332
Views
24
CrossRef citations to date
0
Altmetric
Reviews

Biodegradable ‘intelligent’ materials in response to physical stimuli for biomedical applications

, , &
Pages 493-507 | Published online: 13 Apr 2009

Bibliography

  • Mano JF. Stimuli-responsive polymeric systems for biomedical applications. Adv Eng Mater 2008;10:515-27
  • He CL, Kim SW, Lee DS. In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J Control Release 2008;127:189-207
  • Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 2001;53:321-39
  • Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci 2007;32:762-98
  • Ruel-Gariepy E, Leroux JC. In situ-forming hydrogels – review of temperature-sensitive systems. Eur J Pharm Biopharm 2004;58:409-26
  • Jeong B, Kim SW, Bae YH. Thermosensitive sol-gel reversible hydrogels. Adv Drug Deliv Rev 2002;54:37-51
  • Klouda L, Mikos AG. Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm 2008;68:34-45
  • Hatefi A, Amsden B. Biodegradable injectable in situ forming drug delivery systems. J Control Release 2002;80:9-28
  • Chitkara D, Shikanov A, Kumar N, et al. Biodegradable injectable in situ depot-forming drug delivery systems. Macromol Biosci 2006;6:977-90
  • Mortensen K, Pedersen JS. Structural study on the micelle formation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) tri-block copolymer in aqueous solution. Macromolecules 1993;26:805-12
  • Fusco S, Borzacchiello A, Netti PA. Perspectives on: PEO-PPO-PEO tri-block copolymers and their biomedical applications. J Bioact Compat Pol 2006;21:149-64
  • Korea Institute of Science and Technology. Injectable thermosensitive pluronic hydrogels coupled with bioactive materials for tissue regeneration and preparation mehtod thereof. WO2007064152; 2007
  • Blonder Joan P. Vaccine delivery. US2004258702; 2004
  • Taro Pharmaceutical Industries Ltd. A thermoreversible pharmaceutical furmulation for anti-microbial agents comprising poloxamer polymers and hydroxy fatty acid ester of polyethylene glycol. WO2006024138; 2006
  • Palmer WK, Emeson EE, Johnston TP. Poloxamer 407-induced atherogenesis in the C57BL/6 mouse. Atherosclerosis 1998;136:115-23
  • Wout ZG, Pec EA, Maggiore JA, et al. Poloxamer 407-mediated changes in plasma cholesterol and triglycerides following intraperitoneal injection to rats. J Parent Sci Technol 1992;46:192-200
  • Johnston TP, Palmer WK. Mechanism of Poloxamer 407 induced hypertriglyceridemia in the rat. Biochem Pharmacol 1993;46:1037-42
  • Ahn JS, Suh JM, Lee MY, et al. Slow eroding biodegradable multiblock poloxamer copolymers. Polym Int 2005;54:842-7
  • Liu CB, Gong CY, Pan YF, et al. Synthesis and characterization of a thermosensitive hydrogel based on biodegradable amphiphilic PCL-Pluronic (L35)-PCL block copolymers. Colloid Surface A 2007;302:430-8
  • Cohn D, Lando G, Sosnik A, et al. PEO-PPO-PEO-based poly(ether ester urethane)s as degradable reverse thermo-responsive multiblock copolymers. Biomaterials 2006;27:1718-27
  • Chung HJ, Lee YH, Park TG. Thermo-sensitive and biodegradable hydrogels based on stereocomplexed Pluronic multi-block copolymers for controlled protein delivery. J Control Release 2008;127:22-30
  • Yang ZG, Ding JD. A thermosensitive and biodegradable physical gel with chemically cross-linked nanogels as the building block. Macromol Rapid Commun 2008;29:751-6
  • Sosnik A, Cohn D. Reverse thermo-responsive poly(ethylene oxide) and poly(propylene oxide) multiblock copolymers. Biomaterials 2005;26:349-57
  • Macromed, Inc. Thermosensitive biodegradable polymers based on poly(ether-ester) block copolymers. WO9715287; 1997
