54
Views
170
CrossRef citations to date
0
Altmetric
Technical Paper

Ceramic Materials for Fusion

&
Pages 274-302 | Published online: 12 May 2017

References

  • G. R. HOPKINS, “Estimation of Impurity Radiation Loss from Fusion Reactor Plasmas,” Proc. Symp. Technology of Controlled Thermonuclear Fusion Experiments and Engineering Aspects of Fusion Reactors, Austin, Texas, CONF-72111, p. 795 (1972).
  • G. R. HOPKINS, “Fusion Reactor Applications of Silicon Carbide and Carbon,” Proc. First Topl. Mtg. Technology of Controlled Nuclear Fusion, San Diego, CONF-740402-P2, Vol. II, p. 437 (1974).
  • G. R. HOPKINS, “Silicon Carbide and Graphite Materials for Fusion Reactors,” Proc. IAEA Symp. Plasma Physics and Controlled Nuclear Fusion Research, Tokyo, Japan, IAEA-CN-33/S3-3, International Atomic Energy Agency (1974).
  • G. R. HOPKINS, “Low Atomic Number Materials for Fusion, An Assessment Study,” GA-A13306, General Atomic (1974).
  • D. M. MEAD, “Effect of High Z Impurities on the Ignition and Lawson Conditions for a Thermonuclear Reactor,” MATT-989, Princeton Plasma Physics Laboratory (1973).
  • V. I. GERVIDS and V. I. KOGAN, “Dependence of Radiation Losses of a Thermonuclear Plasma on the Atomic Number of the Impurity and the Temperature,” JETP Lett., 21, 6 (1975).
  • J. R. POWELL, F. T. MILES, A. ARONSON, and W. E. WINSCHE, “Studies of Fusion Reactor Blankets with Tritium Breeding in Solid Lithium Compounds: A Preliminary Report,” BNL-18236, Brookhaven National Laboratory (1973).
  • G. L. KULCINSKI, R. W. CONN, G. LONG, L. WITTENBERG, D. SZE, J. KESNER, and D. L. KUMMER, “A Method to Reduce the Effects of Plasma Contamination and First Wall Erosion in Fusion Reactors,” UWFDM-108, University of Wisconsin (1974).
  • “Fusion Reactor Design Studies,” GA-A13430, General Atomic Company(Apr. 1, 1975).
  • Ceramic Processing, Pub. 1576, National Academy of Sciences, Washington, D.C. (1968).
  • W. WEIBULL, “A Statistical Distribution Function of Wide Applicability,” J. Appl. Mech., 18, 293 (1951).
  • G. J. DeSALVO, “Theory and Structural Design Applications of Weibull Statistics,” WANL-TME-2688, Westinghouse Astronuclear Laboratory (Apr. 1970).
  • JANAF Tables of Thermochemical Data, 2nd ed., D. R. STULL and H. PROPHET, Project Directors, NSRDS-NBS 37, U.S. National Bureau of Standards (1971).
  • B. D. POLLOCK, “Dissociation Pressure and Stability of Beryllium Carbide,” J. Phys. Chem., 63, 587 (1959).
  • H. E. ROBSON and P. W. GILLES, “The High Temperature Vaporization Properties of Boron Carbide and the Heat of Sublimation of Boron,” J. Phys. Chem., 69, 983 (1964).
  • D. L. HILDENBRAND and W. F. HALL, “The Decomposition Pressure of Boron Carbide and the Heat of Sublimation of Boron,” J. Phys. Chem., 68, 989 (1964).
  • J. DROWART, R. P. BURNS, G. DeMARIA, and M. G. INGHRAM, “Mass Spectrometric Study of Carbon Vapor,” J. Chem. Phys., 31, 1131 (1959).
  • R. P. BURNS, A. J. JASON, and M. G. INGHRAM, “Evaporation Coefficients of Graphite,” J. Chem. Phys., 40, 1161 (1964).
  • R. J. THORN and G. H. WINSLOW, “Vaporization Coefficient of Graphite and Composition of the Equilibrium Vapor,” J. Chem. Phys., 26, 186 (1957).
