63
Views
8
CrossRef citations to date
0
Altmetric
Review

Therapeutical application of voltage-gated calcium channel modulators

Pages 243-287 | Published online: 25 Feb 2005

Bibliography

  • RINGERS: Concerning the influence exerted by each of the constituents of the blood on the contraction of the ventricle. Physic] (1882) 3:380–393.
  • HEILBRUNN LV, WIERCINSKI FJ: The action of various cations on muscle protoplasm. J. Cellular Comp. Physic]. (1947) 29:15–32.
  • BERRIDGE MJ, LIPP P, BOOTMAN MD: The versatility and universality of calcium signalling. Nat. Rev Mol. Cell Biol. (2000) ):11–21. most recent and comprehensive review.
  • BRINI M, CARAFOLI E: Calcium signalling: a historical account, recent developments and future perspectives. Cell Md. Life Sci. (2000) 57(3):354–370.
  • ••The most recent and comprehensivereview.
  • STRIESSNIG J: Pharmacology, Structureand Function of Cardiac L-Type Ca2+-Channels. Cell Physic]. Biochem. (1999) 9:242–269.
  • CATTERALL WA: Structure and regulation of voltage-gated Ca2+ channels. Ann. Rev Cell Dev. Biol. (2000) 16:521–555.
  • HOFMANN E LACINOVA L, KLUGBAUER N: Voltage-dependent calcium channels: From Structure to function. Rev Physic]. Biochem. Pharmacol. (1999) 139:33–87.
  • HOFMANN E KLUGBAUER N: Structure of the voltage-dependent L-type calcium channel. In: Pharmacology of Ionic Channel Function: Activators and Inhibitors. Endo, Y Kurachi, M Mishina, Springer Verlag (Eds) (2000):87–117.
  • LACINOVA L, HOFMANN F: Voltage-Dependent Calcium Channels. In: Heart Physiology and Pathophysiology. Fourth Edition, Academic Press, (2000:247–257.
  • ERTEL EA, CAMPBELL KE HARPOLD MM et al.: Nomenclature of voltage-gated calcium channels [letter]. Neuron (2000) 25(3):533–535.
  • NOWYCKY MC, FOX AE TSIEN RW: Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature (1985) 316:440–446.
  • BOURINET E, SOONG TW, SUTTON K et al.: Splicing of alp subunit gene generates phenotypic variants of P- and Q-type calcium channels. Nat. Neurosci. (1999) 2:407–415.
  • BEAM K: Calcium channel splicing: mind your Ps and Qs. Nat. Neurosci. (1999) 2(5):393–394.
  • HILLYARD DR, MONJE VD, MINTZ IM et al.: A new conus peptide ligand for mammalian presynaptic Ca2+ channels. Neuron (1992) 9:69–77.
  • ZHANG JF, RANDALL AD, ELLINOR PT etal.: Distinctive pharmacology and kinetics of cloned neuronal Ca2+ channels and their possible counterparts in mammalian CNS neurons. (1993) 32:1075–1088.
  • TOTTENE A, MORETTI A, D: Functional diversity of P-type and R-type calcium channels in rat cerebellar neurons. j Neurosci. (1996) 16:6353–6363.
  • ALBILLOS A, NEHER E, MOSER T: R-Type Ca2+ Channels Are Coupled to the Rapid Component of Secretion in Mouse Adrenal Slice Chromaffin Cells. j Neurosci (2000) 20: 8323–8330.
  • WU L-G, BORST JGG, SAKMANN B: R-type Ca2+ currents evoke transmitter release at a rat central synapse. Proc. Natl. Acad. Li. USA (1998) 95:4720–4725.
  • VAJNA R, KLOCKNER U, PEREVERZEV A et al.: Functional coupling between R-type' Ca2+ channels and insulin secretion in the insulinoma cell line INS-1. Eur. j Biochem. (2001) 268:1066–1075.
  • NEWCOMB R, SZOKE B, PALMA A, WANG G: Selective peptide antagonist of the class E calcium channel from the venom of the tarantula Hysterocrates gigas. Biochemistry (1998) 37(44):15353–15362.
  • NEWCOMB R, CHEN X, DEAN R etal.:SNX-482: A Novel Class E Calcium Channel Antagonist from Tarantula Venom. CNS Drug Rev (2000) 6(2):153–173.
  • LACINOVA L, KLUGBAUER N, HOFMANN F.: Low voltage activated calcium channels: from genes tofunction. Contents of General Physic]. Biophys. (2000) 19(2):121–136.
  • LACINOVA L, KLUGBAUER N, HOFMANN F: Regulation of the calcium channel alpha(1G) subunit by divalent cations and organic blockers. Neuropharmarology (2000) 39(7):1254–1266.
  • GURNETT CH, CAMPBELL K: Transmembrane Auxiliary Subunits of Voltage-dependent Ion Channels. j Biol. Chem. (1996) 271(45):27975–27978.
  • MEIR A, DOLPHIN AC: Known calcium channel alphal subunits can form low threshold small conductance channels with similarities to native T-type channels. Neuron (1998) 20(2):341–351.
  • HESS P, LANSMAN JB, TSIEN RW: Calcium channel selectivity for divalent and monovalent cations: voltage and concentration dependence of single channel current in ventricular heart cells. j Gen. Physic]. (1986) 88:293–319.
  • TSIEN RW, HESS P, MCCLESKEY EW, RL: Calcium channels: mechanisms of selectivity, permeation and block. Ann. Rev Biophys. Chem. (1987) 16:265–290.
  • MCCLESKEY EW, ALMERS W: The Ca channel in skeletal muscle is a large pore. Proc. Nati Acad. Sci. USA (1985) 82:7149–7153.
  • ARMSTRONG CM, NEYTON J: Ion permeation through calcium channels: a one site model. Ann. NY Acad. Sci. (1991) 635:18–25.