  • Jeong B, Bae YH, Lee DS, et al. Biodegradable block copolymers as injectable drug-delivery systems. Nature 1997;388:860-2
  • Jeong B, Bae YH, Kim SW. Thermoreversible gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions. Macromolecules 1999;32:7064-9
  • Jeong B, Bae YH, Kim SW. Biodegradable thermosensitive micelles of PEG-PLGA-PEG triblock copolymers. Colloid Surface B 1999;16:185-93
  • Jeong B, Bae YH, Kim SW. In situ gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions and degradation thereof. J Biomed Mater Res 2000;50:171-7
  • Li ZH, Ning W, Wang JM, et al. Controlled gene delivery system based on thermosensitive biodegradable hydrogel. Pharm Res 2003;20:884-8
  • Lee PY, Li ZH, Huang L. Thermosensitive hydrogel as a Tgf-beta 1 gene delivery vehicle enhances diabetic wound healing. Pharm Res 2003;20:1995-2000
  • Tyagi P, Li ZH, Chancellor M, et al. Sustained intravesical drug delivery using thermosensitive hydrogel. Pharm Res 2004;21:832-7
  • Macromed, Inc. Biodegradable low molecular weight triblock poly(lactide-co-glycolide) polyethylene glycol copolymers having reverse thermal gelation properties. WO9918142; 1999
  • Macromed, Inc. Biodegradable low molecular weight triblock poly(lactide-co-glycolide) polyethylene glycol copolymers having reverse thermal gelation properties. US6004573; 1999
  • Lee DS, Shim MS, Kim SW, et al. Novel thermoreversible gelation of biodegradable PLGA-block-PEO-block-PLGA triblock copolymers in aqueous solution. Macromol Rapid Commun 2001;22:587-92
  • Shim MS, Lee HT, Shim WS, et al. Poly(D,L-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly (D,L-lactic acid-co-glycolic acid) triblock copolymer and thermoreversible phase transition in water. J Biomed Mater Res 2002;61:188-96
  • Amgen Inc. Thermosensitive biodegradable hydrogels for sustained delivery of leptin. US6541033; 2003
  • Amgen Inc. Thermosensitive biodegradable hydrogels for sustained delivery of biologically active agents. WO0000222; 2000
  • Zentner GM, Rathi R, Shih C, et al. Biodegradable block copolymers for delivery of proteins and water-insoluble drugs. J Control Release 2001;72:203-15
  • Kim YJ, Choi S, Koh JJ, et al. Controlled release of insulin from injectable biodegradable triblock copolymer. Pharm Res 2001;18:548-50
  • Choi S, Kim SW. Controlled release of insulin from injectable biodegradable triblock copolymer depot in ZDF rats. Pharm Res 2003;20:2008-10
  • Choi S, Baudys M, Kim SW. Control of blood glucose by novel GLP-1 delivery using biodegradable triblock copolymer of PLGA-PEG-PLGA in type 2 diabetic rats. Pharm Res 2004;21:827-31
  • Chen SB, Singh J. Controlled delivery of testosterone from smart polymer solution based systems: in vitro evaluation. Int J Pharm 2005;295:183-90
  • Jeong B, Kibbey MR, Birnbaum JC, et al. Thermogelling biodegradable polymers with hydrophilic backbones: PEG-g-PLGA. Macromolecules 2000;33:8317-22
  • Chung YM, Simmons KL, Gutowska A, et al. Sol-gel transition temperature of PLGA-g-PEG aqueous solutions. Biomacromolecules 2002;3:511-6
  • Jeong B, Lee KM, Gutowska A, et al. Thermogelling biodegradable copolymer aqueous solutions for injectable protein delivery and tissue engineering. Biomacromolecules 2002;3:865-8
  • Jeong B, Wang LQ, Gutowska A. Biodegradable thermoreversible gelling PLGA-g-PEG copolymers. Chem Commun 2001;1516-7
  • Pitt CG, Jeffcoat AR, Zweidinger RA, et al. Sustained drug delivery systems. I. The permeability of poly(epsilon-caprolactone), poly(DL-lactic acid), and their copolymers. J Biomed Mater Res 1979;13:497-507
