244
Views
6
CrossRef citations to date
0
Altmetric
Technical Paper

In-Vessel Retention of Molten Corium: Lessons Learned and Outstanding Issues

, , &
Pages 210-267 | Published online: 10 Apr 2017

References

  • J. R. WOLF and J. L. REMPE, “TMI-2 Vessel Investigation Project Integration Report,” TMI V(93) EG10, Idaho National Engineering Laboratory (Oct. 1993).
  • COMMONWEALTH EDISON, “Braidwood Station Individual Plant Examination Submittal Report,” attachment to letter from Martin Vonk of Commonwealth Edison to William Russell of U.S. Nuclear Regulatory Commission (June 30, 1994).
  • COMMONWEALTH EDISON, “Zion Individual Plant Examination Submittal Report,” attachment to letter from Marcia A. Jackson of Commonwealth Edison to Thomas E. Murley of U.S. Nuclear Regulatory Commission (April 22, 1992).
  • O. KYMÄLÄINEN, “Application of In-Vessel Retention of Corium as a SAM Measure at the Loviisa Plant,” Proc. Workshop on In-Vessel Retention of Degraded Core Material, SARA ’97, Taejon, Korea, May 15–16, 1997.
  • S. E. RITTERBUSCH, J. E. ROBERTSON, and R. E. SCHNEIDER, “System 80 + In-Vessel Retention: A Designer’s Perspective of a Fully Submerged Reactor Vessel,” Proc. Workshop on In-Vessel Retention of Degraded Core Material, SARA ’97, Taejon, Korea, May 15–16, 1997.
  • T. THEOFANOUS, C. LIU, S. ADDITON, S. ANGELINI, O. KYMÄLÄINEN, and T. SALMASSI, “In-Vessel Coolability and Retention of Core Melt,” DOE/ID-10460, U.S. Department of Energy (Oct. 1996).
  • J. SCOBEL, T. G. THEOFANOUS, and L. E. CONWAY, “In-Vessel Retention of Molten Core Debris in the Westing-house AP1000 Advanced Passive PWR,” Proc. Int. Congress on Advanced Power Plants (ICAPP 02), Hollywood, Florida, June 9–13, 2002, American Nuclear Society (2002).
  • “AP600 Final Safety Evaluation Report Related to the Certification of the AP600 Design,” NUREG-1512, U.S. Nuclear Regulatory Commission (1998).
  • “Final Safety Evaluation Report Related to Certification of the AP1000,” Chap. 19, “Severe Accidents,” NUREG-1793, U.S. Nuclear Regulatory Commission (Dec. 20, 2004).
  • J. L. REMPE, D. L. KNUDSON, C. M. ALLISON, G. L. THINNES, C. L. ATWOOD, and M. J. CEBULL, “Potential for AP600 In-Vessel Retention through Ex-Vessel Flooding,” INEEL/EXT-097-00779, Idaho National Engineering and Environmental Laboratory (Dec. 1997).
  • V. ASMOLOV, “Latest Findings of RASPLAV Project,” Proc. Workshop In-Vessel Core Debris Retention and Coolability, Garching, Germany, March 3–6, 1998, Organisation for Economic Co-operation and Development (1998).
  • D. MAGALLON, A. ANNUNZIATO, and M. CORRADINI, “Debris and Pool Formation/Heat Transfer in FAROLWR:L Experiments and Analyses,” Proc. Workshop In-Vessel Core Debris Retention and Coolability, Garching, Germany, March 3–6, 1998.
  • D. MAGALLON, “Characteristics of Corium Debris Bed Generated in Large-Scale Fuel-Coolant Interaction Experiments,” Nucl. Eng. Des., 236, 1998 (2006).
  • J. H. KIM, I. K. PARK, B. T. MIN, S. W. HONG, H. Y. KIM, J. H. SONG, and H. D. KIM, “Triggered Steam Explosions in the TROI Facility,” Proc. Fifth Int. Congress Advances in Nuclear Power Plants (ICAPP ’05), Seoul, Korea, May 15–19, 2005, Korean Nuclear Society (2005).
  • J. REMPE, L. STICKLER, S. CHÁVEZ, G. THINNES, and R. WITT, “Margin-to-Failure Calculations for the TMI-2 Vessel,” Nucl. Saf., 35, 2, 313 (1994).
  • N. REINKE, T. DRATH, T. BERLEPSCH, H. UNGER, and M. KOCH, “Formation, Characterization, and Cooling of Debris Scenario Discussion with Emphasis on TMI-2,” Nucl. Eng. Des., 236, 1955 (2006).
  • K. H. KANG, J. H. KIM, S. B. KIM, J. H. HONG, and H. D. KIM., “Experimental Investigations on In-Vessel Debris Coolability through Inherent Cooling Mechanisms: LAVA,” Proc. Workshop In-Vessel Core Debris Retention and Coolability, Garching, Germany, March 3–6, 1998, Organisation for Economic Co-operation and Development (1998).
  • Y. MARUYAMA et al., “Analysis of Debris Coolability Experiments in ALPHA Program with CAMP Code,” Proc. Ninth Int. Topl. Mtg. Nuclear Reactor Thermal Hydraulics (NURETH-9), San Francisco, California, October 3–8, 1999, American Nuclear Society (1999) (CD-ROM).
  • “Experiments to Address Lower Plenum Response under Severe Accident Conditions,” EPRI TR-1033890V1, Project 3130-02, Final Report, Fauske and Associates, Inc. (Apr. 1994).
  • B. R. SEHGAL, R. R. NOURGALIEV, T. N. DINH, A. KARBOJIAN, V. A. BUI, and J. A. GREEN, “FOREVER Experiment on Thermal and Mechanical Behavior of a Reactor Vessel during a Severe Accident,” Proc. Workshop In-Vessel Core Debris Retention and Coolability, Garching, Germany, March 3–6, 1998, Organisation for Economic Co-operation and Development (1998).
  • B. R. SEHGAL, A. GIRI, U. CHIKKANAGOUDAR, and A. KARBOJIAN, “Experiments on In-vessel Melt Coolability in the EC-FOREVER Program,” Nucl. Eng. Des., 236, 2199 (2006).
