156
Views
23
CrossRef citations to date
0
Altmetric
Reviews

RNA interference as an anticancer therapy: a patent perspective

Pages 475-491 | Published online: 08 Apr 2009

Bibliography

  • Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998;391:806-11
  • Farazi TA, Juranek SA, Tuschl T. The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members. Development 2008;135:1201-14
  • Matranga C, Zamore PD. Small silencing RNAs. Curr Biol 2007;17:R789-93
  • Hannon GJ, Rivas FV, Murchison EP, Steitz JA. The expanding universe of noncoding RNAs. Cold Spring Harb Symp Quant Biol 2006;71:551-64
  • Landgraf P, Rusu M, Sheridan R, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007;129:1401-14
  • Kim VN, Nam JW. Genomics of microRNA. Trends Genet 2006;22:165-73
  • Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II. Embo J 2004;23:4051-60
  • Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003;425:415-9
  • Denli AM, Tops BB, Plasterk RH, et al. Processing of primary microRNAs by the Microprocessor complex. Nature 2004;432:231-5
  • Landthaler M, Yalcin A, Tuschl T. The human DiGeorge syndrome critical region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol 2004;14:2162-7
  • Lund E, Guttinger S, Calado A, et al. Nuclear export of microRNA precursors. Science 2004;303:95-8
  • Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001;409:363-6
  • Chendrimada TP, Gregory RI, Kumaraswamy E, et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 2005;436:740-4
  • Tang G. siRNA and miRNA: an insight into RISCs. Trends Biochem Sci 2005;30:106-14
  • Sen GL, Blau HM. Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat Cell Biol 2005;7:633-6
  • Doench JG, Sharp PA. Specificity of microRNA target selection in translational repression. Genes Dev 2004;18:504-11
  • Doench JG, Petersen CP, Sharp PA. siRNAs can function as miRNAs. Genes Dev 2003;17:438-42
  • Bagga S, Bracht J, Hunter S, et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 2005;122:553-63
  • Lim LP, Lau NC, Garrett-Engele P, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005;433:769-73
  • Kutter C, Svoboda P. miRNA, siRNA, piRNA: knowns of the unknown. RNA Biol 2008;5:181-8
  • Lewis BP, Shih IH, Jones-Rhoades MW, et al. Prediction of mammalian microRNA targets. Cell 2003;115:787-98
  • Farh KK, Grimson A, Jan C, et al. The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 2005;310:1817-21
  • Dykxhoorn DM, Chowdhury D, Lieberman J. RNA interference and cancer: endogenous pathways and therapeutic approaches. Adv Exp Med Biol 2008;615:299-329
  • He L, Thomson JM, Hemann MT, et al. A microRNA polycistron as a potential human oncogene. Nature 2005;435:828-33
  • Cimmino A, Calin GA, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 2005;102:13944-9
  • Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 2004;101:2999-3004
  • Okamura K, Chung WJ, Lai EC. The long and short of inverted repeat genes in animals: microRNAs, mirtrons and hairpin RNAs. Cell Cycle 2008;7:2840-5
  • Okamura K, Balla S, Martin R, et al. Two distinct mechanisms generate endogenous siRNAs from bidirectional transcription in Drosophila melanogaster. Nat Struct Mol Biol 2008;15:998
  • Okamura K, Chung WJ, Ruby JG, et al. The Drosophila hairpin RNA pathway generates endogenous short interfering RNAs. Nature 2008;453:803-6
  • Golden DE, Gerbasi VR, Sontheimer EJ. An inside job for siRNAs. Mol Cell 2008;31:309-12
  • Okamura K, Lai EC. Endogenous small interfering RNAs in animals. Nat Rev Mol Cell Biol 2008;9:673-8
  • Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 2001;15:188-200
  • Dykxhoorn DM, Novina CD, Sharp PA. Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol 2003;4:457-67