  • Pitt CG, Chasalow FI, Hibionada YM, et al. Aliphatic polyesters. I. The degradation of poly(ϵ-caprolactone) in vivo. J Appl Polym Sci 1981;26:3779-87
  • Kim MS, Hyun H, Cho YH, et al. Preparation of methoxy poly(ethyleneglycol)-block-poly(caprolactone) via activated monomer mechanism and examination of micellar characterization. Polym Bull 2005;55:149-56
  • Kim MS, Hyun H, Seo KS, et al. Preparation and characterization of MPEG-PCL di-block copolymers with thermo-responsive sol-gel-sol phase transition. J Polym Sci Pol Chem 2006;44:5413-23
  • Hyun H, Kim YH, Song IB, et al. In vitro and in vivo release of albumin using a biodegradable MPEG-PCL di-block copolymer as an in situ gel-forming carrier. Biomacromolecules 2007;8:1093-100
  • Hwang MJ, Suh JM, Bae YH, et al. Caprolactonic poloxamer analog: PEG-PCL-PEG. Biomacromolecules 2005;6:885-90
  • University of Utah Research Foundation. Aliphatically modified biodegradable block copolymers as thermogelling polymers. US2007265356; 2007
  • Jo S, Kim J, Kim SW. Reverse thermal gelation of aliphatically modified biodegradable triblock copolymers. Macromol Biosci 2006;6:923-8
  • Li J, Li X, Ni XP, et al. Synthesis and characterization of new biodegradable amphiphilic poly(ethylene oxide)-b-poly[(R)-3-hydroxy butyratel-b-poly(ethylene oxide) triblock copolymers. Macromolecules 2003;36:2661-7
  • Li J, Ni XP, Li X, et al. Micellization phenomena of biodegradable amphiphilic triblock copolymers consisting of poly(beta-hydroxyalkanoic acid) and poly(ethylene oxide). Langmuir 2005;21:8681-5
  • Li X, Mya KY, Ni XP, et al. Dynamic and static light scattering studies on self-aggregation behavior of biodegradable amphiphilic poly(ethylene oxide)-poly [(R)-3-hydroxybutyrate]-poly(ethylene oxide) triblock copolymers in aqueous solution. J Phys Chem B 2006;110:5920-6
  • Loh XJ, Goh SH, Li J. New biodegradable thermogelling copolymers having very low gelation concentrations. Biomacromolecules 2007;8:585-93
  • Zhong ZY, Dijkstra PJ, Jan FJ, et al. Synthesis and aqueous phase behavior of thermoresponsive biodegradable poly(D,L-3-methylglycolide)-block-poly (ethylene glycol)-block-poly (D,L-3-methylglycolide) triblock copolymers. Macromol Chem Physic 2002;203:1797-803
  • Austin PR, Brine CJ, Castle JE, et al. Chitin: new facets of research. Science 1981;212:749-53
  • Lee KY, Ha WS, Park WH. Blood compatibility and biodegradability of partially N-acylated chitosan derivatives. Biomaterials 1995;16:1211-6
  • Hirano S, Tsuchida H, Nagano N. N-acetylation in chitosan and the rate of its enzymic hydrolysis. Biomaterials 1989;10:574-6
  • Felt O, Buri P, Gurny R. Chitosan: a unique polysaccharide for drug delivery. Drug Dev Ind Pharm 1998;24:979-93
  • Wound Healing of Oklahoma. Chitosan-derived biomaterials. US5747475; 1998
  • West Pharmaceutical Services Drug Delivery & Clinical Research Centre Ltd. Chitosan Containing Solution. WO2005079749; 2005
  • Biosyntech Canada Inc. Method for treating a tumor using a thermo-gelling chitosan composition. WO2004050100; 2004
  • Bio Syntech, Laval CA. Temperature-controlled pH-dependent formation of ionic polysaccharide gels. US6344488; 2002
  • Chenite A, Chaput C, Wang D, et al. Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 2000;21:2155-61
  • Chenite A, Buschmann M, Wang D, et al. Rheological characterisation of thermogelling chitosan/glycerol-phosphate solutions. Carbohydr Polym 2001;46:39-47
