35
Views
0
CrossRef citations to date
0
Altmetric
Review

Antiobesity therapeutics targeting energy expenditure

&
Pages 1831-1844 | Published online: 25 Feb 2005

Bibliography

  • FLEGAL KM, CARROLL MD, OGDEN CL, JOHNSON CL: Prevalence and trends in obesity among US adults, 1999-2000. JA/VIA (2002) 288(14):1723–1727.
  • YANOVSKI SZ, YANOVSKI JA: Obesity. N. Engl.' Med. (2002) 346:591–602.
  • WIELAND HA, HAMILTON BS: Weighing the options in the pharmacotherapy of obesity. hat. j Clin. Phann. Therapeut. (2001) 39:406–414.
  • CALLE EE, THUN MJ, PETRELLI JM, RODRIGUEZ C, HEAT CW: Body-mass index and mortality in a prospective cohort of US adults. N Engl. I Med. (1999) 341:1097–1105.
  • WOLF AM, COLDITZ GA: Current estimates of the economic cost of obesity in the United States. Obesity Res. (1998) 6:97–106.
  • STOCK MJ: Sibutramine: a review of the pharmacology of a novel anti-obesity agent. Int. J. Obesity(1997) 21:S25–29.
  • BALLINGER A, PEIKIN SR: Orlistat: its current status as an anti-obesity drug. Eut: Phannacol (2002) 440:109–117.
  • KALRA SP, DUBE MG, PUS, XU B, HORVATH TL, KALRA PS: Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocrine Rev (1999) 20:68–100.
  • CHIESI M, HUPPERTZ C, HOFBAUER KG: Pharmacotherapy of obesity: targets and perspectives. Trends Phannacologic. Sci. (2001) 22:247–254.
  • CLAPHAM JC, ARCH JRS, TADAYYON M: Anti-obesity drugs: a critical review of current therapies and future opportunities. Pharmacol. Therapeut. (2001) 89:81–121.
  • ZHANG Y, PROENCA R, MAFFEI M, BARONE M, LEOPOLD L, FRIEDMAN JM: Positional cloning of the mouse obese gene and is human homologue. Nature (1994) 374:425–432.
  • PELLEYMOUNTER MA, CULLEN MJ, BAKER MB et al: Effects of the obese gene product on body weight regulation in ob/ob mice. Science (1995) 269:540–543.
  • HALAAS JL, GAJIWALA KS, MAFFEI M et al: Weight-reducing effects of the plasma protein encoded by the obese gene. Science (1995) 269:543–546.
  • CAMPFIELD LA, SMITH FJ, GUISEZ Y, DEVOS R, BURN P: Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. (1995) Science 269:546–549.
  • LEVIN N, NELSON C, GURNEY A, VANDLEN R, DE SAUVAGE F: Decreased food intake does not completely account for adiposity reduction after ob protein infusion. Proc. Nati Acad. Sci. (1996) 93:1726–1730.
  • HWA JJ, FAWZI AB, GRAZIANO MP et al.: Leptin increases energy expenditure and selectivity promotes fat metabolism in ob/ob mice. Ain. Physiol (1997) 272:R1204–R1209.
  • HEYMSFIELD SB, GREENBERG AS, FUJIOKA K et al: Recombinant leptin for weight loss in obese and lean adults. JAMA (1999) 282:1568–1575.
  • MAFFEI M, HALAAS J, RAVUSSIN E et al: Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nature Med (1995) 1:1155–1161.
  • ARCH JRS, AINSWORTH AT, CAWTHORNE MA et al.: Atypical 13-adrenoreceptor on brown adipocytes as target for anti-obesity drugs. Nature (1984) 309:163–165.
  • DE SOUZA CJ, BURKEY BF: 133-adrenoceptor agonists as anti-diabetic and anti-obesity drugs in humans. Curt: Pharna. Des. (2001) 7:1433–1449.
  • ENERBACK S, JACOBSSON A, SIMPSON EM et al.: Mice lacking mitochondrial uncoupling protein are cold sensitive but not obese. Nature (1997) 387:90–94.
  • LARSEN TM, TOUBRO S, VAN BAAK MA et al.: Effect of a 28-d treatment with L-796568, a novel 133-adrenergic receptor agonist, on energy expenditure and body composition in obese men. Am.j Clin. Nutr. (2002) 76:780–788.
  • HARPER JA, DICKINSON K, BRAND MD: Mitochondrial uncoupling as a target for drug development for the treatment of obesity. Obesio Rev. (2001) 2:255–265.