  • NOWYCKY MC, FOX AE TSIEN RW: Long-opening mode of gating of neuronal calcium channels and its promotion by the dihydropyridine calcium agonist Bay K 8644. Proc. Natl. Acad. Sci. USA 82:7149–7153.
  • CORRY B, ALLEN TW, KUYUCAK S, CHUNG SH: Mechanisms of Permeation and Selectivity in Calcium Channels. Biophys. (2001) 80(1):195–214.
  • KUO CC, HESS P: Ion permeation through the L-type Ca2+ channel in rat phaeochromocytoma cells: two sets of ion binding sites in the pore. I Physic]. (1993) 466:629–655.
  • ALMERS W, MCCLESKEY EW, PALADE PT: A non-selective cation conductance in frog muscle membrane blocked by micromolar external calcium ions. I Physic]. (1984) 353:565–583.
  • FONTERIZ RI, GARCIA-SANCHO J, GANDIA L etal.: Permeation and inactivation by calcium and manganese of bovine adrenal chromaffln cell calcium channels. Am. j Physic]. (1992) 263(4):C818–824.
  • YANG J, ELLINOR PT, SATHER WA, ZHANG, JF, TSIEN RW: Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels. Nature (1993) 366(6451):158–161.
  • KERCHNER GA, CANZONIERO LM, YU SP, LING C, CHOI DW: Zn2+ current is mediated by voltage-gated Ca2+ channels and enhanced by extracellular acidity in mouse cortical neurones. j Physic]. (2000) 528 (1) :39–52.
  • VEGA MT, VILLALOBOS C, GARRIDO B et al.: Permeation by zinc of bovine chromaffin cell calcium channels: relevance to secretion. Pllugers Archiv. Eur. J Physic]. (1994) 429(2):231–239.
  • SHIBUYA I, DOUGLAS WW: Indicationsfrom Mn-quenching of Fura-2 fluorescence in melanotrophs that dopamine and close Ca channels that are spontaneously open but not those opened high0; and that Cd preferentiallyblocks the latter. Cell Calcium (1993) 14(1):33–44.
  • TOMSIG JL, SUSZKIW JB: Permeation of Pb2+ through calcium channels: fura-2 measurements of voltage- and dihydropyridine-sensitive Pb2+ entry in isolated bovine chromaffin cells. Biochim. Biophys. Acta (1991) 1069(2):197–200.
  • SOONG TW, STEA A, HODSON CD, DUBEL SJ: Structure and functional expression of a member of the low voltage-activated calcium channel family. Science (1993) 260(5111):1133–1136.
  • LACINOVA L, KLUGBAUER N, HOFMANN F: Low voltage activated calcium channels: from genes to function. General Physiol. Biophys. (2000) 19(2):121–136.
  • MLINAR B, ENYEART JJ: Block of current through T-type calcium channels by trivalent metal cations and nickel in neural rat and human cells. I Physiol. (1993) 469:639–652.
  • WINEGAR, BD. KELLY R, LANSMAN JB: Block of current through single calcium channels by Fe, Co, and Ni. j Gen. Physiol. (1991) 97:351–367.
  • WINEGAR BD, LANSMAN JB: Voltage-dependent block by zinc of single dihydropyridine-sensitive calcium channels in mouse C2 myotubes. j Physiol. (1990) 425:563–578.
  • WEINSBERG 1 BICKMEYER U, WIEGAND H: Effects of inorganic mercury Hg2+ on calcium channel currents and catecholamine release from bovine chromaffin cells. Arch. Toxicol. (1995) 69(3):191–196.
  • SUN LR, SUSZKIW JB: Extracellular inhibition and intracellular enhancement of Ca2+ currents by Pb2+ in bovine adrenal chromaffin cells. 1. Neurophysiol. (1995) 74(2):574–581.
  • ZIMMERMAN AN, HOLSMANN WC: Paradoxical influence of calcium ions on the permeability of the cell membranes of the isolated rat heart. Nature (1966) 211(49):646–647.
  • GANOTE CE, NAYLERWG: Contracture and the calcium paradox. j Mal. Cell Cardiol. (1985) 17(8):733–745.
  • DALY MJ, ELZ JS, NAYLER WG: Contracture and the calcium paradox in the rat heart. Circ. Res. (1987) 61(4):560–569.
  • GRIN WALD PM, NAYLER WG: Calcium entry in the calcium paradox. 1. Ma Cell. Cardiol. (1981) 13(10):867–880.
  • TUNSTALL J, BUSSELEN P, RODRIGO GC, CHAPMAN RA: Pathways for the movements of ions during calcium-free perfusion and the induction of the 'calcium paradox'. J. MoL Cell Cardiol. (1986) 18(3):241–254.
  • SCHNEIDER MF, CHANDLER WK: Voltage dependent charge movement of skeletal muscle: a possible step in excitation-contraction coupling. Nature (1973) 242:244–246.
  • GARCIA J, NAKAI J, IMOTO K, BEAM KG: Role of S4 segments and the leucine heptad motif in the activation of an L-type calcium channel. Biophys. 1 (1997) 72(6):2515–2523.
  • ZHANG JF, ELLINOR PT, ALDRICH RW, TSIEN RW: Molecular determinants of voltage-dependent inactivation in calcium channels. Nature (1994) 372:97–100.
  • HERING S, BERJUKOW S, SOKOLOV, MARKSTEINER R: Molecular determinants of inactivation in voltage-gated Ca2+ channels. I Physiol. (2000) 528(2):237–249.
  • LEE KS, MARBAN E, TSIEN RW: Inactivation of calcium channels in mammalian heart cells: joint dependence on membrane potential and intracellular calcium. I Physiol. (1985) 364:395–411.
  • NEELY A, OLCESE R, WEI X, L, STEFANI E: Calcium-dependent inactivation of a cloned cardiac calcium channel alphal subunit (al C) expressed in Xenopus oo-cytes. Biophys. I (1994) 65:1895–1903.