  • P. D. ZAVITZANOS, “The Vaporization of Pyrolytic Graphite,” R66SD31, Space Science Laboratory, General Electric Company, King of Prussia, Pennsylvania (1966).
  • W. A. CHUPKA, J. BERKOWITZ, D. J. MESCHI, and H. A. TASMAN, “Mass Spectrometric Studies of High Temperature Systems,” Advances in Mass Spectrometry, Vol. 2, p. 99, The Macmillan Company, New York (1963).
  • J. DROWART, G. DeMARIA, and M. G. INGHRAM, “Thermodynamic Study of SiC Utilizing a Mass Spectrometer,” J. Chem. Phys., 29, 1015 (1958).
  • N. I. VORONIN, N. L. MARAKOVA, and B. F. YUDIN, “Heat of Formation of Silicon Carbide and Its Vapor Species,” Issled. V Obl. Khim. Silikatov i. Okislov, Akad. Nauk SSSR, Sb. Statei (Russian), 203 (1965).
  • R. N. GHOSHTAGORE, “Decomposition of Single Crystal Silicon Carbide,” Solid State Electron., 9, 178 (1966).
  • W. A. CHUPKA, J. BERKOWITZ, C. F. GIESE, and M. G. INGHRAM, “Thermodynamic Studies of Some Gaseous Metallic Carbides,”J. Phys. Chem.,62, 611 (1958).
  • G. VERHAEGEN, F. E. STAFFORD, and J. DROWART, “Mass Spectrometric Studies of the Systems Boron-Carbon and Boron-Carbon-Silicon,” J. Chem. Phys., 40, 1622 (1964).
  • E. G. WOLFF and C. B. ALCOCK, “The Volatilization of High-Temperature Materials in Vacuo,” Trans. Brit. Ceram. Soc., 61, 667 (1962).
  • E. K. STORMS, The Refractory Carbides, Academic Press, New York (1967), p. 15 reports these results from the General Electric Company.
  • P. A. AKISHIN and YU. S. KLODEEV, “Mass Spectrometric Investigation of the Composition of the Vapor Phase Above the Nitrides of Zirconium, Titanium, and Boron,” Russian J. Inorg. Chem. (translation), 7, 486 (1962).
  • D. L. HILDENBRAND and W. F. HALL, “The Evaporation Behavior of Boron Nitride and Aluminum Nitride,” J. Phys. Chem., 67, 888(1963).
  • L. H. DREYER, V. V. DADAPE, and J. L. MARGRAVE, “Sublimation and Decomposition Studies on Boron Nitride and Aluminum Nitride,” J. Phys. Chem., 66, 1556 (1962).
  • H. D. BOTHA and E. D. WHITNEY, “Kinetics and Mechanism of the Thermal Decomposition of Si3N4,” J. Am. Ceram. Soc., 56, 365 (1973).
  • E. A. RYKLIS, A. S. BOLGAR, and V. V. FESENKO, “Evaporation and Thermodynamic Properties of Silicon Nitride,” Sov. Powder Met. Metal Ceram., (translation), 1 (73), 73 (1969).
  • J. DROWART, G. DeMARIA, R. P. BURNS, and M. G. INGHRAM, “Thermodynamic Study of Al2O3 Using a Mass Spectrometer,” J. Chem. Phys., 32, 1366 (1960).
  • R. P. BURNS, “Systematics of the Evaporation Coefficient Al2O3, Ga2O3, In2O3”, J. Chem. Phys., 44, 3307 (1966).
  • G. W. SEARS and L. NOVIAS, “Evaporation of Aluminum Oxide,” J. Chem. Phys., 30, 1111 (1959).
  • W. A. CHUPKA, J. BERKOWITZ, and C. L. GIESE, “Va-porization of Beryllium Oxide and Its Reaction with Tungsten,” J. Chem. Phys., 30, 827 (1959).
  • J. CHIN, General Atomic Company, Private Communication(1975).
  • G. BEITEL, J. Vac. Sci. Tech., 8, 647 (1971).
  • R. C. McRAE, “Outgassing of Al2O3 and BeO in Vacuum at 540°C and 870°C,” Bull. Am. Ceram. Soc., 48, 559 (1969).
  • H. G. STALEY, General Atomic Company, Private Communication (1975).