  • BOSS O, HAGEN T, LOWELL BB: Uncoupling Proteins 2 and 3: potential regulators of mitochondrial energy metabolism. Diabetes (2000) 19:143–156.
  • STUART JA, CADENAS S, JEKABSONS MB, ROUSSEL D, BRAND MD: Mitochondrial proton leak and the uncoupling protein 1 homologues. Biochina. Biophys. Acta. (2001) 1504:144–158.
  • BOSS O, SAMEC S, PAOLONI-GIACOBINO A et al.: Uncoupling protein- 3: a new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett. (1997) 408:39–42.
  • VIDAL-PUIG A, SOLANES G, GRUJIC D, FLIER JS, LOWELL BB: UCP3: an uncoupling protein homologue expressed preferentially and abundantly in skeletal muscle and brown adipose tissue. Biochem. Biophys. Res. Comm. (1997) 235:79–82.
  • HINZ W, FALLER B, GRUNINGER S, GAZZOTTI P, CHIESI M: Recombinant human uncoupling protein-3 increases thermogenesis in yeast cells. FEBS Lett. (1999) 448:57–61.
  • HAGEN T, ZHANG C-Y, SLIEKER LJ, CHUNG WK, LEIBEL RL, LOWELL BB: Assessment of uncoupling activity of the human uncoupling protein 3 short form and three mutants of the uncoupling protein gene using a yeast heterologous expression system. FEBS Lett. (1999) 454:201–206.
  • CLAPHAM JC, ARCH JRS, CHAPMAN H et al: Mice overexpressing human uncoupling protein-3 in skeletal muscle are hyperphagic and lean. Nature (2000) 406:415–418.
  • SCHRAUWEN P, XIA J, BOGARDUS C, PRATLEY RE, RAVUSSIN E: Skeletal muscle uncoupling protein 3 expression is a determinant of energy expenditure in Pima Indians. Diabetes (1999) 48:146–149.
  • ARGYROPOULOS G, BROWN AM, WILLI SM et al.: Effects of mutations in the human uncoupling protein 3 gene on the respiratory quotient and fat oxidation in severe obesity and type 2 diabetes. j Clin. Invest. (1998) 102:1345–1351.
  • GONG D-W, MONEMDJOU S, GAVRILOVA O et al.: Lack of obesity and normal response to fasting and thyroid hormone in mice lacking uncoupling protein-3. J. Biol. Chem. (2000) 275:16251–16257.
  • VIDAL-PUIG A, ZHANG C-Y, GRUJIC D et al.: Energy metabolism in uncoupling protein-3 gene knockout mice. Biol. Chem. (2000) 275:16258–16266.
  • SAMEC S, SEYDOUX J, DULLOO AG: Role of UCP homologues in skeletal muscles and brown adipose tissue: mediators of thermogenesis or regulators of lipids as fuel substrate? FASEB J. (1998) 12:715–724.
  • GARCIA-MARTINEZ C, SIBILLE B, SOLANES G et al.: Overexpression of UCP3 in cultured human muscle lowers mitochondrial membrane potential, raises ATP/ADP ratio, and favors fatty acid vs. glucose oxidation. FASEB J. (2001) 15:2033–2035.
  • ABU-ELHEIGA L, MATZUK MM, ABO-HASHEMA KAH, WAKIL SJ: Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science (2001) 291:2613–2616.
  • PARMEE ER, OK HO, CANDELORE MR et al.: Discovery of L-755,507: a subnanomolar human P3 adrenergic receptor agonist. Bioorg. Med. Chem. Lett. (1998) 8:1107–1112.
  • NAYLOR EM, COLANDREA VJ, CANDELORE MR et al.: 3-Pyridylethanolamines: potent and selective human 133 adrenergic receptor agonists. Bioorg. Med. Chem. Lett. (1998) 8:3087–3092.
  • FISHER MH, AMEND AM, BACH TJ et al: A selective human P3 adrenergic receptor agonist increases metabolic rate in rhesus monkeys. Clin. Invest. (1998) 101:2387–2393.
  • IWASAWA Y, KIYOMOTO A: Studies on tetrahydroisoquinolines (THI). Bronchodilator activity and structure-activity relationship. Jpn I Pharmacol (1967) 17:143–152.
  • KIYOMOTO A, SATO M, NAGAO T, NAKAJIMA H: Studies on tetrahydroisoquinolines (THI) (VII): Effect of trimetoquinol on the cardiovascular system Eur. Pharmacol (1969) 5:303–312.