  • K. Y. SUH and R. J. HAMMERSLEY, “Modeling of Fission Product Release and Transport for Severe Fuel Damage Analyses,” Nucl. Sci. Eng., 109, 26 (1991).
  • K. Y. SUH and R. E. HENRY, “Integral Analysis of Debris Material and Heat Transport in Reactor Vessel Lower Plenum,” Nucl. Eng. Des., 151, 203 (1994).
  • K. Y. SUH and R. E. HENRY, “Debris Interactions in Reactor Vessel Lower Plena during a Severe Accident. Part I. Predictive Model,” Nucl. Eng. Des., 166, 147 (1996).
  • K. Y. SUH and R. E. HENRY, “Debris Interactions in Reactor Vessel Lower Plena during a Severe Accident. Part II. Integral Analysis,” Nucl. Eng. Des., 166, 165 (1996).
  • D. W. AKERS, E. L. TOLMAN, P. KUAN, D. W. GOLDEN, and M. NISHIO, “Three Mile Island Unit 2 Fission Product Inventory Estimates,” Nucl. Technol., 87, 205 (1989).
  • S. BECHTA “Partitioning of Zr, U, and FP between Molten Oxidic and Metallic Corium” Proc. MASCA Seminar 2004, Aix-en-Provence, France, June 10–11, 2004, Organisation for Economic Co-operation and Development (2004).
  • M. SCHWARZ, B. CLEMENT, and A. V. JONES, “Applicability of PHEBUS FP Results to Severe Accident Safety Evaluations and Management Measures,” Nucl. Eng. Des., 209, 173 (2001).
  • C. KTORZA, “An Overview of the PHEBUS FPT1 Results Concerning the Fission Product Releases, Transport and Containment Behavior,” presented at Cooperative Severe Accident Research Program Mtg., Albuquerque, New Mexico, May 3–6, 1999.
  • F. C. IGLESIAS, B. J. LEWIS, P. J. REID, and P. ELDER, “Fission Product Release Mechanisms during Reactor Accident Conditions,” J. Nucl. Mater., 270, 21 (1999).
  • J. I. YUN, K. Y. SUH, and C. S. KANG, “Heat and Fission Product Transport in Molten Pool with Crust,” Nucl. Eng. Des., 235, 2171 (2005).
  • F. A. KULACKI and R. J. GOLDSTEIN, “Thermal Convection in a Horizontal Fluid Layer with Uniform Volumetric Energy Sources,” J. Fluid Mech., 55, 2, 271 (1972).
  • S. B. LUDWIG and J. P. RENIER, “Standard-and Extended-Burnup PWR and BWR Reactor Models for the ORIGEN2 Computer Code,” ORNL/TM-11018, Oak Ridge National Laboratory (1989).
  • P. R. McCLURE, M. T. LEONARD, and A. RAZANI, “A Model for Fission Product Release from Liquid-Metal Pools: Development and Sensitivity Investigation,” Nucl. Sci. Eng., 114, 102 (1993).
  • S. D. LEE, J. K. LEE, and K. Y. SUH, “Natural Convection Thermo Fluid Dynamics in a Volumetrically Heated Rectangular Pool,” Nucl. Eng. Des., 237, 473 (2007).
  • M. JAHN and H. H. REINEKE, “Free Convection Heat Transfer with Internal Heat Sources,” Proc. 5th Int. Heat Transfer Conf., Paper NC2.8, Tokyo, Japan, September 3–7, 1974, Japan Society of Mechanical Engineers (1974).
  • U. STEINBERNER and H. H. REINEKE, “Turbulent Buoyancy Convection Heat Transfer with Internal Heat Sources,” Proc. 6th Int. Heat Transfer Conf., Vol. 2, p. 305, Toronto, Canada, August 7–11, 1978, Hemisphere Publishing Corporation (1978).
  • F. J. ASFIA and V. K. DHIR, “An Experimental Study of Natural Convection in a Volumetrically Heated Spherical Pool Bounded on Top with a Rigid Wall,” Nucl. Eng. Des., 163, 333 (1996).
  • G. KOLB, S. A. THEERTHAN, and B. R. SEHGAL, “Experiments on In-vessel Melt Pool Formation and Convection with Nano3-KNO3 Salt Mixture as Melt Simulant,” Proc. Int. Conf. Nuclear Engineering, ICONE-8639, Baltimore, Maryland, April 2–6, 2000, American Society of Mechanical Engineers (2000).
  • J. M. BONNET and J. M. SEILER, “Thermal Hydraulic Phenomena in Corium Pools: the BALI Experiment,” Proc. Int. Conf. Nuclear Engineering, ICONE-7057, Tokyo, Japan, April 19–23, 1999, Japan Society of Mechanical Engineers (1999).
  • J. K. LEE, S. D. LEE, and K. Y. SUH, “Boundary Dependent Natural Convection Heat Transfer in a Circular Slice Water Pool,” Proc. Fifth Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS5), Jeju, Korea, November 26–29, 2006, Korean Nuclear Society (2006).
  • F. A. KULACKI and A. A. EMARA, “Steady and Transient Thermal Convection in a Fluid Layer with Uniform Volumetric Energy Sources,” J. Fluid Mech., 83, 2, 375 (1977).
  • F. MAYINGER, M. JAHN, H. H. REINEKE, and U. STEINBRENNER, “Examination of Thermohydraulic Processes and Heat Transfer in a Core Melt,” BMFT RS 48/1, Institut für Verfahrenstecknik der T. U., Hanover FRG (1976) (in German).
  • T. G. THEOFANOUS, M. MAGUIRE, S. ANGELINI, and T. SALMASSI, “The First Results from the ACOPO Experiment,” Nucl. Eng. Des., 169, 49 (1997).
  • T. G. THEOFANOUS and C. LIU, “Natural Convection Experiments in a Hemisphere with Rayleigh Numbers up to 1015,” Proc. National Heat Transfer Conf., p. 349, Portland, Oregon, August 5–9, 1995, American Nuclear Society (1995).