  • D. SMITH, A. S. DWORKIN, and E. R. VanARTSDALEN, “The Heats of Combustion and Formation of Boron Carbide,” J. Am. Chem. Soc., 77, 2654 (1955).
  • N. S. CORNEY and R. B. THOMAS, “The Effect of Pile Radiation on the Reaction Between Hydrogen and Graphite,” AERE C/R 2502, Atomic Energy Research Establishment, Harwell (1958).
  • W. A. SANDERS, NASA TN D-2738, National Aeronautics and Space Administration (1965).
  • S. J. STECK, G. A. PRESSLEY, S.-S. LIN, and F. E. STAFFORD, “Mass-Spectrometric Investigation of the Reaction of Hydrogen with Graphite at 1900°-2400°K,” J. Chem. Phys., 50, 3196 (1969); S. J. STECK, G. A. PRESSLEY, and F. E. STAFFORD, “Mass Spectrometric Investigation of the High-Temperature Reaction of Hydrogen with Boron Carbide,” J. Phys. Chem., 73, 1000(1969).
  • M. BALOOCH and D. R. OLANDER, “Reactions of Modulated Molecular Beams with Pyrolytic Graphite. III. Hydrogen,” J. Chem. Phys., 63, 4772 (1975).
  • S. VEPREK and M. R. HAQUE, “On the Chemical Erosion of a Carbon First Wall Proposed for Tokamak Devices for Controlled Nuclear Fusion,” Appl. Phys., 8, 303 (1975).
  • M. KUMAGAWA, H. KUWABARA, and S. YAMADA, Jpn. J. Appl. Phys., 8, 421 (1969).
  • Max-Planck-Institut FUr Plasmaphysik, Garching bei MUnchen, Annual Report (1974).
  • J. N. SMITH, Jr, C. H. MEYER, Jr., and J. K. LAYTON, “Low-Yield Sputtering Measurements on CTR Materials Using Auger Electron Spectroscopy,” Trans. Am. Nuc. Soc., 22, 29 (1975).
  • I. P. BUSHAROV, E. A. GORBATOV, V. M. GUSEV, M. I. GUSEVA, YU. V. MARTYNENKO, and I. V. KURCHATOV, ERDA-TR-50, Order of Lenin Institute of Atomic Energy, Moscow (1975); V. M. GUSEV, M. I. GUSEVA, E. S. IONOVA, YU. L. KRASULIN, S. V. MIRNOV, and A. V. NEDOSPASOV, “Study of Atomization and Blistering of Certain Materials Bombarded with Hydrogen and Helium Ions,” Joint Soviet-American Seminar, Materials Problems of CTR, November, 1974, ANL-TRANS-973, Argonne National Laboratory.
  • D. ROSENBERG and G. K. WEHNER, “Sputtering Yields for Low Energy He+-, Kr+-, and Xe+-Ion Bombardment,” J. Appl. Phys., 33, 1842(1962).
  • F. GRONLUND and W. J. MOORE, “Sputtering of Silver by Light Ions with Energies from 2 to 12keV,” J. Chem. Phys., 32, 1540 (1960).
  • R. BEHRISCH, “First-Wall Erosion in Fusion Reactors,” Nucl Fusion, 12, 695 (1972).
  • M. KAMINSKY and S. K. DAS, “Erosion of Silicon Carbide Surface Under Helium Ion and 14 MeV Neutron Irradiations,” Proc. First Topl. Mtg. Technology of Controlled Nuclear Fusion, San Diego, 1974, CONF-740402-P2, Vol. II, p. 508, U.S. Atomic Energy Commission (1974).
  • O. ALMEN and G. BRUCE, “Sputtering Experiments in the High Energy Region,” Nucl. Instrum. Methods, 11, 279 (1961).
  • See, for example, M. KAMINSKY, “Plasma Contamination and Wall Erosion in Controlled Thermonuclear Fusion Devices and Reactors,” Proc. Fifth Int. Conf Plasma Physics and Controlled Nuclear Fusion Research (IAEA), Tokyo, Nov. 11–15, 1975, Vol. II, p. 287; also, O. K. HARLING, M. T. THOMAS, R. L. BRODJINSKI, and L. A. RANCITELLI, Trans. Am. Nucl. Soc., 22, 35 (1975).