  • Ruel-Gariepy E, Chenite A, Chaput C, et al. Characterization of thermosensitive chitosan gels for the sustained delivery of drugs. Int J Pharm 2000;203:89-98
  • Ruel-Gariepy E, Shive M, Bichara A, et al. A thermosensitive chitosan-based hydrogel for the local delivery of paclitaxel. Eur J Pharm Biopharm 2004;57:53-63
  • Berrada M, Serreqi A, Dabbarh F, et al. A novel non-toxic camptothecin formulation for cancer chemotherapy. Biomaterials 2005;26:2115-20
  • Ruel-Gariepy E, Leclair G, Hildgen P, et al. Thermosensitive chitosan-based hydrogel containing liposomes for the delivery of hydrophilic molecules. J Control Release 2002;82:373-83
  • Tianjin University. Preparation of injectable bone-repairing hydrochlorinated chitosan/calcium phosphate material. CN1486753; 2004
  • Bhattarai N, Ramay HR, Gunn J, et al. PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. J Control Release 2005;103:609-24
  • Hennink WE, Talsma H, Borchert JCH, et al. Controlled release of proteins from dextran hydrogels. J Control Release 1996;39:47-55
  • Aso Y, Yoshioka S, Nakai Y, et al. Thermally controlled protein release from gelatin-dextran 78. hydrogels. Radiat Phys Chem 1999;55:179-83
  • Chen FM, Zhao YM, Sun HH, et al. Novel glycidyl methacrylated dextran (Dex-GMA)/gelatin hydrogel scaffolds containing microspheres loaded with bone morphogenetic proteins: formulation and characteristics. J Control Release 2007;118:65-77
  • Takeuchi Y, Uyama H, Tomoshige N, et al. Injectable thermoreversible hydrogels based on amphiphilic poly(amino acid)s. J Polym Sci Pol Chem 2006;44:671-5
  • Moon JR, Kim JH. Preparation of biodegradable thermo-responsive polyaspartamides with N-isopropylamine pendent groups (I). B Kor Chem Soc 2006;27:1981-4
  • Morihara Y, Ogata S, Kamitakahara M, et al. Thermosensitive gel formation of novel polypeptides containing a collagen-derived pro-hyp-gly sequence and an elastin-derived val-pro-uy-val-gly sequence. J Polym Sci Pol Chem 2005;43:6048-56
  • Song SC, Lee SB, Jin JI, et al. A new class of biodegradable thermosensitive polymers. I. Synthesis and characterization of poly(organophosphazenes) with methoxy-poly(ethylene glycol) and amino acid esters as side groups. Macromolecules 1999;32:2188-93
  • Lee SB, Song SC, Jin JI, et al. A new class of biodegradable thermosensitive polymers. 2. Hydrolytic properties and salt effect on the lower critical solution temperature of poly(organophosphazenes) with methoxypoly(ethylene glycol) and amino acid esters as side groups. Macromolecules 1999;32:7820-7
  • Lee BH, Lee YM, Sohn YS, et al. A thermosensitive poly(organophosphazene) gel. Macromolecules 2002;35:3876-9
  • Korea Institute of Science and Technology. Thermosensitive poly (organophosphazenes), preparation method thereof and injectable thermosensitive polyphosphazene hydrogels using the same. WO2005010079; 2005
  • Lee BH, Song SC. Synthesis and characterization of biodegradable thermosensitive poly(organophosphazene) gels. Macromolecules 2004;37:4533-7
  • Kang GD, Cheon SH, Khang G, et al. Thermosensitive poly(organophosphazene) hydrogels for a controlled drug delivery. Eur J Pharm Biopharm 2006;63:340-6
  • Korea Institute of Science and Technology. Biodegradable and thermosensitive poly(organophosphazene) hydrogel, preparation method thereof and use thereof. WO2007083875; 2007
  • Kang GD, Cheon SH, Song SC. Controlled release of doxorubicin from thermosensitive poly(organophosphazene) hydrogels. Int J Pharm 2006;319:29-36
  • Park KH, Song SC. Morphology of spheroidal hepatocytes within injectable, biodegradable, and thermosensitive poly(organophosphazene) hydrogel as cell delivery vehicle. J Biosci Bioeng 2006;101:238-42