  • SOLDATOV NM: Genomic structure of L-type Ca2+ channel. Genomics (1994) 22:77–87.
  • ZOHLKE RD, REUTER H: Ca2±-sensitive of L-type Ca2+ channels depends on multiple cytoplasmic amino acid sequences of the aic subunit. Proc. Natl. Acad. Li. USA (1998) 95:3287–3294.
  • PETERSON BZ, DEMARIA CD, ADELMAN J, YUE DT: Calmodulin is the Ca2+ sensor for Ca2±-dependent inactivation of L-type calcium channels. Neuron (1999) 22:549–558.
  • QIN N, OLCESE R, BRANSBY M, LIN, BIRNBAUMER L: Ca2+ induced of the cardiac Ca2+ channel depends on calmodulin. Proc. Nati Acad.. USA (1999) 96:2435–2438.
  • GURNEY AM, CHARNET P, PYE JM, NARGEOT J: Augmentation of cardiac calcium current by flash photolysis of intracellular cage- Ca2±molecules. Nature (1989) 341:65–68.
  • MCCARRON JG, MCGEOWN JG, REARDON S, IKEBE M etal.: Calcium-dependent enhancement of calcium current in smooth muscle by calmodulin-dependent protein kinase II. Nature (1992) 357:74–77.
  • ANDERSON ME, BRAUN AP SCHULMAN H, PREMACK BA: Multifunctional Ca2+/calmodulin-dependent protein kinase mediates Ca2+ induced enhancement of the L-type Ca2+ current in rabbit ventricular myocytes. Circ. Res. (1994) 75:854–861.
  • YUAN W, BERS DM: Ca-dependent facilitation of cardiac Ca current is due to Ca-calmodulin-dependent protein kinase. Am. 1. Physiol. (1994) 267:H982–H93.
  • XIAO R-P, CHENG H, LEDERER WJ, SUZUKI T, LAKATTA EG: Dual regulation of Ca2±/calmodulin-dependent kinase II activity by membrane voltage and by calcium influx. Proc. Nati Acad. Sci. USA (1994) 91:9659–9663.
  • GAO T, CHIEN AJ, HOSEY MM: Complexes of the al C and 13 sub-units generate the necessary signal for membrane targeting of class C L-type calcium channels. J. Biol. Chem. (1999) 274:2137–2144.
  • BRICE N L, BERROW NS, CAMPBELL et al.: Importance of the different 13 subunits in the membrane expression of the a 1A and a 2 calcium channel subunits: studies using a depolarisation-sensitive a 1A antibody. Eur. j Neurosci. (1997) 9:749–759.
  • MITTERDORFER J, SINNEGGER MJ, GRABNER M, STRIESSNIG J, GLOSSMANN H: Coordination of Ca2+ by the pore region glutamates is essential for high-affinity dihydropyridine binding to the cardiac Ca2+ channel al subunit. Biochemistry (1995) 34:9350–9355.
  • SINGER D, BIEL M, LOTAN I et aL: The roles of the subunits in the function of the calcium channel. Science (1991) 253:1553–1557.
  • CHIEN AJ, CARR KM, SHIROKOV RE, RIOS E, HOSEY MM: Identification of palmitoylation sites within the L-type calcium channel Ina subunit and effects on channel function. 1. Biol. Chem. (1996) 271:26465–26468.
  • QIN N, PLATANO D, OLCESE R etal.: Unique regulatory properties of the Type 2a Ca2+ channel beta subunit caused by palmitoylation. Proc. Natl. Acad. Sd. USA (1998) 95:4690–4695.
  • WET XY:Heterologous regulation of the cardiac Ca2+ channel al subunit by skeletal muscle 13 and y subunits. Implications for the structure of cardiac L-type Ca2+ channels. J. Biol. Chem. (1991) 266:21943–21947.
  • BIEL M, RUTH P, BOSSE E et al: Primarystructure and functional expression of a high voltage activated calcium channel from rabbit lung. FEBS Lett. (1990) 269:409–412.
  • CATTERALL WA: Structure and functionof neuronal Ca2+ channels and their role in neurotransmitter release. Cell Cakium (1998) 24(5-6):307–323.
  • •Comprehensive review on the involvement of CCs in neurotransmitter release.
  • SRINIVASAN J, SCHACHNER M, CATTERALL WA: Interaction of voltage-gated sodium channels with the extracellular matrix molecules tenascin-C and tenascin-R. Proc. Nat. Acad. Sci. USA (1998) 95(26):15753–15757.
  • DE WAARD M, CAMPBELL KP: Subunit regulation of the neuronal alA Ca2+ channel expressed in Xenopus oocytes. Physiol (1995) 485:619–634.
  • GEE NS, BROWN JP, DISSANAYAKE VUK et al.: The novel anticonvulsant drug, gabapentin (neurontin), binds to the a28 subunit of a calcium channel. j. Biol. Chem. (1996) 271:5768–5776.
  • BROWN JP, DISSANAYAKE VU, BRIGGS AR, MILIC MR, GEE NS: Isolation of the PH gabapentin-binding protein/a28 calcium channel subunit from porcine brain: Development of a radioligand binding assay for a28 subunits using [31-111eucine. Anal. Biochem. (1998) 15:236–243.
  • KLUGBAUER N, DAT S, SPECHT V et al.IA family of y-like calcium channel subunits. FEBS Lett. (2000) 470(2):189–197.
  • RIOS E, BRUM G: Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle. Nature (1987) 325(6106):717–720.
  • FRANZINI-ARMSTRONG C, JORGENSEN K: Structure and development of E-C coupling units in muscle. Ann. Rev Physic] (1994) 56:509–534.
  • SCHNEIDER MF: Control of calcium release in functioning skeletal muscle fibers. Ann. Rev Physiol. (1994) 56:463–484.