  • L. ROVNER and K. CHEN, Unpublished Work (1975).
  • R. E. HONIG, “The Sputtering of Silicon Carbide by Positive Ion Bombardment,” in Ionization Phenomena in Gases, from Proc. Fifth Int. Conf., Munich, Aug. 28–Sep. 1, 1961, p. 106, North Holland Publishing Company, Amsterdam (1962).
  • J. COMAS and C. B. COOPER, “Sputtering Yields of Several Semiconducting Compounds Under Argon Ion Bombardment,”J. Appl. Phys., 37, 2820 (1966).
  • R. KELLY and N. Q. LAM, “The Sputtering of Oxides Part I: A Survey of the Experimental Results,” Rad. Effects, 19, 39 (1973).
  • R. L. THOMAS, W. BAUER, P. L. MATTERN, and B. GRANOFF, “He and H Inplantation of Vitreous Silica and Graphite,” SAND 75-8718, Sandia Laboratories (Aug. 1975).
  • J. N. SMITH, Jr., C. H. MEYER, Jr., J. K. LAYTON, G. R. HOPKINS, and L. H. ROVNER, “Bombardment of SiC by l0 keV H+: Carbon Deposition, Surface Swelling and Changes in Surface Morphology,” submitted for publication in J. Nucl. Mater.
  • W. PRIMAK, “Ion Bombardment of Insulators,” J. Nucl. Mater., 53, 238 (1974).
  • W. H. SMITH and D. H. LEEDS, “Pyrolytic Graphite,” in B. W. GONSER, Modern Materials, p. 139, Academic Press, New York (1970).
  • C. MALMSTROM, R. KEEN, and L. GREEN, “Some Mechanical Properties of Graphite at Elevated Temperatures,” J. Appl. Phys., 22, 593 (1951).
  • G. Q. WEAVER and B. A. OLSON, “High Strength Silicon Carbide for Use in Severe Environments,” Proc. Int. Conf. on SiC(1973).
  • A. F. McLEAN, E. A. FISHER, and R. J. BRATTON, “Brittle Materials Design, High Temperature Gas Turbine,” AMMRC-CTR-74-26, AMMRC-CTR-74-59, Army Materials and Mechanics Research Center (1974).
  • M. L. TORTI, “Ceramics for Gas Turbines, Present and Future,” Report 740242, Society of Automotive Engineering (undated).
  • R. N. DONADIO and J. PAPPIS, “The Mechanical Properties of Pyrolytic Graphite,” T-574, Raytheon Company (undated).
  • S. MROZOWSKI, J. F. ANDREW, N. JUUL, H. E. STRAUSS, and D. C. WOBSCHALL, “Investigation of Elastic and Thermal Properties of Carbon-Based Bodies,” WADC 58-360, Part III, Wright Air Development Division (1961).
  • Commercial Literature, United Kingdom Atomic Energy Authority, Springfields Works.
  • Commercial Literature, Norton Company.
  • J. A. COPPOLA and R. C. BRADT, “Measurement of Fracture Surface Energy of SiC,” J. Am. Ceram. Soc., 55, 455 (1972); “Thermal Shock Damage in SiC,” J. Am. Ceram. Soc., 56, 214 (1973).
  • T. D. GULDEN, “Mechanical Properties of Polycrystalline β-SiC,” J. Am. Ceram. Soc., 52, 585 (1969).
  • W. ASHCROFT, “Mechanical Properties of Silicon Nitride at Elevated Temperatures,” Proc. Brit. Ceram. Soc., Ceramics for Turbines and Other High-Temperature Engineering Applications, No. 22, p. 169, D. J. GODFREY, Ed., British Ceramic Society, Stoke-on-Trent (1973).
  • R. STEVENS, “Temperature Dependence of Fracture Effects in Self-Bonded SiC,” J. Mater. Set., 6, 324 (1971).
  • P. T. B. SHAFFER and C. K. JUN, “The Elastic Modulus of Dense Polycrystalline Silicon Carbide,” Mater. Res. Bull., 7, 63 (1972).