  • Amarzguioui M, Lundberg P, Cantin E, et al. Rational design and in vitro and in vivo delivery of Dicer substrate siRNA. Nat Protoc 2006;1:508-17
  • Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001;411:494-8
  • Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med 2004;10:789-99
  • Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100:57-70
  • Croce CM. Oncogenes and cancer. N Engl J Med 2008;358:502-11
  • Sherr CJ. Principles of tumor suppression. Cell 2004;116:235-46
  • Hubbard SR, Miller WT. Receptor tyrosine kinases: mechanisms of activation and signaling. Curr Opin Cell Biol 2007;19:117-23
  • Robinson DR, Wu YM, Lin SF. The protein tyrosine kinase family of the human genome. Oncogene 2000;19:5548-57
  • Yoon S, Seger R. The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 2006;24:21-44
  • Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature 2001;411:355-65
  • Arteaga CL. Epidermal growth factor receptor dependence in human tumors: more than just expression? Oncologist 2002;7(Suppl 4):31-9
  • O'Shea JJ, Gadina M, Schreiber RD. Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell 2002;109(Suppl):S121-31
  • Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 2007;26:3291-310
  • Yuan TL, Cantley LC. PI3K pathway alterations in cancer: variations on a theme. Oncogene 2008;27:5497-510
  • Steelman LS, Abrams SL, Whelan J, et al. Contributions of the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways to leukemia. Leukemia 2008;22:686-707
  • Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 2005;5:341-54
  • Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene 2007;26:3279-90
  • Malumbres M, Barbacid M. RAS oncogenes: the first 30 years. Nat Rev Cancer 2003;3:459-65
  • Brummelkamp TR, Bernards R, Agami R. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2002;2:243-7
  • Rajagopalan H, Bardelli A, Lengauer C, et al. Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature 2002;418:934
  • Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature 2002;417:949-54
  • McSwiggen J, Beigelman L. RNA interference meditaed inhibition of Myc and Myb gene expression or expression of genes involved in the myc and myb pathways using short interfering nucleic acid (siNA). WO2003US05326; 2003
  • Fujita DJ, Bjorge JD. Methods and reagents for inhibiting cell proliferation US20060453099; 2006
  • Khvorova A, Reynolds A, Leake D, et al. siRNA targeting v-myc myelocytomatosis viral oncogene homolog (MYC). US20070818547 2005
  • Frohling S, Dohner H. Chromosomal abnormalities in cancer. N Engl J Med 2008;359:722-34
  • Nilsson JA, Cleveland JL. Myc pathways provoking cell suicide and cancer. Oncogene 2003;22:9007-21
  • Macauley VM, Sohail M. Molecular targeting of the IGF-1 receptor. US20040996951; 2005
  • Khvorova A, Reynolds A, Leake D, et al. siRNA targeting insulin-like growth factor 1 receptor (IGF-1R). US20070732457; 2007
  • Evers BM, Rychahou P. SiRNA targeting PI3K signal transduction pathway and siRNA-based therapy. US20050085962; 2005
  • Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer 2003;3:401-10
  • Folkman J. Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 2007;6:273-86
  • Quay SC, McSwiggen J, Vaish NK, Ahmadian M. Nucleic Acid compounds for inhibiting VEGF gene expression and uses thereof. US2008003965020080228; 2008
  • Vargeese C, Jadhav V, Morrissey D. RNA interference mediated inhibition of vascular endothelial growth factor and vascular endothelial growth factor receptor gene expression using short interfering nucleic acid (siNA). US2005029939120051209; 2006
  • Kossen K, Jadhav V, Mcswiggen J, et al. RNA interference mediated inhibition of vascular endothelial growth factor receptor gene expression using short interfering nucleic acid (siNA). CA2004253708520040916; 2005