  • ARMSTRONG C, BEZANILLA FM, HOROWICZ P: Twitches in the presence of ethylene glycol bis(-aminoethyl ether)-N,N'-tetracetic acid. Biochim. Biophys. Acta (1972) 267:605–608.
  • RIOS E, MA J, GONZALEZ A: The mechanical hypothesis of excitation-contraction (EC) coupling in skeletal muscle. J. Muscle Res. Cell Motility (1991) 12:127–135.
  • DE JONGH KS, MERRICK DK, CATTERALL WA: Subunits of purified calcium channels: a 212-kDa form of al and partial amino acid sequence of a phosphorylation site of an independent beta subunit. Proc. Natl. Acad. ScL USA (1989) 86:8585–8589.
  • BRUM G, STEFANI E, RIOS E: Simultaneous measurements of Ca2+ currents and intracellular Ca2+ concentrations in single skeletal muscle fibers of the frog. Canadian J Physiol Pharmacol (1987) 65(4):681–685.
  • TANABE T, BEAM KG, ADAMS BA et al Regions of the skeletal muscle dihydropyridine receptor critical for excitation-contraction coupling. Nature (1990) 346(6284):567–569.
  • NAKAT J, TANABE T, KONNO T, ADAMS B, BEAM KG: Localization in the II-III Loop of the Dihydropyridine Receptor of a Sequence Critical for Excitation-Contraction Coupling. j Biol. Chem. (1998) 273(39):24983–24986.
  • LEONG P, MACLENNAN DH: The Cytoplasmic Loops between Domains II and III and Domains III and IV in the Skeletal Muscle Dihydropyridine Receptor Bind to a Contiguous Site in the Skeletal Muscle Ryanodine Receptor. J. Biol. Chem. (1998) 273:29958–29964.
  • FABIATO A: Simulated calcium current can both cause calcium loading in and trigger calcium release from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. I Gen. Physiol (1985) 85:291–320.
  • NABAUER M, CALLEWAERT G, CLEEMANN L, MORAD M: Regulation of calcium release is gated by calcium current, not gating charge, in cardiac myocytes. Science (1989) 244(4906):800–803.
  • OZ M, FRANK GB: The effects of verapamil on tetanic contractions of frog's skeletal muscle. Comparative Biochem. Physiol (1994) 107(3):321–329.
  • WU LG, WESTENBROEK RE, BORST JGG et al: Calcium channel types with distinct presynaptic localization couple differentially to transmitter release in single calyx-type synapses. J. Neurosci. (1999) 19(2):726–736.
  • SIDDHOF TC: The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature (1995) 375:645–653.
  • BAJJALIEH SM, SCHELLER RH: The biochemistry of neurotransmitter secretion. Biol. Chem. (1995) 270:1971–1974.
  • YOKOYAMA CT, SHENG Z-H, CATTERALL WA: Phosphorylation of the synaptic protein interaction site on N-type calcium channels inhibits interactions with SNARE proteins. J. Neurosci. (1997) 17:6929–6938.
  • MOCHIDA S, SHENG Z-H, BAKER C, KOBAYASHI H, CATTERALL WA: Inhibition of neurotransmission by peptides containing the synaptic protein interaction site of N-type Ca2+ channels. Neuron (1996) 17:781–788.
  • JEN J: Calcium channelopathies in the central nervous system. Cun: Opin. Neurobiol (1999) 9:274–280.
  • MISSIAEN L, ROBBERECHT W,VAN DEN BOSCH L et al: Abnormal intracellular Ca2+ homeostasis and disease. Cell Calcium (2000) 28(1):1–21.
  • CELESTA GG: Disorders of membrane channels or channelopathies.. (2001) 112(1):2–18.
  • FLUCHER BE, ANDREWS SB, FLEISCHER S et al: Triad formation: organization and function of the sarcoplasmic reticulum calcium release channel and triadin in normal and dysgenic muscle in vitro. J. Cell Biol. (1993) 123:1161–1174.
  • POWELL JA, PETHERBRIDGE L, FLUCHER BE: Immortalized cell lines from dysgenic skeletal muscle: evidence for triad formation without dihydropyridine receptor a subunits. Biophys. J. (1995) 68(2)A:415.
  • HOFFMAN EP, LEHMANN-HORN F, RODEL R: Overexcited or inactive: ion channels in muscle disease. Cell (1995) 80(5):681–686.
  • OPHOFF RA, TERWINDT GM, MN et al.: Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell (1996) 87:543–552.
  • KRAUS RL, SINNEGGER MJ, GLOSSMANN H, HERING S, STRIESSNIG J: Familial hemiplegic migraine mutations change aA Ca2+ channel kinetics. J. Biol. Chem. (1998) 273:5586–5590.
  • HANS M, LUVISETTO S, WILLIAMS ME, SPAGNOLO M et al: Functional consequences of mutations in the human alA calcium channel subunit linked to familial hemiplegic migraine. J. Neurosci. (1999) 19:1610–1619.
  • DUCROS A, DENIER C, JOUTEL A et al.: Recurrence of the T666M calcium channel CACNA1A gene mutation in familial hemiplegic migraine with progressive cerebellar ataxia. Am. J. Hum. Genet. (1999) 64:89–98.
  • MILLER RJ: Rocking and rolling with Ca2+ channels. Trends Neurosci. (2001) 24(8)445–449.
  • ••The most recent and comprehensivereview.
  • BRANDT T, STRUPP M: Episodic ataxia Type 1 and 2 (familial periodic ataxia/ vertigo). Audiology Neuro-Otology (1997) 2(6):373–383.
  • TAKAMORI M: An autoimmune channelopathy associated with cancer: Lambert-Eaton myasthenic syndrome. Intern. Med. (1999) 38(2):86–96.
  • BECH-HANSEN NT, NAYLOR MJ, MAYBAUM TA, PEARCE WG: Loss-of-function mutations in a calcium-channel al-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. Nat. Genet. (1998) 19(3):264–267.