  • R. S. LIEBLING, “Effect of Low Porosity on the Elastic Properties of Boron Carbide,” Mater. Res. Bull., 2, 1035 (1967).
  • A. G. EVANS and R. W. DAVIDGE, “The Strength and Oxidation of Reaction-Sintered Silicon Nitride,” J. Mater. Set, 5,314(1970).
  • Y. S. TOULOUKIAN, R. W. POWELL, C. Y. HO, P. G. KLEMENS, E. H. BUYCO, and D. P. DeWITT, Thermo-Physical Properties of Matter, Vol. 2, Thermal Conductivity (1970), Vol. 5, Specific Heat (1970), Vol. 8, Thermal Radiative Properties (1972), IFI/Plenum, New York.
  • E. I. SHOBERT II, “Carbon and Graphite,” in Modern Materials, Vol. 4, p. 1, B. W. GONSER and H. H. HAUSNER, Eds., Academic Press, New York (1964).
  • Y. S. TOULOUKIAN, Thermophysical Properties of High Temperature Solid Materials, Vols. 4 and 5, Macmillan, New York (1967).
  • R. J. PRICE, “Structure and Properties of Pyrolytic Silicon Carbide,” Bull Am. Ceram. Soc., 48, 859 (1969).
  • A. F. McLEAN, E. A. FISHER, and R. J. BRATTON, “Brittle Materials Design High Temperature Gas Turbine,” AMMRC-CTR-73-9, Army Materials and Mechanics Research Center (1973).
  • W. GEORGE, “Thermal Property Measurements on Silicon Nitride and Silicon Carbide Ceramics Between 290 and 700K,” Proc. Brit. Ceram. Soc., Ceramics for Turbines and Other High-Temperature Engineering Application, No. 22, p. 147, D. J. GODFREY, Ed. (1973).
  • G. B. ENGLE, R. J. PRICE, W. R. JOHNSON, and L. A. BEAVAN, “Development Status of Near-Isotropic Graphites for Large HTGRs,” GA-A12944, General Atomic (1974).
  • R. E. BULLOCK, “Fatigue Behavior of a Near-Isotropic Graphite,” Proc. Twelfth Biennial Conf. on Carbon (1975).
  • J. J. CACCIOTTI and V. J. ERDEMAN, “Fatigue Behavior of a Pyrolytic Graphite,” DM61-229, General Electric Company, Aircraft Gas Turbine Division (1961).
  • H. L. LEIGHTER and E. ROBINSON, “Fatigue Behavior of a High-Density Graphite and General Design Correlation,” J. Am. Ceram. Soc., 53, 197 (1970).
  • B. J. S. WILKINS and A. R. REICH, “Resistance of Silicon Carbide to Dynamic Fatigue,” Bull. Am. Ceram. Soc., 51, 486(1972).
  • S. ACQUAVIVA and R. CHAIT, “Static and Cyclic Fatigue of Ceramic Materials,” AMMRC-TR-72-9, Army Materials and Mechanics Research Center(1972).
  • R. KOSSOWSKY, “Cyclic Fatigue of Hot-Pressed Si3N4,” J. Am. Ceram. Soc., 56, 531 (1973).
  • W. V. KOTLENSKY and H. E. MARTENS, “Mechanical Properties of Pyrolytic Graphite to 2800°C”, Proc. Fifth Carbon Conf., Vol. 2, p. 625, S. MROZOWSKI, M. L. STUDEBAKER, and P. L. WALKER, Jr., Eds, Pergamon Press, Oxford (1963).
  • J. F. LYNCH, C. G. RUDERER, and W. H. DUCKWORTH, Engineering Properties of Selected Ceramic Materials, American Ceramics Society (1966).
  • P. MARSHALL and R. B. JONES, “Creep of Silicon Carbide,” Powder Met., 12, 193 (1969).
  • T. L. FRANCIS and R. L. COBLE, “Creep of Polycrystalline Silicon Carbide,” J. Am. Ceram. Soc., 51, 115 (1968).
  • T. R. WRIGHT and D. E. NICSZ, “Improvement of Hot-Pressed Si3N4,” Review of Ceramic Technology, Report No. 34, p. 3, W. DUCKWORTH, Ed., Battelle Columbus Laboratory (1974).
