Fusion Reactor. Part I: Calculation of Pumping Power,” CML-R115, University of Chicago (1971).
  • M. A. HOFFMAN and G. A. CARLSON, “Calculation Techniques for Estimating the Pressure Losses for Conducting Fluid Flows in Magnetic Fields,” UCRL-51010, Lawrence Livermore National Laboratory (1971).
  • K. TAGHAVI, M. S. TILLACK, and H. MADARAME, “Special Features of First-Wall Heat Transfer in Liquid-Metal Fusion Reactor Blankets,” Fusion Technol., 12, 104 (1987).
  • R. J. HOLROYD and J. S. WALKER, “A Theoretical Study of the Effects of Wall Conductivity Non-Uniform Magnetic Fields and Variable Area Ducts on Liquid Metal Flows at High Hartmann Number,” J. Fluid Mech., 84, 471 (1978).
  • G. S. S. LUDFORD and J. S. WALKER, “Current Status of MHD Duct Flow,” MHD-Flows and Turbulence II, H. BRANOVER and A. YAKHOT, Eds., Israel Universities Press, Jerusalem (1980).
  • A. G. KULIKOVSKII, “Slow Steady Flows a Conducting Fluid at Large Hartmann Numbers,” Fluid Dynamics, 3, 2, 3 (1968).
  • B. SINGH and J. LAL, “Finite Element Method in Magnetohydrodynamic Channel Flow Problems,” Int. J. Numer. Meth. Eng., 18, 1104 (1982).
  • J. I. RAMOS and N. S. WINOWICH, “Magnetohydrodynamic Channel Flow Study,” Phys. Fluid, 29, 4, 992 (Apr. 1986).
  • N. S. WINOWICH and W. F. HUGHES, “A Finite-Element Analysis of Two-Dimensional MHD Flow,” Liquid Metal Flows and Magnetohydrodynamics, p. 313, H. BRANOVER, P. S. LYKOUDIS, and A. YAKHOT, Eds., American Institute of Aeronautics and Astronautics, New York (1983).
  • M. S. TILLACK, “Application of the Core Flow Approach to MHD Fluid Flow in Geometric Elements of a Fusion Reactor Blanket,” Proc. IUTAM Symp. Liquid Metal Magnetohydrodynamics, May 16–20, 1988, Riga, USSR.
  • T. Q. HUA, J. S. WALKER, B. F. PICOLOGLOU, and C. B. REED, “Three Dimensional Magnetohydrodynamic Flows in Rectangular Ducts of Liquid-Metal-Cooled Blankets,” Fusion Technol., 14, 1389 (1988).
  • K. McCarthy, M. A. ABDOU, and M. S. TILLACK, “Analysis of Liquid Metal MHD Flow Using an Iterative Method to Solve the Core Flow Equations,” Proc. Int. Symp. Fusion Nuclear Technology, Tokyo, Japan, April 10–19, 1988.
  • H. MADARAME and H. TOKOH, “Development of Computer Code for Analyzing Liquid Metal MHD Flow in Fusion Reactor Blankets (I),” J. Nucl. Sci. Technol., 25, 3, 233 (Mar. 1988).
  • M. A. ABDOU et al., “Modeling, Analysis and Experiments for Fusion Nuclear Technology, FNT Progress Report: Modeling & FINESSE,” PPG-1021, UCLA-ENG-86-44, FNT-17, University of California, Los Angeles (Jan. 1987).
  • T. N. AITOV, A. I. KALYUTIK, and A. V. TANANAEV, “Numerical Analysis of Three-Dimensional MHD Flow in Channel with Abrupt Change of Cross Section,” Magnetohydrodynamics, 2, 123 (April–June 1983).
  • A. STERL, “Numerical Simulation of Magnetohydrodynamic Liquid-Metal-Flow in Rectangular Ducts at High Hartmann Number,” PhD Thesis, Karlsruhe University (1989).
  • C. N. KIM, “Development of a Numerical Method for Full Solution of Magnetohydrodynamic Flows and Application to Fusion Blankets,” PhD Dissertation, University of California, Los Angeles (Jan. 1989).
  • C. N. KIM and M. A. ABDOU, “Numerical Method for Fluid Flow and Heat Transfer in Magnetohydrodynamic Flow,” Fusion Technol., 15, Part 2, 1163 (1989).
  • M. TILLACK, A. YING, and H. HASHIZUME, “The Effect of Magnetic Field Alignment on Heat Transfer in Liquid Metal Blanket Channels,” UCLA-FNT-24, University of California, Los Angeles (Mar. 1989).
  • T. Q. HUA and B. F. PICOLOGLOU, “Heat Transfer in Rectangular First Wall Coolant Channels of Self-Cooled Blankets,” Fusion Technol., 15, Part 2, 1174 (1989).