  • STROM TM, NYAKATURA G, APFELSTEDT-SYLLA E, HELLEBRAND H: An L-type calcium-channel gene mutated in incomplete X-linked congenital stationary night blindness. Nat. Genet. (1998) 19(3):260–263.
  • YAGI T, MACLEISH P: Ionic of monkey solitary cone inner segments. J. Neurophysiol. (1994) 71:656–665.
  • TAYLOR WR, MORGANS C: and properties of voltage-gated calcium channels in cone photoreceptors of belangeri. Vis. Neurosci (1998) 15:541–552.
  • GREGG RG, MESSING A, STUBE C et al.: Absence of the 13 subunit (cchbl) of the skeletal muscle dihydropyridine receptor alters expression of the al subunit and eliminates excitation-contraction coupling. Proc. Natl. Acad. Sci. USA (1996) 93:13961–13966.
  • BURGESS DL, JONES JM, MEISLER MH, NOEBELS JL: Mutation of the Ca2+ channel 13 subunit gene Cchb4 is associated with ataxia and seizures in the lethargic (1h) mouse. Cell (1997) 88:385–392.
  • LETTS VA, FELIX R, BIDDLECOME GH et al.: The mouse stargazer gene encodes a neuronal Ca2+ -channel 7 subunit. Nat. Genet. (1998) 19:340–347.
  • HOLZ GG, RANE SG, DUNLAP K: GTP-binding proteins mediate transmitter inhibition of voltage-dependent calcium channels. Nature (1986) 319:670–672.
  • IKEDA SR, SCHOFIELD G: Somatostatin blocks a calcium current in rat sympathetic ganglion neurones. J. Physiol (1989) 409:221–240.
  • BEAN BP: Neurotransmitter inhibition of neuronal calcium channels by changes in channel voltage dependence. Nature (1989) 340:153–156.
  • ZAMPONI GW, SNUTCH TP: Modulation of voltage-dependent calcium channels by G proteins. Curr. Opin. Neurobiol (1998) 8:351–356.
  • DOLPHIN AC: Mechanisms of modulation of voltage-dependent calcium channels by G proteins. J. Physiol. (1998) 506:3–11.
  • WICKMAN K, CLAPHAM DE: Ion channel regulation by G proteins. Physiol Rev (1995) 75:865–885.
  • LIPSCOMBE D, KONGSAMUT S, TSIEN RW: a-adrenergic inhibition of sympathetic neurotransmitter release mediated by modulation of N-type calcium-channel gating. Nature (1989) 340:639–642.
  • BERNHEIM L, MATHIE A, HILLE B: Characterization of muscarinic receptor subtype inhibiting Ca 2+ current and M current in rat sympathetic neurons. Proc. Natl. Acad. Li. USA (1992) 89:9544–9548.
  • HILLE B: Modulation of ion-channel function by G-protein-coupled receptors. Trend s Neurosci. (1994) 17:531–536.
  • MILLER RJ: Receptor-mediated regulation of calcium channels and neurotransmitter release. FASEB J. (1990) 4:3291–3299.
  • SHAPIRO MS, HILLE B: Substance P and somatostatin inhibit calcium channels in rat sympathetic neurons via different G protein pathways. Neuron (1993) 10:11–20.
  • EWALD DA, PANG I-H, STERNWEIS PC, MILLER RJ: Differential G-protein-mediated coupling of neurotransmitter receptors to Ca2+ channels in rat dorsal ganglion neurons in vitro. Neuron (1989) 2:1185–1193.
  • BEECH DJ, BERNHEIM L, HILLE B: Pertussis toxin and voltage dependence distinguish multiple pathways modulating calcium channels of rat sympathetic neurons. Neuron (1992) 8:97–106.
  • CAULFIELD MP, JONES S, VALLIS Y et al.: Muscarinic M-current inhibition via G aq/11 and a-adrenoreceptor inhibition of Ca2+ current via G ao in rat sympathetic neurons. J. Physiol (1994) 477:415–422.
  • DOLPHIN AC: Voltage-dependent calcium channels and their modulation by neurotransmitters and G proteins. Exp. Physiol (1995) 80:1–36.
  • FORSCHER P, OXFORD GS, SCHULZ: Noradrenaline modulates calcium channels in avian dorsal root ganglion cells through tight receptor-channel coupling. J. Physiol (1986) 379:131–144.
  • HERLITZE S, GARCIA DE, MACKIE K et al.:Modulation of Ca2+ channels by G-protein subunits. Nature (1996) 280:258–262.
  • IKEDA SR: Voltage-dependent modulation of N-type calcium channels by G-protein subunits. Nature (1996) 380:255–258.
  • ZAMPONI GW, BOURINET E, NELSON D, NARGEOT J, SNUTCH TP: Crosstalk between G proteins and protein kinase C mediated by the calcium channel al subunit. Nature (1997) 385:242–246.
  • DEWAARD M, LIU H, WALKER D et al: Direct binding of G protein complex to voltage-dependent calcium channels. Nature (1997) 385:446–450.
  • PAGE KM, STEPHENS GJ, BERROW NS, DOLPHIN AC: The intracellular loop between domains I and II of the B-type calcium channel confers aspects of G protein sensitivity to the E-type calcium channel. J. Neurosci. (1997) 17:1330–1338.
  • CAMPBELL V, BERROW NS, FITZGERALD EM, BRICKLEY K, DOLPHIN AC: Inhibition of the interaction of G protein Go with calcium channels by the calcium channel b-subunit rat neurones. ..I Physiol. (1995) 485:365–372.
  • BOURINET E, SOONG TW, STEA A, SNUTCH TP: Determinants of the G-protein dependent opioid modulation of neuronal calcium channels. Proc. Natl. Acad. Sci. USA (1996) 93:1486–1491.
  • CANTI C, BOGDANOV Y, DOLPHIN AC: Interaction between G proteins and accessory subunits in the regulation of 1B calcium channels in Xenopus oocytes. Physiol. (2000) 527(3):419–432.