  • K. M. KELKAR, R. C. SCHMIDT, and S. V. PATANKAR, “Numerical Analysis of Laminar Natural Convection of an Internally Heated Fluid in a Hemispherical Cavity,” Proc. National Heat Transfer Conf., Vol. 6, pp. 355–364, San Diego, California, August 9–12, 1992, American Society of Mechanical Engineers (1992).
  • W. H. REID and D. L. HARRIS, “Some Further Results on the Benard Problem,” Phys. Fluids, 1, 102 (1958).
  • W. V. R. MALKUS and G. VERONIS, “Finite Amplitude Cellular Convection,” J. Fluid Mech., 4, 3, 255 (1958).
  • Y. NAKAGAWA, “Heat Transport by Convection,” Phys. Fluids, 3, 82 (1960).
  • R. H. KRAICHNAN, “Turbulent Thermal Convection at Arbitrary Prandtl Number,” Phys. Fluids, 5, 11, 1374 (1962).
  • L. N. HOWARD, “Heat Transport by Turbulent Convection,” J. Fluid Mech., 17, 405 (1963).
  • K. G. T. HOLLANDS, “Convectional Heat Transport by Turbulent Convection,” Phys. Fluids, 8, 389 (1965).
  • G. E. WILLIS and J. W. DEARDORFF, “Measurement on the Development of Thermal Turbulence in Air between Horizontal Plates,” Phys. Fluids, 8, 2225 (1965).
  • E. F. C. SOMERSCALES and D. DROPKIN, “Experimental Investigation of the Temperature Distribution in a Horizontal Layer of Fluid Heated from Below,” Int. J. Heat Mass Transfer, 9, 1189 (1966).
  • J. W. DEARDORFF and G. E. WILLIS, “Investigation of Turbulent Thermal Convection between Horizontal Plates,” J. Fluid Mech., 28, 4, 675 (1967).
  • D. J. TRITTON and M. N. ZARRAGA, “Convection in an Internally Heated Layer,” J. Fluid Mech., 30, 21 (1967).
  • J. W. ELDER, “The Temporal Development of a model of High Rayleigh Number Convection,” J. Fluid Mech., 35, 3, 417 (1969).
  • E. W. SCHWIDERSKI and H. J. A. SCHWAB, “Convection Experiments with Electrolytically Heated Fluid Layers,” J. Fluid Mech., 48, 703 (1971).
  • J. C. RALF and D. N. ROBERTS, “Free Convection Heat Transfer Measurements in Horizontal Liquid Layers with Internal Heat Generation,” AERE-R784, UKAEA Research Group, Harwell, United Kingdom (1974).
  • F. A. KULACKI and M. E. NAGLE, “Natural Convection in a Horizontal Fluid Layer with Volumetric Energy Sources,” J. Heat Transfer, 97, 204 (1975).
  • F. B. CHEUNG, “Natural Convection in a Volumetrically Heated Fluid Layer at High Rayleigh Numbers,” Int. J. Heat Mass Transfer, 20, 499 (1977).
  • A. EMARA and F. A. KULACKI, “A Numerical Investigation of Thermal Convection in a Heat-Generating Fluid Layer,” J. Heat Transfer, 102, 531 (1980).
  • A. TOWNSEND, “Temperature Fluctuations over a Heated Horizontal Surface,” J. Fluid Mech., 5, 209 (1959).
  • T. Y. CHU and R. J. GOLDSTEIN, “Turbulent Convection in a Horizontal Layer of Water,” J. Fluid Mech., 60, 141 (1973).
  • A. J. SUO-ANTTILA and I. CATTON, “An Experimental Study of a Horizontal Layer of Fluid with Volumetric Heating and Unequal Surface Temperatures,” AIChE Symp. Ser., 73, 164, 72 (1977).
  • H. TANAKA and H. MIYATA, “Turbulent Natural Convection in a Horizontal Water Layer Heated from Below,” Int. J. Heat Mass Transfer, 23, 1273 (1980).
  • G. CHURBANOV and P. N. VABISHCHEVICH, “A Numerical Study on Natural Convection of a Heat-Generating Fluid in Rectangular Enclosures,” Int. J. Heat Mass Transfer, 37, 18, 2969 (1994).
  • A. A. GUBAIDULLIN, “Correlations for Natural Convection Heat Transfer in Two-Layer Fluids with Internal Heat Generation,” Int. J. Heat Mass Transfer, 46, 3935 (2003).
  • S. GLOBE and D. DROPKIN, “Natural Convection Heat Transfer in Liquids Confined by Two Horizontal Plates and Heated from Below,” J. Heat Transfer, 81, 24 (1959).
  • A. M. GARON and R. J. GOLDSTEIN, “Velocity and Heat Transfer Measurements in Thermal Convection,” Phys. Fluids, 16, 1818 (1973).
  • R. J. GOLDSTEIN and S. TOKUDA, “Heat Transfer by Thermal Convection at High Rayleigh Numbers,” Int. J. Heat Mass Transfer, 23, 738 (1980).
  • J. H. MIN and F. A. KULACKI, “Transient Natural Convection in a Single-Phase Heat-Generating Pool Bounded from Below by a Segment of a Sphere,” Nucl. Eng. Des., 54, 267 (1979).
  • H. H. REINEKE, “Numerische Untersuchung der Thermohydraulischen Vorgänge und des Wärmeüberganges in einer Kernschmelze bei Kugelsegmentförmigeh Geometrie und bei Zuflissendem Material von Oben,” BMFT RS 166-79-05, Band II A1 (1979).
  • J. D. GABOR, P. G. ELLISON, and J. C. CASSULO, “Heat Transfer from Internally Heated Hemispherical Pools,” Proc. 19th National Heat Transfer Conf., Orlando, Florida, July 27–30, 1980, American Society of Mechanical Engineers (1980).
  • B. FRANTZ and V. K. DHIR, “Experimental Investigation of Natural Convection in Spherical Segments of Volumetrically Heated Pools,” Proc. National Heat Transfer Conf., San Diego, California, August 9–12, 1992, American Society of Mechanical Engineers (1992).