  • M. A. ABDOU and D. GRAUMANN, “The Choice of Coolant in Commercial Tokamak Power Plants,” Proc. 4th Topl. Mtg. Technology of Controlled Nuclear Fusion, King of Prussia, Pennsylvania, October 14–17, 1980, Vol. Ill, p. 1740, available from the National Technical Information Service (July 1981).
  • Y. GOHAR et al., “Solid Breeder Blanket Option for the ITER Conceptual Design,” Proc. 13th Symp. Fusion Engineering, Knoxville, Tennessee, October 2–6, 1989, Institute of Electrical and Electronics Engineers.
  • M. A. ABDOU et al., “Summary of the ISFNT Workshop on the International Thermonuclear Reactor,” Fusion Technol., 14, 1399 (1989).
  • M. DALLE DONNE et al., “Pebble-Bed Canisters: The Karlsruhe Ceramic Breeder Blanket Design for the Next European Torus,” Fusion Technol., 14, 1357 (1988).
  • G. CHEVEREAU, “Adaptation to NET of a Beryllium Canister Blanket Concept,” Novatome-Framatome, Commissariat à l’Energie Atomique, Saclay.
  • V. ZAMPAGLIONE et al., “IL MANTELLO–A Scoping Study Using Solid Breeders in a Gas Cooled Tokamak Blanket with NET Physics,” Centro Richerche Energin Frascati, Italy.
  • M. A. ABDOU et al., “Deuterium-Tritium Fuel Self-Sufficiency in Fusion Reactors,” Fusion Technol., 9, 250 (1986).
  • “ITER Shield & Blanket Work Package Report,” Draft, U.S. ITER Nuclear Group, ANL/FPP/88-1, Argonne National Laboratory (May 1988).
  • M. BRIEC et al., “The MOZART Experiment: In-Pile Tritium Extraction from Li2O, LiAlO2, Li2ZrO3,” presented by N. ROUX at the Solid Breeder Working Group Mtg., Park City, Utah, October 13–14, 1988.
  • K. FUJIMURA et al., “Analysis of Helium Purge Flow in a Solid Breeder Blanket,” Fusion Eng. Des., 8, 109 (1989).
  • M. A. ABDOU et al., “Blanket Comparison and Selection Study,” Interim Report, ANL/FPP-83-1, Argonne National Laboratory (Oct. 1983).
  • A. R. RAFFRAY et al., “Material Form for Be,” U.S. Contribution to ITER, Argonne National Laboratory (Feb. 1989).
  • R. CONN, N. GHONIEM, and M. FIRESTONE, “TOKOPS: Tokamak Reactor Operating Study,” Final Report, UCLA/ENG-86-38, PPG-1009, University of California, Los Angeles (Sep. 1986).
  • M. C. BILLONE, H. HASHIZUME et al., “Thermal-Mechanical Analyses of the Be Multiplier Zones,” U.S. Contribution to ITER, Argonne National Laboratory (Feb. 1989).
  • M. S. TILLACK et al., “Experimental Study of the Effective Thermal Conductivity of a Packed Bed as a Temperature Control Mechanism for ITER Ceramic Breeder Blanket Designs,” Proc. 13th Symp. Fusion Engineering, Knoxville, Tennessee, October 2–6, 1989, Institute of Electrical and Electronics Engineers.
  • M. S. KAZIMI et al., “Thermal Limits for Passive Safety of Fusion Reactors,” Fusion Technol., 15, Part 2B, 827 (1989).
  • M. A. ABDOU et al., “A Helium-Cooled Soild Breeder Concept for the Tritium-Producing Blanket of the International Thermonuclear Reactor,” Fusion Technol., 15, Part 1, 166 (1989).
  • Z. R. GORBIS et al., “LOCA Study for a Helium-Cooled Solid Breeder Design for ITER,”Fusion Technol., 15, Part 2B, 821 (1989).
  • M. A. ABDOU et al., “Technical Issue and Requirements and Facilities for Fusion Nuclear Technology (FINESSE Phase I Report),” PPG-909, UCLA-ENG-85-39, University of California, Los Angeles (1985).
  • M. A. ABDOU et al., “A Demonstration Tokamak Power Plant Study (DEMO),” ANL/FPP-82-1, Argonne National Laboratory (Sep. 1982).
  • C. BAKER et al., “STARFIRE: A Commercial Tokamak Fusion Power Plant Study,” ANL/FPP-80-1, Argonne National Laboratory (Sep. 1980).
  • O. CHOPRA and D. L. SMITH, “Compatibility Studies of Structural Alloys with Solid Breeder Materials,” Alloy Development for Irradiated Performance Semiannual Progress Report for Period Ending Sept. 30, 1983, DOE/ER/0045/11, U.S. Department of Energy (Mar. 1984).
  • R. PULHAM, W. R. WATSON, and J. S. COLLINSON, “Chemical Compatibility Between Lithium Oxide and Transition Metals,” Proc. 3rd Topl. Mtg. Fusion Reactor Materials, Albuquerque, New Mexico, September 19–22, 1983.