  • ZAMPONI GW, BOURINET E, NELSON D, NARGEOT J, SNUTCH TP: Crosstalk between G proteins and protein kinase C mediated by the calcium channel al subunit. Nature (1997) 385:242–246.
  • TOTH PT, SHEKTER LR, MA GH, PHILLIPSON LH, MILLER RJ: Selective G-protein regulation of neuronal calcium channels. j Neurosci. (1996) 16:4617–4624.
  • MEIR A, BELL DC, STEPHENS GJ, PAGE KM, DOLPHIN AC: Calcium channel 13 subunit promotes voltage-dependent inhibition of alB by Gbg. Biophys. J (2000) 79:731–746.
  • ZHANG JF, ELLINOR PT, ALDRICH RW, TSIEN RW: Multiple structural elements in voltage-dependent Ca2+ channels support their inhibition by G proteins. Neuron (1996) 17:991–1003.
  • QIN N, PLATANO D, OLCESE R, STEFANI E, BIRNBAUMER L: Direct interaction of Gh with a C-terminal binding domain of the calcium channel al subunit is responsible for channel inhibition by G protein coupled receptors. Proc. Natl. Acad. Sci. USA (1997) 94:8866–8871.
  • REUTER H: Localization of beta adrenergic receptors, and effects of noradrenaline and cyclic nucleotides on action potentials, ionic currents and tension in mammalian cardiac muscle. j Physiol. (1974) 242:429–451.
  • BEAN BP, NOWYCKY MC, TSIEN RW: B-adrenergic modulation of calcium channels in frog ventricular heart cells. Nature (1984) 307(5949):371–375.
  • ARREOLA J, CALVO J, GARCIA MC, SANCHEZ JA: Modulation of calcium channels of twitch skeletal muscle fibres of the frog by adrenaline and cyclic adenosine monophosphate. I Physiol. (1987) 393:307–330.
  • MITTERDORFER J, FROSCHMAYR M, GRABNER M et al.: Identification of PKA sites in the carboxyl terminus of L-type calcium channel alphal subunits. Biochemistry (1996) 35:9400–9406.
  • DE JONGH KS, MURPHY BJ, COLVIN AA et al.: Specific phosphorylation of a site in the full-length form of the al subunit of the cardiac L-type calcium channel by adenosine 3),5)-cyclic monophos-phate dependent protein kinase. Biochemistry (1996) 35:10392–10402.
  • PERETS T, BLUMENSTEIN Y, SHISTIK E, LOTAN I, DASCAL N: A potential site of functional modulation by protein kinase A in the cardiac Ca 2+ channel a 1C subunit. FEBS Lett. (1996) 384:189–192.
  • ROTMAN El, DE JONGH KS, FLORIO, LAI Y, CATTERALL WA: Specific phosphorylation of a COOH-terminal site on the full-length form of the al subunit of the skeletal muscle calcium channel by cAMP-dependent protein kinase. j Biol. Chem. (1992) 267:16100–16105.
  • ROHRKASTEN A, MEYER HE, NASTAINCZYK W, SIEBER M, HOFMANN F: cAMP-dependent protein kinase rapidly phosphorylates serine-687 of the skeletal muscle receptor for calcium channel blockers. j Biol. Chem. (1988) 263:15325–15329.
  • BUNEMANN M, GERHARDSTEIN BL, GAO T, HOSEY MM: Functional regulation of L-type calcium channels via protein kinase A-mediated phosphorylation of the B2 subunit. J. Bia. Chem. (1999) 274:33851–33854.
  • JOHNSON BD, SCHEUER T, CATTERALL WA: Voltage-dependent potentiation of L-type calcium channels in skeletal muscle cells requires anchored cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA (1994) 91:11492–11496.
  • GAO T, YATANI A, DELL AC QUA ML et al.: cAMP-dependent regulation of cardiac L-type calcium channels requires membrane targeting of PKA and phosphorylation of channel subunits. Neuron (1997) 19:185–196.
  • WU Y, MACMILLAN LB, MCNEILL RB, COLBRAN, RJ, ANDERSON ME: CalVI kinase augments cardiac L-type Ca2+ current: a cellular mechanism for long Q-T arrhythmias. Am. J. Physid. (1999) 276(6-2):H2168–178.
  • LU HK, FERN RJ, LUTHIN D, LINDEN J: Angiotensin II stimulates T-type Ca2+ channel currents via activation of a G protein, Gi. Am. J Physiol. (1996) 271(4 Pt 1):C1340–1349.
  • YOKOSHIKI H, SUMII K, SPERELAKIS N: Inhibition of L-type calcium current in rat ventricular cells by the tyrosine kinase inhibitor, genistein and its inactive analog, daidzein. j Mol. Cell. Cardiol. (1996) 28:807–814.
  • WANG YG, LIPSIUS SL: Genistein elicits biphasic effects on L-type Ca 2+ current in feline atrial myocytes. Am. j Physiol. (1998) 275:H204–H212.
  • KWAN YW, QUI AD: Inhibition by extracellular ATP of L-type calcium channel currents in guinea-pig single sinoatrial nodal cells: involvement of protein kinase C. Can.. (1997) 13:1202–1211.
  • LACERDA AE, RAMPED, BROWN AM: Effects of protein kinase C activators on cardiac Ca2+ channels. Nature (1988) 335 (6187) :249–251.
  • SCHUHMANN K, GROSCHNER K: Protein kinase-C mediates dual modulation of L-type Ca2+ channels in human vascular smooth muscle. Febs Lett. (1994) 341(2-3):208–212.
  • SHISTIK E, IVANINA T, Y, DASCAL N: Crucial role of N-terminus in function of cardiac L-type calcium channel and its modulation by protein kinase C. j Biol. Chem. (1998) 273:17901–17909.