  • O. KYMÄLÄINEN, H. TUOMISTO, O. HONGISTO, and T. G. THEOFANOUS, “Heat Flux Distribution from a Volumetrically Heated Pool with High Rayleigh Number,” Nucl. Eng. Des., 149, 401 (1994).
  • F. J. ASFIA and V. K. DHIR, “Natural Convection Heat Transfer in Volumetrically Heated Spherical Pools,” Proc. Workshop Large Molten Pool Heat Transfer, Grenoble, France, March 9–11, 1994, Organisation for Economic Co-operation and Development (1994).
  • M. HELLE, O. KYMÄLÄINEN, and H. TUOMISTO, “Experimental Data on Heat Flux Distribution from a Volumetrically Heated Pool with Frozen Boundaries,” Proc. Workshop In-Vessel Core Debris Retention and Coolability, Garching, Germany, March 3–6, 1998, Organisation for Economic Cooperation and Development (1998).
  • H. D. LEE, “Study of High Rayleigh Number Turbulent Natural Convection of Molten Corium in the Hemispherical Geometry,” Doctoral Dissertation, Seoul National University, Seoul, Korea (1999).
  • N. ZUBER, “Hydrodynamic Aspects of Boiling of Heat Transfer,” USAEC Report AECU-4439, PhD Thesis, University of California, Los Angeles (1959).
  • Y. HARAMURA and Y. KATTO, “New Hydrodynamic Model of Critical Heat Flux Applicable Widely to Both Pool and Forced Convection Boiling on Submerged Bodies in Saturated Liquids,” Int. J. Heat Mass Transfer, 26, 8, 389 (1983).
  • Y. KATTO and Y. KOSHO, “Critical Heat Flux of Saturated Natural Convection Boiling in a Space Bounded by Two Horizontal Co-Axial Disks and Heated from Below,” Int. J. Multiphase Flow, 5, 219 (1979).
  • M. MONDE, H. KUSUDA, and H. UEHARA, “Critical Heat Flux During Natural Convective Boiling in Vertical Rectangular Channels Submerged in Saturated Liquid,” J. Heat Transfer, 104, 300 (1982).
  • Y. CHANG and S. YAO, “Critical Heat Flux of Narrow Vertical Annuli with Closed Bottoms,” J. Heat Transfer, 105, 192 (1983).
  • M. C. CHYU, “Prediction of Boiling Dryout Flux for Restricted Annular Crevice,” Int. J. Heat Mass Transfer, 31, 1993 (1988).
  • S. H. KIM, W. P. BAEK, and S. H. CHANG, “Measurements of Critical Heat Flux for Narrow Annuli Submerged in Saturated Water,” Nucl. Eng. Des., 199, 41 (2000).
  • Y. KATTO and S. YOKOYA, “Experimental Study of Nucleate Pool Boiling in Case of Making Interference-Plate Approach to the Heating Surface,” Proc. Third Int. Heat Transfer Conf., Vol. 3, p. 219, Chicago, Illinois, August 7–12, 1966, American Institute of Chemical Engineers (1966).
  • J. BONJOUR and M. LALLEMAND, “Effects of Confinement and Pressure on Critical Heat Flux During Natural Convective Boiling in Vertical Channels,” Int. Commun. Heat Mass Transfer, 24, 191 (1997).
  • S. AOKI, A. INOUE, M. ARITOMI, and Y. SAKAMOTO, “Experimental Study on the Boiling Phenomena within a Narrow Gap,” Int. J. Heat Mass Transfer, 25, 985 (1982).
  • M. K. JENSEN, P. E. COOPER, and A. E. BERGLES, “Boiling Heat Transfer and Dryout in Restricted Annular Geometries,” AIChE Symp. Ser., 73, 204 (1977).
  • G. F. SMIRNOV, “Maximum Boiling Heat Flux under Some Special Conditions,” Heat Transfer—Sov. Res., 8, 4, 114 (1976).
  • G. F. SMIRNOV, A. L. KOBA, B. A. AFANASYEV, and V. V. ZRODNIKOV, “Heat Transfer in Boiling in Narrow Channels, Capillaries and under Other Constraints,” Heat Transfer—Sov. Res., 8, 4 (1976).
  • K. MISHIMA and H. NISHIHARA, “Effect of Channel Geometry on Critical Heat Flux for Low Pressure Water,” Int. J. Heat Mass Transfer, 30, 1169 (1987).
  • K. MISHIMA and H. NISHIHARA, “Effect of Flow Direction and Magnitude on CHF for Low Pressure Water in Thin Rectangular Channels,” Nucl. Eng. Des., 86, 165 (1985).
  • Y. FUJITA, H. OHTA, and S. UCHIDA, “Nucleate Boiling Heat Transfer and Critical Heat Flux in Narrow Space between Rectangular Surfaces,” Int. J. Heat Mass Transfer, 31, 229 (1988).
  • Y. KATTO and T. HIRAO, “Critical Heat Flux of Counter-Flow Boiling in a Uniformly Heated Vertical Tube with a Closed Bottom,” Int. J. Heat Mass Transfer, 34, 993 (1991).
  • Y. SUDO and M. KAMINAGA, “A New CHF Correlation Scheme Proposed for Vertical Rectangular Channels Heated from Both Sides in Nuclear Research Reactors,” J. Heat Transfer, 115, 426 (1993).
  • Y. H. KIM and K. Y. SUH, “One Dimensional Critical Heat Flux Concerning Surface Orientation and Gap Size Effects,” Nucl. Eng. Des., 226, 3, 277 (2003).
  • Y. H. KIM, S. J. KIM, J. J. KIM, S. W. NOH, K. Y. SUH, J. L. REMPE, F. B. CHEUNG, and S. B. KIM, “Visualization of Boiling Phenomena in Inclined Rectangular Gap,” Int. J. Multiphase Flow, 31, 618 (2005).
  • Y. H. KIM, S. J. KIM, K. Y. SUH, J. L. REMPE, F. B. CHEUNG, and S. B. KIM, “Internal Vessel Cooling Feasibility Attributed by Critical Heat Flux in Inclined Rectangular Gap,” Nucl. Technol., 154, 1, 13 (2006).