  • PARMEE ER, BROCKUNIER LL, HE J et al.: Tetrahydroisoquinoline derivatives containing a benzenesulfonamide moiety as potent selective human 133 adrenergic receptor agonists. Biorg. Med. Chem. Lett. (2000) 10:2283–2286.
  • FENG DD, BIFTU T, CANDELORE MR et al.: Discovery of an orally bioavailable alkyl oxadiazole 133 adrenergic receptor agonist. Bioorg. Med. Chem. Lett. (2000) 10:1427–1429.
  • BIFTU T, FENG DD, LIANG G-B et al: Synthesis and SAR of benzyl and phenoxymethylene oxadiazole benzenesulfonamides as selective 133 adrenergic receptor agonist antiobesity agents. Bioorg. Med. Chem. Lett. (2000) 10:1431–1434.
  • MATHVINK RJ, TOLMAN JS, CHITTY D et al.: Discovery of a potent orally bioavailable 133 adrenergic receptor agonist, (h)-N-(44(2-hydroxy 2 (3 pyridinyl)ethyl)amino)phenyl) 4 (4 (4 (trifluoromethyl)phenyl)thiazol-2-yl)benzenesufonamide. J. Med. Chem. (2000) 43:3832–3836.
  • •Describes the inhibitory activity and pharmokinetic profile of compound 6, which has been selected for Phase I clinical studies.
  • TANG W, STEARNS RA, MILLER RR et al: Metabolism of a thiazole benzenesulfonamide derivative, a potent and selective agonist of the human 133 adrenergic receptor, in rats: identification of a novel isethionic acid conjugate. Drug Metal,. Disposition (2002) 30:778–787.
  • STEARNS RA, MILLER RR,TANG W et al.: The pharmacokinetics of a thiazole benzenesulfonamidel33adrenergic receptor agonists and its analogs in rats, dogs, monkeys: improving oral bioavailability. Drug Metal,. Disposition (2002) 30:771–777.
  • HU B, MALAMAS M, ELLINGBOE J et al.: New oxadiazolidinedione derivatives are potent and selective humanI33agonists. (2001) Bioorg. Med. Chem. Lett. 11: 981–984.
  • KENNEDY BP, RAMACHANDRAN C: Protein tyrosine phosphatase-1B in diabetes. Biochemical. Pharmacol (2000) 60:877–883.
  • GOLDSTEIN BJ: Protein-tyrosine phosphatases: emerging targets for therapeutic intervention in type 2 diabetes and related states of insulin resistance. Clin. Endocrinol Metab. (2002) 87:2474–2480.
  • UKKOLA O, SANTANIEMI M: Protein tyrosine phosphatase 1B: a new target for the treatment of obesity and associated co-morbidities. (2002) J. Internal Med. 251: 467–475.
  • ELCHEBLY M, PAYETTE P, MICHALISZYN E et al.: Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science (1999) 283:1544–1548.
  • KLAMAN LD, BOSS O, PERONI OD et al.: Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Ma Cell. Biol. (2000) 20:5479–5489.
  • CHENG A, UETANI N, SIMONCIC PD et al: Attenuation of leptin action and regulation of obesity by protein tyrosine phosphatase 1B. Dev. (2002) 2:497–503.
  • ••Together with reference 56, these dataimplicate PTB-1B inhibitors as a cause of leptin resistance, through dephosphorylation of Jak2.
  • ZABOLOTNY JM, BENCE-HANULEC KK, STRICKER-KRONGRAD A et al.: PTP regulates leptin signal transduction in viva Dev. (2002) 2:489–495.
  • JOHNSON TO, ERMOLIEFF J, JIROUSEK MR: Protein tyrosine phosphatase 1B inhibitors for diabetes. Nature Rev Drug Discoveiy(2002) 1:696–709.
  • ••An excellent review on PTB-1B inbibitors.
  • ANDEREN HS, IVERSEN LF, JEPPESEN CB et al.: 2-Oxalylamino)-benzoic acid is a general, competitive inhibitor of protein-tyrosine phosphatases. Biol. Chem. (2000) 275:7101–7108.
  • IVERSEN LF, ANDERSEN HS, BRANNER S et aL: Structure-based design of a low molecular weight, nonphosphorus, nonpeptide, and highly selective inhibitor of protein-tyrosine phosphatase 1B. Biol. Chem. (2000) 275:10300–10307.