  • PURI TS, GERHARDSTEIN BL, ZHAO XL, LADNER MB, HOSEY MM: Differential effects of subunit interactions on protein kinase A- and C-mediated phosphorylation of L-type calcium channels. Biochemistry (1997) 36:9605–9615.
  • MCHUGH D, SHARP EM, SCHEUER T, CATTERALL WA: Inhibition of cardiac L-type calcium channels by protein kinase phosphorylation of two sites in the N-terminal domain. Proc. Nati Acad. Sci. USA (1994) 341(2-3):208–212.
  • SATOH H: Inhibition in L-type Ca2+ channel by stimulation of protein kinase C in isolated guinea pig ventricular cardiomyocytes. Gen. Pharmacol. (1992) 23:1097–1102.
  • JIANG LH, GAWLER DJ, HODSON N et al.: Regulation of cloned cardiac L-type calcium channels by cGMP-dependent protein kinase. j Biol. Chem. (2000) 275 (9) :6135–6143.
  • KIRSTEIN M, RIVET-BASTIDE M, HATEM S, BENARDEAU A et al.: Nitric oxide regulates the calcium current in 280 Op/n. Ther. Patents (2002) 12(2) human atrial myocytes. I OM. Invest. (1995) 95:794–802.
  • MOHAN E BRUTSAERT DL: Positive inotropic effect of nitric oxide in myocardium. Int. J. Cordial. (1995) 50:233–237.
  • BERKELS R, SUERHOFF S, ROESEN R, KLAUS W: Nitric oxide causes a cGMP-independent intracellular calcium rise in porcine endothelial cells-a paradox? Microvascular Res. (2000) 59(1):38–44.
  • CHIK CL, LIU QY, LI B, KARPINSKI E, HO AK: cGIVIP inhibits L-type Ca2+ channel currents through protein phosphorylation in rat pinealocytes. Neurosci. (1995) 15(4):3104–3109.
  • HAN X, KUBOTA I, FERON 0 et al.: Muscarinic cholinergic regulation of cardiac myocyte ICa-L is absent in mice with targeted disruption of endothelial nitric oxide synthase. Proc. Natl. Acad. Sci. USA (1998) 95:6510–6515.
  • YAMASHITA T, KAWASHIMA S, OZAKI, RIKITAKE Y: A calcium channel blocker, benidipine, inhibits intimal thickening in the carotid artery of mice by increasing nitric oxide production. J. Hypertens. (2001) 19(3):451–458.
  • NEHRA A, COLREAVY F, KHANDHERIA BK, CHANDRASEKARAN K: Sildenafil citrate, a selective phosphodiesterase Type 5 inhibitor: urologic and cardiovascular implications. World J. Ural. (2001) 19(1):40–45.
  • FLECKENSTEIN A, KAMMERMEIER H, DORING HJ, FREUND HJ: On the action mechanism of new coronary dilators with simultaneous oxygen saving myocardial effects, Prenylamine and Iproveratril. 1. Zeitschrift fur Kreislaufforschung (1967) 56(7):716–744.
  • KOHLHARDT M, BAUER B, KRAUSE H, FLECKENSTEIN A: Differentiation of the transmembrane Na and Ca channels in mammalian cardiac fibres by the use of specific inhibitors. Pllugers Archly. Eur. Physial.(1972) 335(4):309–322.
  • KUSUOKA H, CORRETTI MC, KORETSUNE Y, MARBAN E: Mechanism for the cardioprotective effects of the calcium channel blocker clentiazem during ischemia and reperfusion. Japanese Circ. J (1998) 62(8):611–616.
  • ROVNYAK GC, KIMBALL SD, BEYER B et al.: Calcium entry blockers and activators: conformational and structural determinants dihydropyrimidine calcium channel modulators. J. Med. Chem. (1995) 38(1):119–129.
  • TRIGGLE DJ, RAMPED: 1,4-Dihydropyridine activators and antagonists: structural and functional distinctions. Trend s Pharmacolog. Li. (1989) 10(12):507–511.
  • HESS P, LANSMAN JB, TSIEN RW: Different modes of Ca channel gating behaviour favoured by dihydropyridine Ca agonists and antagonists. Nature (1984) 311:538–544.
  • SANGUINETTI MC, KASS RS: Voltage-dependent block of calcium channel current in calf Purkinje fiber by dihydropyridine calcium channel antagonists. Circ. Res. (1984) 55:336–348.
  • HERING S, ACZEL S, KRAUS RL, BERJUKOW S: Molecular mechanism of use-dependent calcium channel block by phenylalkylamines: role of inactivation. Proc. Natl. Acad. Sci. USA (1997) 94(24):13323–13328.
  • HERING S, BERJUKOV S, ACZEL S, TIMIN EN: Calcium channel block and inactivation: Common molecular determinants. Trends Pharmacal. Li. (1998) 19:439–434.
  • HERING S, ACZEL S, KRAUS RL, BERJUKOW S: Molecular mechanism of use-dependent calcium channel block by phenylalkylamines: role of inactivation. Proc. Natl. Acad. Sci. USA (1997) 94(24):13323–13328.
  • STRIESSNIG J, GRABNER M, MITTERDORFER J et al.: Structural basis of drug binding to L calcium channels. Trends Pharmacal. Li. (1998) 19:108–115.
  • ••Comprehensive review.
  • HOCKERMAN, GH, DILMAC N, SCHEUER T, CATTERALL WA: Molecular determinants of diltiazem block in domains IIIS6 and IVS6 of L-type Ca2+ channels. Mal. Pharmacal. (2000) 58(6):1264–1270.
  • GODFRAIND T: Selectivity of calcium antagonists in the human cardiovascular system based on in vitro studies. J. Cardiovasc. Pharmacal. (1992) 20(5):534–S41.
  • INOMATA H, KAO CY: Ionic of repolarization in the guinea-pig taenia coil as revealed by the actions of strontium. J. Physial (1979) 297:443–462.