  • M. MONDE, Y. MITSUTAKE, and M. HAYASI, “Critical Heat Flux During Natural Circulation Boiling on Uniformly Heated Outer Tube in Vertical Annular Tubes Submerged in Saturated Liquid (Change in Critical Heat Flux Characteristics Due to Heated Equivalent Diameter),” Int. J. Heat Mass Transfer, 42, 3189 (1999).
  • H. OGATA et al., “Boiling Heat Transfer of Liquid Helium in Long Narrow Channels,” Cryog. Eng., 4, 219 (1969) (in Japanese).
  • C. XIA, W. HU, and Z. GUO, “Natural Convective Boiling in Vertical Rectangular Narrow Channels,” Exp. Thermal Fluid Sci., 12, 313 (1996).
  • P. VISHNEV, “Effect of Orientating the Hot Surface with Respect to the Gravitational Field on the Critical Nucleate Boiling of a Liquid,” J. Eng. Phys., 24, 43 (1974).
  • Z. GUO and M. S. EL-GENK, “An Experimental Study of Saturated Pool Boiling from Downward Facing and Inclined Surfaces,” Int. J. Heat Mass Transfer, 35, 2109 (1992).
  • M. S. EL-GENK and Z. GUO, “Transient Boiling from Inclined and Downward-Facing Surfaces in a Saturated Pool,” Int. J. Refrig., 16, 414 (1993).
  • M. J. BRUSSTAR and H. MERTE, “Effects of Buoyancy on the Critical Heat Flux in Forced Convection,” J. Thermophys. Heat Transfer, 8, 322 (1994).
  • M. J. BRUSSTAR, H. MERTE, R. B. KELLER, and B. J. KIRBY, “Effects of Heater Surface Orientation on the Critical Heat Flux—I. An Experimental Evaluation of Models for Subcooled Pool Boiling,” Int. J. Heat Mass Transfer, 40, 4007 (1997).
  • J. Y. CHANG and S. M. YOU, “Heater Orientation Effects on Pool Boiling of Micro-Porous-Enhanced Surfaces in Saturated FC-72,” J. Heat Transfer, 118, 4, 937 (1996).
  • A. H. HOWARD and I. MUDAWAR, “Orientation Effects on Pool Boiling Critical Heat Flux (CHF) and Modeling of CHF for Near-Vertical Surfaces,” Int. J. Heat Mass Transfer, 42, 1665 (1999).
  • J. E. GALLOWAY and I. MUDAWAR, “CHF Mechanism in Flow Boiling from a Short Heated Wall—II. Theoretical CHF Model,” Int. J. Heat Mass Transfer, 36, 2527 (1993).
  • C. O. GERSEY and I. MUDAWAR, “Effects of Heater Length and Orientation on the Trigger Mechanism for Flow Boiling CHF—II. CHF Model,” Int. J. Heat Mass Transfer, 38, 643 (1995).
  • D. S. JUNG, J. E. S. VENART, and A. C. M. SOUSA, “Effects of Enhanced Surfaces and Surface Orientation on Nucleate and Film Boiling Heat Transfer in R-11,” Int. J. Heat Mass Transfer, 30, 2627 (1987).
  • S. H. YANG, W. P. BAEK, and S. H. CHANG, “Pool-Boiling Critical Heat Flux of Water on Small Plates: Effects of Surface Orientation and Size,” Int. Commun. Heat Mass Transfer, 24, 1093 (1997).
  • S. ISHIGAI, K. INOUE, Z. KIWAKI, and T. INAI, “Boiling Heat Transfer from a Flat Surface Facing Downward,” Proc. Int. Heat Transfer Conf., Boulder, Colorado, August 28–September 1, 1961, American Society of Mechanical Engineers (1961).
  • P. M. GITHINJI and R. H. SABERSKY, “Some Effects of the Orientation of the Heating Surface in Nucleate Boiling,” J. Heat Transfer, 85, 379 (1963).
  • R. P. ANDERSON and L. BOVA, “The Role of Downfacing Burnout in Post-Accident Heat Removal,” Trans. Am. Nucl. Soc., 14, 294 (1971).
  • P. VISHNEV, I. A. FILATOV, Y. G. VINOKUR, V. VGOROKHOV, and G. G. SVALOV, “Study of Heat Transfer in Boiling of Helium on Surfaces with Various Orientations,” Heat Transfer—Sov. Res., 8, 104 (1976).
  • K. NISHIKAWA, Y. FUJITA, S. UCHIDA, and H. OHTA, “Effect of Surface Configuration on Nucleate Boiling Heat Transfer,” Int. J. Heat Mass Transfer, 27, 1559 (1984).
  • W. M. ROHSENOW, “AMethod of Correlating Heat Transfer Data for Surface Boiling of Liquids,” Trans. Am. Soc. Mech. Eng., 74, 969 (1952).
  • I. MUDAWAR, A. H. HOWARD, and C. O. GERSEY, “An Analytical Model for Near-Saturated Pool Boiling Critical Heat Flux on Vertical Surfaces,” Int. J. Heat Mass Transfer, 40, 2327 (1997).
  • C. BEDUZ, R. G. SCURLOCK, and A. J. SOUSA, “Angular Dependence of Boiling Heat Transfer Mechanisms In Liquid Nitrogen,” Adv. Cryog. Eng., 33, 363 (1988).
  • J. M. SEILER, “Analytical Model for CHF in Narrows Gaps on Plates and in Hemispherical Geometries,” Nucl. Eng. Des., 236, 19, 2211 (2006).
  • S. S. KUTATELADZE, “Heat Transfer in Condensation and Boiling,” AEC-TR-3770, U.S. Atomic Energy Commission (1952).
  • D. N. LYON, “Boiling Heat Transfer and Peak Nucleate Boiling Fluxes in Saturated Liquid Helium Between the Triple Point and Critical Temperature,” Adv. Cryog. Eng., 10, 371 (1965).