  • D. L. PORTER et al., “Neutron Irradiation and Compatibility Testing of Li2O,” J. Nucl. Mater., 122 & 123, 929 (1984).
  • G. W. HOLLENBERG, “The Effect of Irradiation on Four Solid Breeder Materials,” Proc. 1st Int. Conf. Fusion Reactor Materials, Tokyo, Japan, December 3–6, 1984.
  • T. J. McCARVILLE et al., “Technical Issues for Beryllium Use in Fusion Blanket Applications,” UCID-20319, Lawrence Livermore National Laboratory (Jan. 1985).
  • A. K. FISCHER and C. E. JOHNSON, “Thermodynamics of Li2O and Other Breeders for Fusion Reactors,” J. Nucl. Mater., 133 & 134, 184 (1985).
  • M. C. BILLONE and W. T. GRAYHACK, “Summary of Mechanical Properties Data and Correlations for Li2O, Li4SiO4, LiA1O2, and Be,” ANL/FPP/TM-218, Argonne National Laboratory (Apr. 1988).
  • D. J. SUITER, “Lithium Based Oxide Ceramics for Tritium Breeding Applications,” MDC E2677/UC-20, McDonnell Douglas (June 1983).
  • K. OKURO and H. KUDO, “Tritium Diffusivity in Lithium-Based Ceramic Breeders Irradiated with Neutrons,” Fusion Eng. Des., 8, 355 (1989).
  • A. K. FISCHER and C. E. JOHNSON, “Measurements of Adsorption in the LiAlO2-H2O (g) System,” Fusion Technol., 15, 1212 (1989).
  • H. R. IHLE and C. H. WU, “Chemical Thermodynamics of Fusion Reactor Breeding Materials and Their Interaction with Tritium,” J. Nucl. Mater., 130, 454 (1985).
  • Z. R. GORBIS et al., “Thermal Resistance Gaps for Solid Breeder Blankets Using Packed Beds,” Fusion Technol., 15, 695 (1989).
  • R. G. CLEMMER et al., “The TRIO Experiment,” ANL-84-55, Argonne National Laboratory (Sep. 1984).
  • T. KURASAWA et al., “In-Pile Tritium Release Behavior from Lithium Aluminate and Lithium Orthosilicate of the VOM-23 Experiment,” J. Nucl. Mater., 155 & 157, 544 (1988).
  • H. WERLE et al., “The LISA 1 Experiment: In-Situ Tritium Release Investigations,” presented at the 2nd International Conf. Fusion Reactor Materials, Chicago, Illinois, April 13–17, 1986.
  • “SIBELIUS —In-Reactor Compatibility Testing of Beryllium/Ceramic and Beryllium/Structure Compacts,” presented by C. JOHNSON at the Solid Breeder Working Group Mtg., Park City, Utah, October 13–14, 1988.
  • “BEATRIX-II,” presented by G. HOLLENBERG at the Solid Breeder Working Group Mtg., Park City, Utah, October 13–14, 1988.
  • J. KOPASZ et al., “Modeling of Tritium Behavior in Ceramic Breeder Materials,” ANL/FPP/TM-231, Argonne National Laboratory (Nov. 1988).
  • G. FEDERICI, A. R. RAFFRAY et al., “MISTRAL — A Comprehensive Model for Tritium Transport in Lithium-Base Ceramics. Part I: Theory and Description of Model Capabilities,” and “MISTRAL —A Comprehensive Model for Tritium Transport in Lithium-Base Ceramics —Part II: Comparison of Model Predictions with Experimental Results,” J. Nucl. Mater, (to be published).
  • R. O. A. HALL and D. G. MARTIN, “The Thermal Conductivity of Powder Beds. A Model, Some Measurements on UO2 Vibrocompacted Microspheres, and Their Correlation,” J. Nucl. Mater., 101, 172 (1981).
  • M. J. ADES and K. L. PEDDICORD, “A Model for Effective Thermal Conductivity of Unrestructured Sphere-Pac Fuel,” Nucl. Sci. Eng., 81, 540 (1982).
  • A. R. RAFFRAY et al., “Model for Determining the Effective Thermal Conductivity of Particle Beds with High Solid-to-Gas Thermal Conductivity Ratio,” Proc. 13th Symp. Fusion Engineering, Knoxville, Tennessee, October 2–6, 1989, Institute of Electrical and Electronics Engineers.
  • Z. R. GORBIS, “Zone Model for Packed Bed Effective Thermal Conductivity,” UCLA-FNT-28, University of California, Los Angeles (Oct. 1989).
  • E. WEHNER et al., “Canister Type Blanket Elements for NET Under Accident Overpressure Theoretical and Experimental Investigations,” Fusion Eng. Des., 6, 69 (1988).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.