  • Liu Y, Lu PY, Woodle MC, Xie FY. Composition and methods of RNAi therapeutics for treatment of cancer and other neovascularization diseases. US2007082442620070629; 2008
  • Fougerollles AD, Frank-Kamenetsky M, Manoharan M, et al. IRNA agents targeting VEGF. US2006034008020060125; 2006
  • Trask DK, Bock J. Methods of inhibiting VEGF-C. US2006058558720061024; 2007
  • Shen J, Samul R, Silva RL, et al. Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1. Gene Ther 2006;13:225-34
  • Reich SJ, Fosnot J, Kuroki A, et al. Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model. Mol Vis 2003;9:210-6
  • Lu PY, Xie FY, Woodle MC. Modulation of angiogenesis with siRNA inhibitors for novel therapeutics. Trends Mol Med 2005;11:104-13
  • Campochiaro PA. Potential applications for RNAi to probe pathogenesis and develop new treatments for ocular disorders. Gene Ther 2006;13:559-62
  • Gentile A, Trusolino L, Comoglio PM. The Met tyrosine kinase receptor in development and cancer. Cancer Metastasis Rev 2008;27:85-94
  • Shinomiya N, Woude GFV. C-Met Sirna adenovirus vectors inhibit cancer cell growth, invasion and tumorigenicity. US20050599327; 2007
  • Khvorova A, Reynolds A, Leake D, et al. siRNA Targeting proto-oncogene MET. US20070980263; 2008
  • Reich SJ, Tolentino MJ. Compositions and methods for siRNA inhibition of angiopoietin 1and 2 and their receptor Tie2. US20040827759; 2004
  • Thurston G. Role of Angiopoietins and Tie receptor tyrosine kinases in angiogenesis and lymphangiogenesis. Cell Tissue Res 2003;314:61-8
  • Kraus MH, Pierce JH, Fleming TP, et al. Mechanisms by which genes encoding growth factors and growth factor receptors contribute to malignant transformation. Ann NY Acad Sci 1988;551:320-35; discussion 36
  • Khvorova A, Reynolds A, Leake D, et al. siRNA targeting platelet-derived growth factor receptor beta polypeptide (PDGFR). US20070731890; 2008
  • McSwiggen J, Beigelman L, Chowrira BM. RNA interference mediated inhibition of platelet derived growth factor (PDGF) and platelet derived growth factor receptor (PDGFR) gene expression using short interfering nucleic acid (siNA). US20040923270; 2005
  • Wu H, Hait WN, Yang JM. Small interfering RNA-induced suppression of MDR1 (P-glycoprotein) restores sensitivity to multidrug-resistant cancer cells. Cancer Res 2003;63:1515-9
  • Stege A, Priebsch A, Nieth C, Lage H. Stable and complete overcoming of MDR1/P-glycoprotein-mediated multidrug resistance in human gastric carcinoma cells by RNA interference. Cancer Gene Ther 2004;11:699-706
  • Nieth C, Priebsch A, Stege A, Lage H. Modulation of the classical multidrug resistance (MDR) phenotype by RNA interference (RNAi). FEBS Lett 2003;545:144-50
  • Duan Z, Brakora KA, Seiden MV. Inhibition of ABCB1 (MDR1) and ABCB4 (MDR3) expression by small interfering RNA and reversal of paclitaxel resistance in human ovarian cancer cells. Mol Cancer Ther 2004;3:833-8
  • McSwiggen J, Beigelman L, Thompson J. RNA interference mediated inhibition of MDR P-glycoprotein gene expression using short interfering nucleic acid (siNA). US20040918969; 2005
  • Zhang X, Kon T, Wang H, et al. Enhancement of hypoxia-induced tumor cell death in vitro and radiation therapy in vivo by use of small interfering RNA targeted to hypoxia-inducible factor-1alpha. Cancer Res 2004;64:8139-42
  • Akinc A, De Fougerolles A, Vornlocher HP, et al. RNAI modulation of HIF-1 and therapeutic uses thereof. EP20060785707; 2008
  • Usman N, McSwiggen J. RNA interference mediated inhibition of hypoxia inducible factor 1 (HIF1) gene expression using short interfering nucleic acid (siNA). WO2004US27294; 2005