  • Heskins M, Guillet JE. Solution properties of poly(N-isopropylacrylamide). J Macromol Sci Chem 1968;2:1441-55
  • Hirokawa Y, Tanaka T. Volume phase transition in a nonionic gel. J Chem Phys 1984;81:6379-80
  • Yoshida T, Aoyagi T, Kokufuta E, et al. Newly designed hydrogel with both sensitive thermoresponse and biodegradability. J Polym Sci Pol Chem 2003;41:779-87
  • Zhang XZ, Wu DQ, Sun GM, et al. Novel biodegradable and thermosensitive Dex-AI/PNIPAAm hydrogel. Macromol Biosci 2003;3:87-91
  • Zhang XZ, Sun GM, Wu DQ, et al. Synthesis and characterization of partially biodegradable and thermosensitive hydrogel. J Mater Sci Mater M 2004;15:865-75
  • Huang X, Lowe TL. Biodegradable thermoresponsive hydrogels for aqueous encapsulation and controlled release of hydrophilic model drugs. Biomacromolecules 2005;6:2131-9
  • Sun LF, Zhuo RX, Liu ZL. Studies on the synthesis and properties of temperature responsive and biodegradable hydrogels. Macromol Biosci 2003;3:725-8
  • Lee SC, Kang SW, Kim C, et al. Synthesis and characterization of amphiphilic poly(2-ethyl-2-oxazoline)/poly(epsilon-caprolactone) alternating multiblock copolymers. Polymer 2000;41:7091-7
  • Zhu W, Wang BB, Zhang Y, et al. Preparation of a thermosensitive and biodegradable microgel via polymerization of macromonomers based on diacrylated Pluronic/oligoester copolymers. Eur Polym J 2005;41:2161-70
  • Zhang Y, Zhu W, Wang BB, et al. Postfabrication encapsulation of model protein drugs in a negatively thermosensitive hydrogel. J Pharm Sci US 2005;94:1676-84
  • Zhang Y, Zhu W, Wang BB, et al. A novel microgel and associated post-fabrication encapsulation technique of proteins. J Control Release 2005;105:260-8
  • Wang B, Zhu W, Zhang Y, et al. Synthesis of a chemically-cross-linked thermo-sensitive hydrogel film and in situ encapsulation of model protein drugs. React Funct Polym 2006;66:509-18
  • Zhang Y, Zhu W, Ding JD. Preparation of thermosensitive microgels via suspension polymerization using different temperature protocols. J Biomed Mater Res A 2005;75A:342-9
  • Loh XJ, Sng KBC, Li J. Synthesis and water-swelling of thermo-responsive poly(ester urethane)s containing poly(epsilon-caprolactone), poly(ethylene glycol) and poly(propylene glycol). Biomaterials 2008;29:3185-94
  • Tachibana Y, Kurisawa M, Uyama H, et al. Thermoresponsive hydrogels based on biodegradable poly(amino acid)s. Chem Lett 2003;32:374-5
  • Tachibana Y, Kurisawa M, Uyama H, et al. Biodegradable thermoresponsive poly(amino acid)s. Chem Commun 2003;3:106-7
  • Shimokuri T, Kaneko T, Serizawa T, et al. Preparation and thermosensitivity of naturally occurring polypeptide poly(gamma-glutamic acid) derivatives modified by propyl groups. Macromol Biosci 2004;4:407-11
  • Ohya Y, Toyohara M, Sasakawa M, et al. Thermosensitive biodegradable polydepsipeptide. Macromol Biosci 2005;5:273-6
  • Ohya Y, Ouchi T. Temperature-responsive and biodegradable polydepsipeptide and process for producing the same. WO2005056637; 2005
  • Soga O, van Nostrum CF, Hennink WE. Poly(N-(2-hydroxypropyl) methacrylamide mono/di lactate): A new class of biodegradable polymers with tuneable thermosensitivity. Biomacromolecules 2004;5:818-21
  • Soga O, van Nostrum CF, Fens M, et al. Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery. J Control Release 2005;103:341-53
  • Hennink WE, Rijcken C, Soga O, et al. Thermosensitive and biodegradable polymeric micelles with transient stability for targeted drug delivery. Eur J Pharm Sci 2008;34:S19