  • Y. KATTO, S. YOKOYA, and M. YASUNAKA, “Mechanism of Boiling Crisis and Transition Boiling in Pool Boiling,” Proc. Fourth Int. Heat Transfer Conf., Paris-Versailles, France, August 31–September 5, 1970, Elsevier Publishing Company (1970).
  • T. FUJII and H. IMURA, “Natural Convection Heat Transfer from a Plate with Arbitrary Inclination,” Int. J. Heat Mass Transfer, 15, 755 (1972).
  • M. JERGEL and R. STEVENSON, “Static Heat Transfer to Liquid Helium in Open Pools and Narrow Channels,” Int. J. Heat Mass Transfer, 14, 2099 (1971).
  • M. JERGEL and R. STEVENSON, “Heat Transfer to Boiling Helium from Aluminum Surfaces,” Cryogenics, 12, 312 (1972).
  • L. BEWILOGUA, R. KNONER, and H. VINZELBERG, “Heat Transfer in Cryogenic Liquids under Pressure,” Cryogenics, 15, 121 (1975).
  • V. I. DEEV, V. E. KEILIN, I. A. KOVALEV, A. K. KONDRATENKO, and V. I. PETROVICHEV, “Nucleate and Film Pool Boiling Heat Transfer to Saturated Liquid Helium,” Cryogenics, 17, 557 (1977).
  • I. I. GOGONIN and S. S. KUTAELADZE, “Critical Heat Flux as a Function of Heater Size for a Liquid Boiling in a Large Enclosure,” J. Eng. Phys. (translated from Inzhenerno-Fizicheskii Zhurnal), 33, 1286 (1978).
  • S. NISHIO and G. R. CHANDRATILLEKE, “Steady-State Pool Boiling Heat Transfer to Saturated Liquid Helium at Atmosphere Pressure,” JSME Int. J., 32, Series II, 639 (1989).
  • S. M. YOU, “Pool Boiling Heat Transfer with Highly-Wetting Dielectric Fluids,” PhD Thesis, University of Minnesota, Minneapolis (1990).
  • A. A. GRIBOV, G. S. TARANOV, N. M. TURCHIN, and A. A. TSYGANOK, “Heat Transfer and Limiting Heat Loads in Water Boiling on Downward-Facing Plane and Spherical Surfaces,” Heat Transfer—Sov. Res., 25, 754 (1993).
  • V. S. GRANOVSKII, A. A. SULATSKII, and S. M. SHMELEV, “The Crisis of Nucleate Boiling on a Horizontal Surface Facing Downward,” High Temp., 32, 78 (1994).
  • S. J. REED, “Elimination of Boiling Incipience Temperature Drop and Enhancement of Boiling Heat Transfer in Highly Wetting Fluids Through Low Contact Force Attachments,” MS Thesis, Purdue University (1996).
  • S. J. REED and I. MUDAWAR, “Enhancement of Boiling Heat Transfer Using Highly Wetting Liquids with Pressed-on Fins at Low Contact Forces,” Int. J. Heat Mass Transfer, 40, 2379 (1997).
  • J. H. LIENHARD, V. K. DHIR, and D. M. RIHERD, “Peak Pool Boiling Heat Flux Measurements on Finite Horizontal Flat Plates,” J. Heat Transfer, 95, 477 (1973).
  • F. B. CHEUNG, K. HADDAD, and Y. C. LIU, “Critical Heat Flux (CHF) Phenomena on a Downward Facing Curved Surface,” NUREG/CR-6507, The Pennsylvania State University (1997).
  • F. B. CHEUNG and Y. C. LIU, “Critical Heat Flux (CHF) Phenomenon on a Downward Facing Curved Surface: Effects of Thermal Insulation,” NUREG/CR-5534, The Pennsylvania State University (1998).
  • F. B. CHEUNG, J. YANG, M. B. DIZON, J. L. REMPE, K. Y. SUH, and S. B. KIM, “On the Enhancement of External Reactor Vessel Cooling of High-Power Reactors,” Tenth Int. Topl. Mtg. Nuclear Reactor Thermal Hydraulics (NURETH-10), Seoul, Korea, October 5–9, 2003, paper G00403, Korean Nuclear Society (2003).
  • T. Y. CHU, J. H. BENTZ, and R. B. SIMPSON, “Observation of the Boiling Process from a Large Downward Facing Torispherical Surface,” Proc. National Heat Transfer Conf., Portland, Oregon, August 5–9, 1995, American Nuclear Society (1995).
  • T. Y. CHU, B. L. BAINBRIDGE, R. B. SIMPSON, and J. H. BENTZ, “Ex-Vessel Boiling Experiments: Laboratory and Reactor-Scale Testing of the Flooded Cavity Concept for In-Vessel Core Retention,” Nucl. Eng. Des., 169, 77 (1997).
  • T. G. THEOFANOUS, J. P. TU, A. T. DINH, and T. N. DINH, “The Boiling Crisis Phenomenon—Part 1. Nucleation and Nucleate Boiling Heat Transfer,” and “The Boiling Crisis Phenomenon—Part 2. Dryout Dynamics and Burnout,” J. Exp. Therm. Fluid Sci., 26, 775 (2002).
  • T. N. DINH, J. P. TU, T. SALMASSI, and T. G. THEOFANOUS, “Limits of Coolability in the AP1000-Related ULPU-2400 Configuration V Facility,” Tenth Int. Topl. Mtg. Nuclear Reactor Thermal Hydraulics (NURETH-10), Seoul, Korea, October 5–9, 2003, paper G00407, Korean Nuclear Society (2003).
  • S. ROUGE, “SULTAN Test Facility for Large-Scale Vessel Coolability in Natural Convection at Low Pressure,” Nucl. Eng. Des., 169, 185 (1997).
  • S. ROUGE, I. DOR, and G. GEFFRAYE, “Reactor Vessel External Cooling for Corium Retention SULTAN Experimental Program and Modeling with CATHARE Code,” Proc. Workshop In-Vessel Core Debris Retention and Coolability, Garching, Germany, March 3–6, 1998, Organisation for Economic Co-operation and Development (1998).