  • F. F. LANGE, “Mechanical Behavior of Hot Pressed Si3N4and SiC,” Review of Ceramic Technology, Report No. 29, W. DUCKWORTH, Ed, Battelle Columbus Laboratory (May 1974).
  • D. P. H. HASSELMAN, “Strength Behavior off Polycrystalline Alumina Subjected to Thermal Shock,” J. Am. Ceram. Soc., 53, 490 (1970).
  • D. A. KROHN, D. R. LARSON, and D. P. H. HASSELMAN, “Comparison of Thermal-Stress Resistance of Polycrystalline Al2O3 and BeO,” J. Am. Ceram. Soc., 56, 490(1973).
  • W. C. MORGAN, J. Nucl. Mater., 51, 209 (1974).
  • G. B. ENGLE and W. P. EATHERLY, “Irradiation Behavior of Graphite at High Temperature,” High Temperature-High Pressure, 4, 119 (1972).
  • W. PRIMAK, “Radiation Effects on Silicon Carbide,” in Silicon Carbide, Proc. Conf. on Silicon Carbide, p. 385, Boston, Mass, April 2–3, 1959, Pergamon Press, Oxford (1959).
  • W. PRIMAK, L. H. FUCHS, and P. P. DAY, “Radiation Damage in Diamond and Silicon Carbide,” Phys. Rev., 103, 1184(1956).
  • N. F. PRAVDYUK, V. A. NIKOLAENKO, V. I. KAR-PUCHIN, and V. N. KUZNETSOV, “Investigation of Diamond and Silicon Carbide as Indicators of Irradiation Conditions,” Proc. Int. Conf. Properties of Reactor Materials and the Effects of Radiation Damage, p. 57, Berkeley Castle, Gloucestershire, England, May 30–June 2, 1961, Butterworths (1962).
  • R. B. MATTHEWS, “Irradiation Damage in Reaction-Bonded Silicon Carbide,” J. Nucl. Mater., 51, 203 (1974).
  • R. P. THORNE, V. C. HOWARD, and B. HOPE, “Radiation-Induced Changes in Porous Cubic Silicon Carbide,” Proc. Brit. Ceram. Soc., 7, 449 (1967).
  • R. J. PRICE, “Effects of Fast-Neutron Irradiation on Pyrolytic Silicon Carbide,” J. Nucl. Mater., 33, 17 (1969).
  • B. E. SHELDON, “Fast Reactor Irradiation of Pyrolytic Silicon Carbide,” AERE R 8025, U.K. Atomic Energy Research Establishment, Harwell (1975).
  • R. J. PRICE, “Neutron Irradiation-Induced Voids in β-Silicon Carbide,” J. Nucl. Mater., 48, 47 (1973).
  • R. BLACKSTONE and E. H. VOICE, “The Expansion of Silicon Carbide by Neutron Irradiation at High Temperature,” J.Nucl.Mater., 39, 139 (1971).
  • A. L. PITNER, “Irradiation Behavior of Poco Graphites,” Carbon, 9, 637(1971).
  • G. B. ENGLE, “Irradiation Behavior of Nuclear Graphites at Elevated Temperatures,” Carbon, 9, 539 (1971).
  • B. T. KELLY and J. E. BROCKLEHURST, “High Dose Fast Neutron Irradiation of Highly Oriented Pyrolytic Graphite,” Tenth Biennial Conf. on Carbon (1971).
  • B. F. JONES and I. D. PEGGS, “The Effect of Fast Neutron Irradiation on the Structure and Mechanical Properties of a High Modulus Graphite Fiber,” J. Nucl. Mater., 40, 141 (1970).
  • W. J. GRAY, W. C. MORGAN, J. H. COX, and E. M. WOODRUFF, Carbon, 10, 236 (1972).
  • J. KAAE, General Atomic Company, Private Communication(1975).
  • G. W. KEILHOLTZ, R. E. MOORE, and H. E. ROBERTSON ,Nucl. Technol., 17, 234(1973).
  • R. S. WILKS, “Neutron-Induced Damage in BeO, Al2O3, and MgO-A Review,” J. Nucl. Mater., 26, 137 (1968).
