22
Views
0
CrossRef citations to date
0
Altmetric
Technical Paper

Hydrologic, Chemical, and Thermal Constraints on Water Availability inside Breached Waste Packages in the Yucca Mountain Repository

, , , &
Pages 201-219 | Published online: 10 Apr 2017

REFERENCES

  • J. L. JERDEN, Jr., M. M. GOLDBERG, J. C. CUNNANE, T. H. BAUER, R. A. WIGELAND, and R. E. NIETERT, “Can Spent Nuclear Fuel Decay Heat Prevent Radionuclide Release?” Mater. Res. Soc. Symp. Proc., 824, 101 (2004).
  • I. N. NASSAR and R. HORTON, “Water Transport in Unsaturated Nonisothermal Salty Soil: II. Theoretical Development,” Soil Sci. Soc. Am. J., 53, 1330 (1989).
  • J. BEAR and A. GILMAN, “Migration of Salts in the Unsaturated Zone Caused by Heating,” Lett. Math. Phys., 19, 139 (1995).
  • J. C. WALTON, “Effects of Evaporation and Solute Concentration on Presence and Composition of Water in and around the Waste Package at Yucca Mountain,” Waste Manage., 13, 293 (1993).
  • J. C. WALTON, “Influence of Evaporation on Waste Package Environment and Radionuclide Release from a Tuff Repository,” Water Resour. Res., 30, 12, 3479 (1994).
  • G. S. CAMPBELL, “A Simple Method for Determining Unsaturated Conductivity from Moisture Retention Data,” Soil Sci., 117, 6, 311 (1974).
  • G. S. CAMPBELL and S. SHIOZAWA, “Prediction of Hydraulic Properties of Soils Using Particle-Size Distribution and Bulk Density Data,” Proc. Int. Workshop Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils, Riverside, California, October 11–13, 1989, p. 317, M. Th. VAN GENUCHTEN, F. J. LEIJ, and L. J. LUND, Eds., U.S. Department of Agriculture (1992).
  • F. A. L. DULLIEN, Porous Media: Fluid Transport and Pore Structure, 1st ed., Academic Press, San Diego, California (1979).
  • J. W. BELTON, “The Surface Tensions of Ternary Solutions. Part I. The Surface Tensions of Aqueous Solutions of (A) Sodium and Potassium Chlorides, (B) Sodium Chloride and Hydrochloric Acid,” Faraday Soc., 31, 1413 (1935).
  • N. MATUBAYASI, H. MATSUO, K. YAMAMOTO, S. YAMAGUCHI, and A. MATUZAWA, “Thermodynamic Quantities of Surface Formation of Aqueous Electrolyte Solutions I. Aqueous Solutions of NaCl, MgCl2 and LaCl3,” J. Colloid Interface Sci., 209, 398 (1999).
  • R. I. PAPENDICK and G. S. CAMPBELL, “Theory and Measurement of Water Potential,”Water Potential Relations in Soil Microbiology, SSSA Special Publication No. 9, Chap. 1, p. 1, Soil Science Society of America, Madison, Wisconsin (1981).
  • R. A. ROBINSON and R. H. STOKES, Electrolyte Solutions, The Measurement and Interpretation of Conductance, Chemical Potential and Diffusion in Solutions of Simple Electrolytes, 2nd ed. (Revised), Butterworth, Washington, D.C. (1965).
  • R. F. HARRIS, “Effect of Water Potential on Microbial Growth and Activity,”Water Potential Relations in Soil Microbiology, SSSA Special Publication No. 9, Chap. 2, D. M. KRAL and M. K. COUSIN, Eds., Soil Science Society of America, Madison, Wisconsin (1985).
  • B. A. KIMBALL, R. D. JACKSON, R. J. REGINATO, F. S. NAKAYAMA, and S. B. IDSO, “Comparison of Field-Measured and Calculated Soil–Heat Fluxes,” Soil Sci. Soc. Am. J., 40, 18 (1976).
  • “In-Package Chemistry Abstraction,” ANL-EBS-MD-000037 REV 04, Bechtel SAIC Company (2005).
  • T. J. WOLERY and R. L. JAREK, “EQ3/6, A Software Package for Geochemical Modeling of Aqueous Systems,” version 8.0, Bechtel SAIC STN, 10813–80-00, Bechtel SAIC Company (2003).
  • H. SVERDRUP and P. WARFVINGE, “Weathering of Primary Silicate Minerals in the Natural Soil Environment in Relation to a ChemicalWeathering Model,”Water Air Soil Pollut., 38, 3–4, 387 (1988).
  • R. KUECHLER and K. NOACK, “Comparison of the Solution Behaviour of a Pyrite-Calcite Mixture in Batch and Unsaturated Sand Column,” J. Contaminant Hydrol., 90, 203 (2007).
  • D. R. LIDE, CRC Handbook of Chemistry and Physics, 87th ed., CRC Press, Boca Raton, Florida (2006).
  • P. DILLMANN, F. MAZAUDIER, and S. HOERLÉ, “Advances in Understanding Atmospheric Corrosion of Iron. I. Rust Characterisation of Ancient Ferrous Artifacts Exposed to Indoor Atmospheric Corrosion,” Corros. Sci., 46, 1401 (2004).