  • Deweese TL, Collins SJ, Nelson WG. Engineered rnai adenovirus silencing expression (erase) of dna repair proteins. US20050534010; 2005
  • Chang IY, Kim MH, Kim HB, et al. Small interfering RNA-induced suppression of ERCC1 enhances sensitivity of human cancer cells to cisplatin. Biochem Biophys Res Commun 2005;327:225-33
  • Chen J, Wall NR, Kocher K, et al. Stable expression of small interfering RNA sensitizes TEL-PDGFbetaR to inhibition with imatinib or rapamycin. J Clin Invest 2004;113:1784-91
  • McSwiggen J, Beigelman L, Chowrira BM. RNA interference mediated inhibition of chromosome translocation gene expression using short interfering nucleic acid (siNA). US20040923522; 2005
  • Oltersdorf T, Elmore SW, Shoemaker AR, et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 2005;435:677-81
  • Khvorova A, Reynolds A, Leake D, et al. Functional and hyperfunctional siRNA directed against Bcl-2. US20070974878; 2008
  • McSwiggen J, Beigelman L. RNA interference mediated inhibition of B-cell CLL/Lymphoma-2 (BCL-2) gene expression using short interfering nucleic acid (siNA). US20040923516; 2005
  • Sonoke S, Ueda T, Fujiwara K, et al. Tumor regression in mice by delivery of Bcl-2 small interfering RNA with pegylated cationic liposomes. Cancer Res 2008;68:8843-51
  • Sun H, Ghosh P, Kim Y. Methods of treating cancer by interfering with IGF-1 receptor signaling. WO2008US03393; 2008
  • McSwiggen J, Beigelman L, Chowrira B. RNA interference mediated inhibition of type 1 insulin-like receptor (IGF-1R) gene expression using short interfering nucleic acid (siNA). WO2003US05044; 2003
  • Aza-Blanc P, Cooper CL, Wagner K, et al. Identification of modulators of TRAIL-induced apoptosis via RNAi-based phenotypic screening. Mol Cell 2003;12:627-37
  • Dykxhoorn DM, Lieberman J. The silent revolution: RNA interference as basic biology, research tool, and therapeutic. Annu Rev Med 2005;56:401-23
  • Brummelkamp TR, Nijman SM, Dirac AM, Bernards R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature 2003;424:797-801
  • Hahn WC, Weinberg RA. Modelling the molecular circuitry of cancer. Nat Rev Cancer 2002;2:331-41
  • Berns K, Hijmans EM, Mullenders J, et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 2004;428:431-7
  • Jadhav V, Carrol JM, Terpstra AJ. RNA interference mediated inhibition of histone deacetylase (HDAC) gene expression using short interfering nucleic acid (siNA). AU20060261653; 2008
  • Vornlocher HP, Tan P, Constein R. RNAi modulation of TGF-beta and therapeutic uses thereof. EP20070753200; 2008
  • Guerciolini R, Robin H, McSwiggen J. RNA interference mediated inhibition of TGF-beta and TGF-beta receptor gene expression using short interfering nucleic acid (siNA). US20050054047; 2005
  • Westbrook TF, Martin ES, Schlabach MR, et al. A genetic screen for candidate tumor suppressors identifies REST. Cell 2005;121:837-48
  • Kolfschoten IG, van Leeuwen B, Berns K, et al. A genetic screen identifies PITX1 as a suppressor of RAS activity and tumorigenicity. Cell 2005;121:849-58
  • Ngo VN, Davis RE, Lamy L, et al. A loss-of-function RNA interference screen for molecular targets in cancer. Nature 2006;441:106-10
  • Silva JM, Marran K, Parker JS, et al. Profiling essential genes in human mammary cells by multiplex RNAi screening. Science 2008;319:617-20
  • Schlabach MR, Luo J, Solimini NL, et al. Cancer proliferation gene discovery through functional genomics. Science 2008;319:620-4
  • Dykxhoorn DM, Palliser D, Lieberman J. The silent treatment: siRNAs as small molecule drugs. Gene Ther 2006;13:541-52
  • Dykxhoorn DM, Lieberman J. Knocking down disease with siRNAs. Cell 2006;126:231-5
  • Bitko V, Musiyenko A, Shulyayeva O, Barik S. Inhibition of respiratory viruses by nasally administered siRNA. Nat Med 2005;11:50-5