  • Iwasaki Y, Wachiralarpphaithoon C, Akiyoshi K. Novel thermoresponsive polymers having biodegradable phosphoester backbones. Macromolecules 2007;40:8136-8
  • Mitragotri S, Blankschtein D, Langer R. Ultrasound-mediated transdermal protein delivery. Science 1995;269:850-3
  • D'Emanuele A, Kost J, Hill JL, et al. An investigation of the effects of ultrasound on degradable polyanhydride matrices. Macromolecules 1992;25:511-5
  • Supersaxo A, Kou JH, Teitelbaum P, et al. Preformed porous microspheres for controlled and pulsed release of macromolecules. J Control Release 1993;23:157-64
  • Rosengart AJ, Kaminski MD, Chen HT, et al. Magnetizable implants and functionalized magnetic carriers: a novel approach for noninvasive yet targeted drug delivery. J Magn Magn Mater 2005;293:633-8
  • Kaminski MD, Rosengart AJ. Detoxification of blood using injectable magnetic nanospheres: a conceptual technology description. J Magn Magn Mater 2005;293:398-403
  • Lee H, Shao HP, Huang YQ, et al. Synthesis of MRI contrast agent by coating superparamagnetic iron oxide with chitosan. IEEE T Magn 2005;41:4102-4
  • Mornet S, Vasseur S, Grasset F, et al. Magnetic nanoparticle design for medical applications. Prog Solid State Ch 2006;34:237-47
  • Medtronic, Inc. Medical device including magnetic particles. WO2007143285; 2007
  • Gou ML, Qian ZY, Wang H, et al. Preparation and characterization of magnetic poly(epsilon-caprolactone)-poly (ethylene glycol)-poly(epsilon-caprolactone) microspheres. J Mater Sci Mater M 2008;19:1033-41
  • Liu XQ, Kaminski MD, Riffle JS, et al. Preparation and characterization of biodegradable magnetic carriers by single emulsion-solvent evaporation. J Magn Magn Mater 2007;311:84-7
  • Zhou SB, Sun J, Sun L, et al. Preparation and characterization of interferon-loaded magnetic biodegradable microspheres. J Biomed Mater Res B 2008;87B:189-96
  • Zavisova V, Koneracka M, Strbak O, et al. Encapsulation of indomethacin in magnetic biodegradable polymer nanoparticles. J Magn Magn Mater 2007;311:379-82
  • Liu XQ, Kaminski MD, Chen HT, et al. Synthesis and characterization of highly-magnetic biodegradable poly(D,L-lactide-co-glycolide) nanospheres. J Control Release 2007;119:52-8
  • Arias JL, Gallardo V, Ruiz MA, et al. Magnetite/poly(alkylcyanoacrylate) (core/shell) nanoparticles as 5-Fluorouracil delivery systems for active targeting. Eur J Pharm Biopharm 2008;69:54-63
  • Canon KK, Nakahama K. Magnetic particles and process for their production. WO2008029599; 2008
  • Shanghai Normal University. Biodegradable magnetic nanoparticle, preparation method and application thereof. CN1994469; 2007
  • Kaminski MD, Xie YM, Mertz CJ, et al. Encapsulation and release of plasminogen activator from biodegradable magnetic microcarriers. Eur J Pharm Sci 2008;35:96-103
  • Asmatulu R, Zalich MA, Claus RO, et al. Synthesis, characterization and targeting of biodegradable magnetic nanocomposite particles by external magnetic fields. J Magn Magn Mater 2005;292:108-19
  • FERX, Inc.. Magnetic delivery compositions. WO03059325; 2003
  • Yonsei University. Composition comprising magnetic nanoparticle encapsulating magnetic material and drug with biodegradable synthetic polymer. WO2004096190; 2004
  • Molecular Bioquest, Inc. Biodegradable magnetic microclusters and methods for making them. US5382468; 1995
  • Korea Inst Science Technology. Smart magnetic nanosphere preparation and manufacturing method thereof. US2006222594; 2006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.