  • F. B. CHEUNG, J. YANG, M. B. DIZON, J. L. REMPE, K. Y. SUH, and S. B. KIM, “Scaling of Downward Facing Boiling and Steam Venting in a Hemispherical Heated Channel,” Int. J. Transp. Phenom., 6, 81 (2004).
  • F. B. CHEUNG and Y. C. LIU, “Critical Heat Flux Experiments to Support In-Vessel Retention Feasibility Study for an Evolutionary Advanced Light Water Reactor Design,” EPRI Technical Report-1003101, Electric Power Research Institute (2001).
  • F. B. CHEUNG, “Limiting Factors for External Reactor Vessel Cooling,” Nucl. Technol., 152, 145 (2005).
  • S. H. CHANG and Y. H. JEONG, “CHF Experiments for External Vessel Cooling Using 2-D Slice Test Section,” presented at Severe Accident Management Study on Nuclear Installations (SAMSON) Seminar on In-Vessel Retention Strategy for High-Power Reactors, Seoul National University, Seoul, Korea, October 8, 2002.
  • Y. H. JEONG, S. H. CHANG, and W. P. BAEK, “CHF Experiments on the Reactor Vessel Wall Using 2-D Slice Test Section,” Tenth Int. Topl. Mtg. Nuclear Reactor Thermal Hydraulics (NURETH-10), Seoul, Korea, October 5–9, 2003, paper G00314, Korean Nuclear Society (2003).
  • T. G. THEOFANOUS and S. SYRI, “The Coolability Limits of a Reactor Pressure Vessel Lower Head,” Nucl. Eng. Des., 169, 59 (1997).
  • F. B. CHEUNG and K. HADDAD, “A Hydrodynamic Critical Heat Flux Model for Saturated Pool Boiling on a Downward Facing Curved Heating Surface,” Int. J. Heat and Mass Transfer, 40, 6, 1291 (1997).
  • K. H. HADDAD, “An Experimental and Theoretical Study of Two-Phase Boundary Layer Flow on the Outside of Curved Downward-Facing Surfaces,” PhD Dissertation, The Pennsylvania State University (1996).
  • M. B. DIZON, J. YANG, F. B. CHEUNG, J. L. REMPE, K. Y. SUH, and S. B. KIM, “Effects of Surface Coating on Nucleate Boiling Heat Transfer on a Downward Facing Surface,” Proc. Summer Heat Transfer Conf., Las Vegas, Nevada, July 21–23, 2003, paper HT2003-47209, American Society of Mechanical Engineers (2003).
  • J. Y. CHANG and S. M. YOU, “Boiling Heat Transfer Phenomena from Microporous and Porous Surfaces in Saturated FC-72,” Int. J. Heat Mass Transfer, 40, 18, 4437 (1997).
  • J. P. O’CONNOR and S. M. YOU, “A Painting Technique to Enhance Pool Boiling Heat Transfer in FC-72,” J. Heat Transfer, 117, 2, 387 (1995).
  • J. P. O’CONNOR, S. M. YOU, and D. C. PRICE, “A Dielectric Surface Coating Technique to Enhance Boiling Heat Transfer From High Power Microelectronics,” IEEE Trans. Component, Packag. Manuf. Technol., A, 18, 656 (1995).
  • J. Y. CHANG and S. M. YOU, “Enhanced Boiling Heat Transfer from Microporous Surfaces: Effects of Coating Composition and Method,” Int. J. Heat Mass Transfer., 40, 18, 4449 (1997).
  • K. N. RAINEY and S. M. YOU, “Pool Boiling Heat Transfer From Plain and Microporous, Square Pin Finned Surfaces in Saturated FC-72,” J. Heat Transfer, 122, 3, 509 (2000).
  • K. N. RAINEY and S. M. YOU, “Effects of Heater Size and Orientation on Pool Boiling Heat Transfer from Microporous Coated Surfaces,” Int. J. Heat Mass Transfer, 44, 14, 2589 (2001).
  • K. N. RAINEY, G. LI, and S. M. YOU, “Flow Boiling Heat Transfer from Plain and Microporous Coated Surfaces in Subcooled FC-72,” J. Heat Transfer, 123, 918 (2001).
  • M. FUJII, E. NISHIYAMA, and G. YAMANAKA, “Nucleate Pool Boiling Heat Transfer from Micro-Porous Heating Surface,” HTD, 18, 45 (1979).
  • K. NISHIKAWA and Y. FUJITA, “Nucleate Boiling Heat Transfer and Its Augmentation,” Adv. Heat Transfer, 20, 1 (1990).
  • A. M. CZIKK, P. S. O’NEILL, and C. F. GOTTZMANN, “Nucleate Boiling from Porous Metal Films: Effect of Primary Variables,” Proc. 20th National Heat Transfer Conference, Milwaukee, Wisconsin, August 2–5, 1981, American Society of Mechanical Engineers (1981).
  • M. B. DIZON, J. YANG, F. B. CHEUNG, J. L. REMPE, K. Y. SUH, and S. B. KIM, “Effects of Surface Coating on Nucleate Boiling Heat Transfer on a Downward Facing Surface,” J. Enhanced Heat Transfer, 11, 133 (2004).
  • “Fast-Flux Test Facility Design Safety Assessment,” HEDL-TME 79-92, Hanford Engineering Development Laboratory (1972).
  • L. V. KUKHTEVICH, V. V. BEZLEPKIN, V. F. STRIZHOV, V. B. KHABENSKY, V. B. PROKLOV, and Y. G. LEONTIEVE, “Severe Accident Management Measures for Tianwan NPP with WWER-1000,” presented at the OECD Workshop on the Implementation of Severe Accident Management Measurements, Paul Scherrer Institut, Würenlingen, Switzerland, September 10–13, 2001.
  • R. S. HOLCOMB, “Preliminary Evaluation of an Assumed Core Meltdown Accident in a 1000 MW(e) Gas-Cooled Fast Breeder Reactor,” ORNL-TM-3546, Oak Ridge National Laboratory (1971).
  • A. J. FRIEDLAND and R. W. TILBROOK, “Ex-Vessel Core Catcher Design Requirements and Preliminary Concepts Evaluation,” FRT-1561, Revision 1, Westinghouse Electric Corporation (June 14, 1974).