  • G. W. KEILHOLTZ, J. E. LEE, and R. E. MOORE, “Ir-radiation Damage to Sintered Beryllium Oxide as a Function of Fast-Neutron Dose and Flux at 110, 650, and 1100°C,” Nucl. Sci. Eng., 26, 329(1966).
  • K. VEEVERS, “Recovery of Mechanical Properties of Irradiated Beryllium Oxide,” J. Nucl. Mater., 40, 289 (1971).
  • J. A. WALTER and G. J. TROUP, “Nuclear Magnetic Resonance Studies of Irradiated Beryllium Oxide II,” J. Nucl. Mater., 38, 51 (1971).
  • T. M. SABINE, “The Anisotropic Expansion of Neutron Irradiated Beryllium Oxide, Zinc Oxide, and Aluminum Nitride,” J. Nucl. Mater., 33, 340 (1969).
  • J. C. PIGG, A. K. GARRISON, and S. B. AUSTERMAN, “Radiation Damage in Beryllium Oxide Single Crystals,” J. Nuel Mater., 49, 67 (1973).
  • R. L. BEATTY, “Second Monthly Progress Report,” Materials Branch, Research and Development Division, Dragon Project, AEE Winfrith (1966).
  • G. W. KEILHOLTZ and R. E. MOORE, “Silicon Oxyni-tride-A New Ceramic Material for Nuclear Applications,” Nucl. Technol, 16, 566 (1972).
  • K. H. G. ASHBEE, F. C. FRANK, and C. K. H. DuBOSE, “Voids in Boron Carbide,” J. Nucl. Mater., 48, 193 (1973).
  • A. JOSTSONS, C. K. H. DuBOSE, G. C. COPELAND, and J. O. STIEGLER, “Defect Structure of Neutron Irradiated Boron Carbide,” J. Nucl. Mater, 49, 136 (1973).
  • G. L. COPELAND, C. K. DuBOSE, R. G. DONNELLY, and W. R. MARTIN, “Transmission Electron Microscopy of Irradiated Boron Carbide,” J. Nucl. Mater., 43, 126 (1972).
  • A. JOSTSONS and C. K. H. DuBOSE, “Microstructure of Boron Carbide After Neutron Irradiation,” J. Nucl. Mater., 44, 44 (1972).
  • O. M. STANSFIELD, “Neutron Irradiation Effects in Boronated Graphite, Hafnated Graphite, B4C, and HfC,” GA-10648, General Atomic (1971).
  • A. A. BAUER and J. L. BATES, “An Evaluation of Electrical Insulators for Fusion Reactors,” BMI-1930, Battelle Columbus Laboratories (1974).
  • I. D. KONOZENKO and V. S. NESHPOR, “Effect of Nuclear Radiation on the Properties of High-Melting Compounds,” Sov. Powder Met. Metal Ceram., (translation), 1 (25), 45 (1965).
  • R. J. PRICE, “Thermal Conductivity of Neutron-Irradiated Reactor Graphites,” GA-A13157, General Atomic (1974).
  • R. J. PRICE, “Thermal Conductivity of Neutron-Irradiated Pyrolytic β-Silicon Carbide,” J. Nucl. Mater., 46, 268 (1973).
  • J. L. KAAE, “Effect of Irradiation on the Mechanical Properties of Isotropic Pyrolytic Carbons,” J. Nucl. Mater., 46, 121 (1973).
  • E. J. SELDIN and C. W. NEZBEDA, “Elastic Constants and Electron Microscope Observations of Neutron-Irradiated Compression Annealed Pyrolytic and Single-Crystal Graphite,” J. Appl. Phys., 41, 3389 (1970).
  • H. MATSUO and T. HONDA, “Changes in the Young’s Modulus of Neutron-Irradiated Reactor-Grade Graphite by Thermal Annealing,” J. Nuel Mater., 48, 207 (1973).
  • G. B. ENGLE, R. J. PRICE, W. R. JOHNSON, and L. A. BEAVAN, “Development Status of Near-Isotropic Graphites for Large HTGR’s,” GA-A12944, General Atomic (1974).