  • Palliser D, Chowdhury D, Wang QY, et al. An siRNA-based microbicide protects mice from lethal herpes simplex virus 2 infection. Nature 2006;439:89-94
  • Li BJ, Tang Q, Cheng D, et al. Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque. Nat Med 2005;11:944-51
  • Behlke MA. Progress towards in vivo use of siRNAs. Mol Ther 2006;13:644-70
  • Tousignant JD, Gates AL, Ingram LA, et al. Comprehensive analysis of the acute toxicities induced by systemic administration of cationic lipid:plasmid DNA complexes in mice. Hum Gene Ther 2000;11:2493-513
  • Dass CR. Cytotoxicity issues pertinent to lipoplex-mediated gene therapy in-vivo. J Pharm Pharmacol 2002;54:593-601
  • Chien PY, Wang J, Carbonaro D, et al. Novel cationic cardiolipin analogue-based liposome for efficient DNA and small interfering RNA delivery in vitro and in vivo. Cancer Gene Ther 2005;12:321-8
  • Ahmad I, Zhang ZY, Zhang JA, et al. Lipid compositions and use thereof. CA20052559352; 2005
  • Morrissey DV, Lockridge JA, Shaw L, et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 2005;23:1002-7
  • McSwiggen J, Morrissey D, Guerciolini R, et al. RNA interference mediated inhibition of hepatitis C virus (HCV) gene expression using short interfering nucleic acid (siNA). WO2006US62252; 2007
  • Czech B, Malone CD, Zhou R, et al. An endogenous small interfering RNA pathway in Drosophila. Nature 2008;453:798-802
  • Zimmermann TS, Lee AC, Akinc A, et al. RNAi-mediated gene silencing in non-human primates. Nature 2006;441:111-4
  • Urban-Klein B, Werth S, Abuharbeid S, et al. RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther 2005;12:461-6
  • Leong KW, Mao HQ, Truong-Le VL, et al. DNA-polycation nanospheres as non-viral gene delivery vehicles. J Control Release 1998;53:183-93
  • Gary DJ, Puri N, Won YY. Polymer-based siRNA delivery: perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery. J Control Release 2007;121:64-73
  • Schiffelers RM, Ansari A, Xu J, et al. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res 2004;32:e149
  • Pun SH, Bellocq NC, Liu A, et al. Cyclodextrin-modified polyethylenimine polymers for gene delivery. Bioconjug Chem 2004;15:831-40
  • Pun SH, Tack F, Bellocq NC, et al. Targeted delivery of RNA-cleaving DNA enzyme (DNAzyme) to tumor tissue by transferrin-modified, cyclodextrin-based particles. Cancer Biol Ther 2004;3:641-50
  • Davis ME, Pun SH, Bellocq NC, et al. Self-assembling nucleic acid delivery vehicles via linear, water-soluble, cyclodextrin-containing polymers. Curr Med Chem 2004;11:179-97
  • Borchard G, Junginger HE. Modern drug delivery applications of chitosan. Adv Drug Deliv Rev 2001;52:103
  • Howard KA, Rahbek UL, Liu X, et al. RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol Ther 2006;14:476-84
  • Howard KA, Paludan SR, Behlke MA, et al. Chitosan/siRNA nanoparticle-mediated TNF-alpha knockdown in peritoneal macrophages for anti-inflammatory treatment in a murine arthritis model. Mol Ther 2009;17:162-8
  • Hanai K, Takeshita F, Honma K, et al. Atelocollagen-mediated systemic DDS for nucleic acid medicines. Ann NY Acad Sci 2006;1082:9-17
  • Takeshita F, Minakuchi Y, Nagahara S, et al. Efficient delivery of small interfering RNA to bone-metastatic tumors by using atelocollagen in vivo. Proc Natl Acad Sci USA 2005;102:12177-82
  • Minakuchi Y, Takeshita F, Kosaka N, et al. Atelocollagen-mediated synthetic small interfering RNA delivery for effective gene silencing in vitro and in vivo. Nucleic Acids Res 2004;32:e109
  • Song E, Zhu P, Lee SK, et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 2005;23:709-17