  • D. G. SWANSON, E. H. ZEHMS, C. Y. ANG, J. D. MCCLELLAND, R. A. MEYER, and H. L. L. VANPASSEN, “Annual Progress Report—Ex-Vessel Core Catcher Materials Interactions,” ATR-77(7608)-1, Aerospace Corporation (Oct. 30, 1976).
  • M. J. DRISCOLL and F. L. BOWMAN, “Core Catcher for Nuclear Reactor Core Meltdown Containment,” U.S. Patent 4,113,560 (Sept. 12, 1978).
  • M. MCINTYRE and I. GARDNER, “Core Catchers for Nuclear Reactors,” U.K. Patent GB 2 236 210 A (Mar. 1991).
  • I. SZABO, P. RICHARD, Y. BERGAMASCHI, and J. SEILER, “A Multi-Crucible Core-Catcher Concept: Design Considerations and Basic Results,” Nucl. Eng. Des., 157, 417 (1995).
  • P. RICHARD, P. DUMAZ, J. DUMESNIL, J. MARSEILLE, F. DELASALLE, and F. VALIN, “In-Vessel Core Retention: Some Results on the Dual Strategy,” Proc. 7th Int. Conf. Nuclear Engineering (ICONE-7), Tokyo, Japan, April 19–23, 1999, Japan Society of Mechanical Engineers (1999).
  • P. MELONI and P. RICHARD, “Preliminary Assessment of an In-Vessel Core Retention Strategy using Best Estimate Tools,” Proc. 8th Int. Conf. Nuclear Engineering (ICONE-8), Baltimore, Maryland, April 2–6, 2000, American Society of Mechanical Engineers (2000).
  • R. F. WRIGHT and J. H. SCOBEL, “Enhanced In-Vessel Core Retention System for Severe Accident Management,” Proc. 8th Int. Conf. Nuclear Engineering (ICONE-8), Baltimore, Maryland, April 2–6, 2000, American Society of Mechanical Engineers (2000).
  • I. S. HWANG and K. Y. SUH, “Gap Structure for Nuclear Reactor Vessel,” U.S. Patent 6,195,405 B1 (Feb. 2001).
  • D. AQUARO and N. ZACCARI, “Mitigation of a Core Meltdown Scenario by Means of a Core Catcher Located Inside the Reactor Pressure Vessel”, Proc. 12th Int. Conf. Nuclear Engineering (ICONE-12), Arlington, Virginia, April 25–29, 2004, American Society of Mechanical Engineers (2004).
  • L. A. DOMBROVSKII, V. N. MINEEV, A. S. VLASOV, L. I. ZAICHIK, Y. A. ZEIGARNIK, A. B. NEDOREZOV, and A. S. SIDOROV, “In-Vessel Corium Catcher of a Nuclear Reactor,” Nucl. Eng. Des., 237, 1745 (2007).
  • G. FIEG, M. MÖSCHKE, and H. WERLE, “Studies for the Staggered Pans Core Catcher,” Nucl. Technol., 111, 331 (1995).
  • J.-M. SEILER, A. LATREOBE, B. R. SEHGAL, H. ALSMEYER, O. KYMÄLÄINEN, B. TURLAND, J.-L., GRANGE, M. FISCHER, G. AZARIAN, M. BÜRGER, C. J. CIRAUQUI, and A. ZURITA, “Analysis of Corium Recovery Concepts by the EUROCORE Group,” Nucl. Eng. Des., 221, 119 (2003).
  • W. WIDMANN, M. BURGER, G. LOHNERT, H. ALSMEYER, and W. TROMM, “Experimental and Theoretical Investigations on the COMET Concept for Ex-vessel Core Melt Retention,” Nucl. Eng. Des., 236, 2304 (2006).
  • J. BARON, “Conceptual Design of a Metallic In-Vessel Core Catcher,” Proc. 8th Int. Conf. Nuclear Engineering (ICONE-8), Baltimore, Maryland, April 2–6, 2000, American Society of Mechanical Engineers (2000).
  • W. FORSBERG, G. PARKER, J. C. RUDOLPH, L. OSBORNE-LEE, and M. KENTON, “Termination of Light-Water Reactor Core-Melt Accidents with a Chemical Core Catcher: The Core-Melt Source Reduction System (COMSORS),” ORNL-6899, Oak Ridge National Laboratory (Sept. 1996).
  • W. TROMM and H. ALSMEYER, “Transient Experiments with Thermite Melts for a Core Catcher Concept Based on Water Addition from Below,” Nucl. Technol., 111, 341 (1995).
  • K. H. KANG, R. J. PARK, S. B. KIM, K. Y. SUH, F. B. CHEUNG, and J. L. REMPE, “Simulant Melt Experiments on Thermal and Metallurgical Performance of the In-Vessel Core Catcher,” Nucl. Technol., 153, 208 (2006).
  • K. H. KANG, R. J. PARK, S. B. KIM, K. Y. SUH, F. B. CHEUNG, and J. L. REMPE, “Simulant Melt Experiments on Performance of the In-vessel Core Catcher,” Nucl. Eng. Des., 237, 1803 (2007).
  • J. REMPE, D. KNUDSON, K. CONDIE, K. Y. SUH, F. B. CHEUNG, and S. B. KIM, “Conceptual Design of an In-vessel Core Catcher,” Nucl. Eng. Des., 230, 311 (2004).
  • J. L. REMPE, K. G. CONDIE, D. L. KNUDSON, K. Y. SUH, F. B. CHEUNG, and S. B. KIM, “Development of an Enhanced Core Catcher for Improving In-Vessel Retention Margins,” Nucl. Technol., 152, 170 (2005).
  • J. L. REMPE, D. L. KNUDSON, K. G. CONDIE, F. B. CHEUNG, K. Y. SUH, and S. B. KIM, “Increased Margin Associated with Options to Enhance In-Vessel Retention,” Proc. Fifth Int. Congress Advances in Nuclear Power Plants (ICAPP ’05), Seoul, Korea, May 15–19, 2005, Korean Nuclear Society (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.