  • R. E. BULLOCK, “The Effect of Fast-Neutron Irradiation on Tensile Strengths of Carbon Fibers,” Rad. Effects, 11, 107 (1971).
  • J. L. KAAE, J. C. BOKROS, and D. W. STEVENS, “Dimensional Changes and Creep of Poorly Crystalline Isotropic Carbons and Carbon-Silicon Alloys During Irradiation,” Carbon, 10, 571 (1972).
  • R. J. PRICE, Unpublished Data (1974).
  • A. G. EVANS, C. PADGETT, and K. W. DAVIDGE, “Strength of Pyrolytic SiC Coatings of Fuel Particles for High-Temperature Gas-Cooled Reactors,” J. Am. Ceram. Soc., 56, 36 (1973).
  • C. F. WALLROTH, “Boron Carbide Particle Irradiation in the Dragon Reactor,” DP-841, Dragon Project (1973).
  • K. S. B. ROSE, unpublished work reported in J. B. SAYERS, “The UK Programme in Support of the Coated Particle Fuelled Gas Cooled Fast Reactors,” presented at IAEA Study Group on Gas Cooled Fast Reactors, Minsk, USSR, July 24–28, 1972, International Atomic Energy Agency.
  • B. HUDSON and B. E. SHELDON, “High Voltage Electron Transmission Microscopy of Pyrolytic Silicon Carbide Coatings from Nuclear Fuel Particles,” J. Microscopy, 97, 113 (1973).
  • W. F. VOGELSANG, G. L. KULCINSKI, R. G. LOTT, and T. K. SANG, “Transmutations, Radioactivity, and Afterheat in a D-T Tokamak Fusion Reactor,” UWFDM-74, University of Wisconsin (1973).
  • J. D. LEE, “Fusion Technology Monographs/Energy 90,” 5th Intersociety Energy Conversion Engineering Conf., Las Vegas(Sep. 1970).
  • J. R. POWELL, Proc. First Topl Mtg. Technology of Controlled Nuclear Fusion, San Diego, California, April 16–18, 1974, CONF-740402-P1, Vol. I, p. 533, U.S. Atomic Energy Commission (1974).
  • F. BOLD, General Atomic Company, Private Communication (1974).
  • S. O. DEAN, Ed., “Status and Objective of Tokamak Systems for Fusion Research,” WASH-1295, U.S. Energy Research and Development Administration (1974).
  • T. A. COULTAS, “First Wall Bumper Concepts,” ENG/CTR/TM-33, Argonne National Laboratory (1974).
  • R. J. BURKE, T. A. COULTAS, and M. PETRICK, “Conceptual Design of a Theta-Pinch Fusion Engineering Research Facility,” Proc. First Topl. Mtg. Technology of Controlled Nuclear Fusion, San Diego, California, April 16–18, 1974, CONF-740402-P1, Vol. I, p. 350, U.S. Atomic Energy Commission (1974).
  • P. W. DAVIDSON, “Design of the Heat Transfer System for the Princeton Reference Design Reactor,” Proc. Fifth Symp. Engineering Problems of Fusion Research, Princeton University, 1973, 73CH0843-3-NPS, p. 79, Institute of Electrical and Electronics Engineers (1973).
  • M. A. HOFFMAN, M. GASPAROTO, and E. BERTO-LINI, “Parametric Study of Helium Cooling and Associated Engineering Problems of Future Fusion Reactors,” Proc. Fifth Symp. Engineering Problems of Fuson Research, Princeton University, 1973, 73CH0843-3-NPS, p. 252, Institute of Electrica and Electronics Engineers (1973).
  • J. POWELL and O. LAZARETH, “Fusion Blankets with Minimum Activation and Minimum Vulnerability to Radiation,” Trans. Am. Nucl. Soc., 19, 17 (1974).
  • B. BADGER et al., “UWMAK I, Wisconsin Toroidal Fusion Reactor Design,” UWFDM-68, Vol. I, University of Wisconsin (1973).
  • R. W. CONN, G. L. KULCINSKI, H. AVCI, and M. EL-MAGHRABI, “New Concepts for Controlled Fusion Reactor Blanket Design,” UWFDM-115, University of Wisconsin (1974).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.