  • Peer D, Zhu P, Carman CV, et al. Selective gene silencing in activated leukocytes by targeting siRNAs to the integrin lymphocyte function-associated antigen-1. Proc Natl Acad Sci USA 2007;104:4095-100
  • Kumar P, Wu H, McBride JL, et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature 2007;448:39-43
  • Kumar P, Ban HS, Kim SS, et al. T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell 2008;134:577-86
  • Lieberman J, Song E. Method of Delivering Rna Interference and Uses Thereof. US20050659386; 2008
  • Peer D, Shimaoka M, Lieberman J. Targeted delivery to leukocytes using protein carriers. WO2007US09975; 2007
  • Peer D, Park EJ, Morishita Y, et al. Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science 2008;319:627-30
  • Thompson J, McSwiggen J, Beigelman L. RNA interference mediated inhibition of cyclin D1 gene expression using short interfering nucleic acid (siNA). WO2003US03662; 2003
  • Shankar P, Lee SK, Swamy M, et al. Targeted delivery of siRNA. WO2008US52054; 2008
  • Soutschek J, Akinc A, Bramlage B, et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 2004;432:173-8
  • Narasimhaswamy M, Shankar P, Kumar P. Method for delivery across the blood brain barrier. WO2007US12152; 2008
  • Lengyel E, Kossiakoff A, Piccirilli J. Receptor-mediated delivery: compositions and methods. WO2008014404; 2008
  • Wright DG, Murphy JR, Zhang Y. Cellular delivery of reagens that inhibit gene expression utilizing the anthrax toxin protective antigen (PA). WO2006091233; 2006
  • McNamara JO 2nd, Andrechek ER, Wang Y, et al. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol 2006;24:1005-15
  • Sullenger BA. Delivery method. WO2007US12927; 2007
  • Kim DH, Rossi JJ. Strategies for silencing human disease using RNA interference. Nat Rev Genet 2007;8:173-84
  • Grimm D, Kay MA. Therapeutic application of RNAi: is mRNA targeting finally ready for prime time? J Clin Invest 2007;117:3633-41
  • Grimm D, Kay MA. RNAi and gene therapy: a mutual attraction. Hematology Am Soc Hematol Educ Prog 2007;2007:473-81
  • Schaffer DV, Koerber JT, Lim KI. Molecular engineering of viral gene delivery vehicles. Annu Rev Biomed Eng 2008;10:169-94
  • Benihoud K, Yeh P, Perricaudet M. Adenovirus vectors for gene delivery. Curr Opin Biotechnol 1999;10:440-7
  • Lee YJ, Imsumran A, Park MY, et al. Adenovirus expressing shRNA to IGF-1R enhances the chemosensitivity of lung cancer cell lines by blocking IGF-1 pathway. Lung Cancer 2007;55:279-86
  • Shinomiya N, Gao CF, Xie Q, et al. RNA interference reveals that ligand-independent met activity is required for tumor cell signaling and survival. Cancer Res 2004;64:7962-70
  • Yoo JY, Kim JH, Kwon YG, et al. VEGF-specific short hairpin RNA-expressing oncolytic adenovirus elicits potent inhibition of angiogenesis and tumor growth. Mol Ther 2007;15:295-302
  • Zheng JN, Pei DS, Sun FH, et al. Inhibition of renal cancer cell growth by oncolytic adenovirus armed short hairpin RNA targeting hTERT gene. Cancer Biol Ther 2009;8
  • Zheng JN, Pei DS, Mao LJ, et al. Inhibition of renal cancer cell growth in vitro and in vivo with oncolytic adenovirus armed short hairpin RNA targeting Ki-67 encoding mRNA. Cancer Gene Ther 2009;16:20-32
  • Daya S, Berns KI. Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev 2008;21:583-93
  • Hildinger M, Auricchio A. Decreasing gene expression in a mammalian subject in vivo via AAV-mediated RNAi expression cassette transfer. US2005019927; 2005:80-7
  • Tomar RS, Matta H, Chaudhary PM. Use of adeno-associated viral vector for delivery of small interfering RNA. Oncogene 2003;22:5712-5
  • Noguchi P. Risks and benefits of gene therapy. N Engl J Med 2003;348:193-4
  • Sumimoto H, Yamagata S, Shimizu A, et al. Gene therapy for human small-cell lung carcinoma by inactivation of Skp-2 with virally mediated RNA interference. Gene Ther 2005;12:95-100