  • •Describes the selectivity strategy for PTB-1B, by targeting Asp48 via a salt-bridging interaction with a basic nitrogen atom in the inhibitor.
  • BURKE TR, YE B, YAN X et al.: Small molecule interactions with protein-tyrosine phosphatase PTP 1B and their use in inhibitor design. Biochemistry (1996) 35:15989–15996.
  • •This X-ray study reveals binding interactions between a flourine atom in the inhibitor and a diflourophosphonomethyl functionality.
  • ASANTE-APPIAH E, BALL K, BATEMAN K et al.: The YRD motif is a major determinant of substrate and inhibitor specificity in T-cell protein-tyrosine phosphatase. j. Biol. Chem. (2001) 276:26036–26043.
  • •Using T cell protein-tyrosine phosphatase as a model phosphatase, this paper describes a selectivity approach for PTB-1B inhibition by targeting the conserved YRD motif.
  • ASANTE-APPIAH E, PATEL S, DUFRESNE C et al.: The structure of PTB-1B in complex with a peptide inhibitor reveals an alternate binding mode for bisphosphonates. Biochemistry (2002) 41:9043–9051.
  • •This X-ray crystallagraphic study provides insights into the active site interactions of biphosphonate inhibitors of PTB-1B.
  • DI MARZO V, FONTANA A, CADAS H et at Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature (1994) 372:686–691.
  • MARTIN BR, MECHOULAM R, RZADAN RK: Discovery and characterization of endogenous cannabinoids. Life Sci (1999) 65:573–595.
  • DI MARZO V, MELCK D, BISOGNA T, DE PETROCELLIS L: Endocannabinoids: endogenous cannabinoid receptor ligands with neuromodulatory action. TINS(1998) 21:521–528.
  • WILLIAMS CM, KIRKHAM TC: Anandamide induces overeating: mediation by central cannabinoid (CB1) receptors. Psychopharmacology (199g) 143:315–317.
  • ARNONE M, MARUANI J, CHAPERON F et al.: Selective inhibition of sucrose and ethanol intake by SR 141716, an antagonist of central cannabinoid (CB1) receptors. Psychopharmacology (1997) 132:104–106.
  • SIMIAND J, KEANE M, KEANE PE, SOUBRIE P: SR 141716, a CB1 cannabinoid receptor antagonist, selectively reduces sweet food intake in marmoset. Behavioural PharmacoL (1998) 9:179–181.
  • GUZMAN M, SANCHEZ C: Effects of cannabinoids on energy metabolism. Life Sci. (1999) 65:657–664.
  • ZIMMER A, ZIMMER AM, HOHMANN AG, HERKENHAM M, BONNER TI: Increased mortality, hypoactivity, and hypoalgesia in cannabinoid CB1 receptor knockout mice. Proc. NatL Acad. ScL (1999) 96:5780–5785.
  • DI MARZO V, GOPARAJU SK, WAG L et al.: Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature (2001) 410:822–825.
  • LANNI A, MORENO M, LOMBARDI A, DE LANGE P, GOGLIA F: Control of energy metabolism by iodothyronines. ./. Endocrinol Invest. (2001) 24:897–913.
  • RIBEIRO MO, CARCALHO SD, SCHULTZ JJ et at Thyroid hormone-symapthetic interaction and adaptive thermogenesis are thyroid hormone receptor isoform-specific.j Clin. Invest. (2001) 108:97–105.
  • DE LANGE P, LANNI A, BENEDUCE L, et al.: Uncoupling protein-3 is a molecular determinant for the regulation of resting metabolic rate by thyroid hormone. Endocrinology (2001) 142:3414–3420.
  • SHORT KR, NYGREN J, BARAZZONI R, LEVINE J, NAIR KS: T3 increases mitochondrial ATP production in oxidative muscle despite increased expression of UCP2 and -3. Am. Physiol (2001) 280:E761–E769.
  • LBON V, DUFOUR S, PETERSEN KF et al.: Effect of triiodothyronine on mitchondrial energy coupling in human skeletal muscle.' Clin. Invest. (2001) 108:733–737.
  • TAYLOR AH, STEPHAN ZF STEELE RE, et al. Beneficial effects of a novel thyromimetic on lipoprotein metabolism. Pharm. (1997) 52:542–547
  • BING C, KING, P, PICKAVANCE L et al:The effects of moxonidine on feeding and body weight in obese Zucker rats: role of hypothalamic neurons. Brit. .1. Pharm. (1999) 127:35–42.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.