  • R. A. FREEZE and J. A. CHERRY, Groundwater, Prentice-Hall, Englewood Cliffs, New Jersey (1979).
  • V. E. SCHROCK, S. T. REVANKAR, S. Y. LEE, and C.-H. WANG, “A Computational Model for Critical Flow Through Intergranular Stress Corrosion Cracks,” NUREG/CR-5133, Lawrence Berkeley Laboratory (1988).
  • K. J. RUSCHAK, S. J. WEINSTEIN, and K. NG, “Developing Film Flow on an Inclined Plane with a Critical Point,” J. Fluids Eng., 123, 698 (2001).
  • C. LIN, B. LESLIE, R. CODELL, H. ARLT, and T. AHN, “Potential Importance of Fluoride to Performance of the Drip Shield,” Proc. 10th Int. High-Level Radioactive Waste Management Conf. (IHLRWM), Las Vegas, Nevada, March 30–April 2, 2003, American Nuclear Society (2003) (CD-ROM).
  • D. M. KATZ, F. J. WATTS, and E. R. BURROUGHS, “Effects of Surface Roughness and Rainfall Impact on Overland Flow,” J. Hydraul. Eng., 121, 7, 546 (1995).
  • S. V. ALEKSEENKO, D. M. MARKOVICH, V. E. NAKORYAKOV, and S. I. SHTORK, “Rivulet Flow of Liquid on the Outer Surface of an Inclined Cylinder,” J. Appl. Mech. Tech. Phys., 38, 4, 649 (1998).
  • T. G. MYERS, “Modeling Laminar Sheet Flow over Rough Surfaces,” Water Resour. Res., 38, 11, 12-1 (2002).
  • “General Corrosion and Localized Corrosion of Waste Package Outer Barrier,” ANL-EBS-MD-000003 REV 03, Sandia National Laboratories (2007).
  • G. D. TOWELL and L. B. ROTHFELD, “Hydrodynamics of Rivulet Flow,” AIChE J., 12, 5, 972 (1966).
  • BSC (BECHTEL SAIC COMPANY), “IED Waste Package Decay Heat Generation Design Basis and Thermal Information [Sheet 1 of 1],” 800-IED-WIS0-00801-000-00A, Bechtel SAIC Company (2005).
  • “Multiscale Thermohydrologic Model,” ANL-EBS-MD-000049 REV 04, Sandia National Laboratories (2007).
  • “Waste Form and In-Drift Colloids-Associated Radionuclide Concentrations: Abstraction and Summary,” MDLEBS-PA-000004 REV03, Sandia National Laboratories (2007).
  • P. SCHMUKI and M. LASO, “On the Stability of Rivulet Flow,” J. Fluid Mech., 215, 125 (1990).
  • T. A. GHEZZEHEI, “Constraints for Flow Regimes on Smooth Fracture Surfaces,” Water Resour. Res., 40, 11, Art. No. W11503 (2004).
  • J. J. BIKERMAN, “Sliding of Drops from Surfaces of Different Roughnesses,” J. Colloid Sci., 5, 4, 349 (1950).
  • S. WOLFRAM, The Mathematica® Book, 5th ed., Wolfram Media, Inc. (2003).
  • “CSNF Waste Form Degradation: Summary Abstraction,” ANL-EBS-MD-000015 REV 02, Bechtel SAIC Company (2004).
  • B. D. HANSON, J. I. FRIESE, and C. Z. SODERQUIST, “Initial Results from Dissolution Testing of Spent Fuel Under Acidic Conditions,” Proc. Symp. Scientific Basis for Nuclear Waste Management XXVIII, San Francisco, California, April 13–16, 2004, J. M. HANCHAR, S. STROES-GASCOYNE, and L. BROWNING, Eds., p. 113, Materials Research Society (2004).
  • C. JÉGOU, S. PEUGET, V. BROUDIC, D. ROUDIL, X. DESCHANELS, and J. M. BART, “Identification of the Mechanism Limiting the Alteration of Clad Spent Fuel Segments in Aerated Carbonated Groundwater,” J. Nucl. Mater., 326, 144 (2004).
  • D. W. SHOESMITH, “Fuel Corrosion Processes Under Waste Disposal Conditions,” AECL-12034, Whiteshell Laboratories (1999).
  • D. W. SHOESMITH, “Fuel Corrosion Processes Under Waste Disposal Conditions,” J. Nucl. Mater., 282, 1 (2000).
  • D. W. SHOESMITH and S. SUNDER, “The Prediction of Nuclear Fuel (UO2) Dissolution Rates Under Waste Disposal Conditions,” J. Nucl. Mater., 190, 20 (1992).
  • “Defense HLW Glass Degradation Model,” ANL-EBSMD-000016 REV 02, Bechtel SAIC Company (2004).
  • S. J. GORDON and P. V. BRADY, “In Situ Determination of Long-Term Basaltic Glass Dissolution in the Unsaturated Zone,” Chem. Geol., 190, 113 (2002).
  • J. H. CHOI, I. S. AHN, Y. C. BAK, S. Y. BAE, S. J. HA, and H. J. JANG, “Preparation of High Porous Metal Filter Element for the Fail-Safety Function,” Powder Technol., 140, 98 (2004).
  • L. I. CHERNYSHEV, “Analysis of the Hydraulic Properties of Permeable Materials with Bimodal Porosity,” Powder Metall. Metal Ceram., 44, 129 (2005).
  • J. D. VIENNA, D. S. KIM, and P. HRMA, “Database and Interim Glass Property Models for Hanford HLW and LAW Glasses,” PNNL-14060, Pacific Northwest National Laboratory (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.