  • Sumimoto H, Hirata K, Yamagata S, et al. Effective inhibition of cell growth and invasion of melanoma by combined suppression of BRAF (V599E) and Skp2 with lentiviral RNAi. Int J Cancer 2006;118:472-6
  • Sumimoto H, Miyagishi M, Miyoshi H, et al. Inhibition of growth and invasive ability of melanoma by inactivation of mutated BRAF with lentivirus-mediated RNA interference. Oncogene 2004;23:6031-9
  • Pichler A, Zelcer N, Prior JL, et al. In vivo RNA interference-mediated ablation of MDR1 P-glycoprotein. Clin Cancer Res 2005;11:4487-94
  • Grimm D, Streetz KL, Jopling CL, et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 2006;441:537-41
  • An DS, Qin FX, Auyeung VC, et al. Optimization and functional effects of stable short hairpin RNA expression in primary human lymphocytes via lentiviral vectors. Mol Ther 2006;14:494-504
  • An DS, Donahue RE, Kamata M, et al. Stable reduction of CCR5 by RNAi through hematopoietic stem cell transplant in non-human primates. Proc Natl Acad Sci USA 2007;104:13110-5
  • Giering JC, Grimm D, Storm TA, Kay MA. Expression of shRNA from a tissue-specific pol II promoter is an effective and safe RNAi therapeutic. Mol Ther 2008;16:1630-6
  • Dickins R, Hannon GJ, Lowe SW. Methods for producing miRNAs. EP1896587; 2008
  • Dykxhoorn DM, Schlehuber LD, London IM, Lieberman J. Determinants of specific RNA interference-mediated silencing of human beta-globin alleles differing by a single nucleotide polymorphism. Proc Natl Acad Sci USA 2006;103:5953-8
  • Jackson AL, Bartz SR, Schelter J, et al. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 2003;21:635-7
  • Lin X, Ruan X, Anderson MG, et al. siRNA-mediated off-target gene silencing triggered by a 7 nt complementation. Nucleic Acids Res 2005;33:4527-35
  • Anderson EM, Birmingham A, Baskerville S, et al. Experimental validation of the importance of seed complement frequency to siRNA specificity. RNA 2008;14:853-61
  • Jackson AL, Burchard J, Schelter J, et al. Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA 2006;12:1179-87
  • Sioud M. RNA interference and innate immunity. Adv Drug Deliv Rev 2007;59:153-63
  • Heil F, Hemmi H, Hochrein H, et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 2004;303:1526-9
  • Judge AD, Sood V, Shaw JR, et al. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 2005;23:457-62
  • Sioud M. Single-stranded small interfering RNA are more immunostimulatory than their double-stranded counterparts: a central role for 2'-hydroxyl uridines in immune responses. Eur J Immunol 2006;36:1222-30
  • Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol 2004;4:499-511
  • Sioud M. Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization. J Mol Biol 2005;348:1079-90
  • Robbins M, Judge A, Ambegia E, et al. Misinterpreting the therapeutic effects of siRNA caused by immune stimulation. Hum Gene Ther 2008
  • Akinc A, Zumbuehl A, Goldberg M, et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol 2008;26:561-9
  • Manoharan M, Rajeev KG, Akinc A, et al. Lipid containing formulations. WO2007US80331; 2008
  • Hacein-Bey-Abina S, Von Kalle C, Schmidt M, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003;302:415-9
  • Hacein-Bey-Abina S, von Kalle C, Schmidt M, et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 2003;348:255-6
  • Kleinman ME, Yamada K, Takeda A, et al. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 2008;452:591-7
  • Schmidt C. Negotiating the RNAi patent thicket. Nat Biotechnol 2007;25:273-5
  • Haussecker D. The business of RNAi therapeutics. Hum Gene Ther 2008;19:451-62

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.