  • KATZ AM: Molecular basis of calcium channel blockade. Am. J. Cordial. (1992) 69(13):17E-22E.
  • HELD PH, YUSUF S: Effects of beta-blockers and calcium channel blockers in acute myocardial infarction. Eur. Heart J (1993) (Suppl. 9:18–25.4A.
  • ELKAYAM U, SHOTAN A, MEHRA A, OSTRZEGA E: Calcium channel blockers in heart failure. J. Am. College of Cardial. (1993) 4(Suppl. A):139A–144A.
  • RASPA RF, WILSON CC: Calcium channel blockers in the treatment of hypertension. Am. Family Physician (1993) 48(3):461–470.
  • KASTRUP EK, BURNHAM TH, HEBEL SK et al.: Drug Facts and Comparisons. Facts and Comparisons. St. Louis, Mo, olters Kluwer Company. (2000):149-149a.
  • STRAKA RJ, WANSON AL: Calcium Channel Antagonists: Morbidity and Mortality-What's the Evidence? Am. Family Physicians (1998) April 1.
  • GOODMAN, GILMAN AG: The Pharmacological Basis of Therapeutics (9th edition), Hardman JG, Gilman AG, Limbird LE (Eds.), McGraw-Hill, New York, (1995).
  • KATZUNG BG: Basic and Clinical Pharmacology (7th edition), Katzung BG (Ed.) Appleton & Lange, Norwalk, CN, USA, (1998).
  • TOYO-OKA T, Nayler WG: Third generation calcium entry blockers. Blood Pressure (1996) 5(4):206–208.
  • KELLY JG, O'MALLEY K: Clinical pharmacokinetics of calcium antagonists: an update. OM. Pharmacakinet. (1992) 22:416–421.
  • DOLLERY CT: Clinical pharmacology of the calcium antagonists. Am. J. Hyperten. (1991) 4:88S–95S.
  • SOGABE T, MORI T, OHURA M, TOMINAGA M: Venodilatory effect of pranidipine, a calcium channel blocker, monitored with perfluorocarbon in vivo (19)F-NMR spectroscopy. Magnetic Resonance Imaging (2000) 18(8):1011–1016.
  • MORI T, TAKASE H, TOIDE K et al.: Pranidipine, a 1,4-dihydropyridine calcium channel blocker that enhances nitric oxide-induced vascular relaxation. Cardiovasc. Drug Rev. (2001) 19(1):1–8.
  • MORI T, TAKEUCHI T, OHURA M, MIYAKODA G: Pranidipine, a new 1,4-dihydropyridine calcium channel blocker, enhances cyclic GMP-independent nitric oxide-induced relaxation of the rat aorta. Cellular Biochem. (1998) 178(1-2):335–343.
  • NISHIKAWA M, KUBO Y, JUDO H, NAKAYAMA T, NAKAMURA N: Protection against endothelial abnormalities by a novel calcium channel blocker, AE0047, in stroke-prone spontaneously hypertensive rats. General Pharmacol(1999) 32(3):299–305.
  • DEANA R, PANTO L, CANCELLOTTI FM, QUADRO G, GALZIGNA L: Properties of a new calcium ion antagonist on cellular uptake and mitochondrial efflux of calcium ions. Biochem. J. (1984) 218(3):899–905.
  • SHIRAHASE H, WADA K, UEHARA Y, NAKAMURA S, ICHIKAWA A: Preventive effect of iganidipine on renal and cerebral injuries in salt-induced hypertension. Am. J. Hyperten. (1997) 10(8):869–878.
  • WAKI M, SUGIYAMA T, WATANABE N et al.: Effect of topically applied iganidipine dihydrochloride, a novel calcium, on optic nerve head circulation in rabbits. Japanese J. Ophthalmology (2001) 45(1):76–83.
  • YAMAMOTO T, NIWA Y, KAWAKAMI H, KITAZAWA Y: The effect of nilvadipine, a calcium-channel blocker, on the hemodynamics of retrobulbar vessels in normal-tension glaucoma J. Glaucoma (1998) 7(5):301–305.
  • KAWABATA M, OGAWA T, T: Effects of lemildipine, a new calcium channel blocker, on renal microcirculation in SHR. Hypertension Res. (1998) 21(2):121–126.
  • ICHIHARA K, OKUMURA K, KAMEI H, NAGASAKA M: Renal effects of the calcium channel blocker aranidipine and its active metabolite in anesthetized dogs and conscious spontaneously hypertensive rats. Cardiovasc. Pharmacol (1998) 31(2):277–285.
  • LORTON D: P-Amyloid-induced IL-1I3 release from an activated human monocyte cell line is calcium- and G-protein-dependent. Mech. Ageing Dev. (1997) 94(1-3):199–211.
  • BHATIA R, LIN H, LAL R: Fresh and globular amyloid beta protein (1-42) induces rapid cellular degeneration: evidence for APP channel-mediated cellular toxicity. FASEB J. (2000) 14(9):1233–1243.
  • KANWAR U, ANAND RJ, SANYAL SN: The effect of nifedipine, a calcium channel blocker, on human spermatozoal functions. (1993) 48(5):453–470.
  • BENOFF S, COOPER GW, HURLEY I, MANDEL FS: The effect of calcium ion channel blockers on sperm fertilization potential. Fertility Sterility (1994) 62(3):606–617.
  • LEVINE LA, MERRICK PE LEE RC: Intralesional verapamil injection for the treatment of Peyronie's disease. J. Ural (1994) 151(6):1522–1524.
  • LEE RC, PING JA: Calcium antagonists retard extracellular matrix production in connective tissue equivalent. J. Surg. Res. (1990) 49:463–466.
  • DOONG H, DISSANAYAKE TR, LABARBERA MC et al: Calcium antagonists alter cell shape and induce procollagenase synthesis in keloid and normal human dermal fibroblasts. J. Burn Care Rehab. (1996) 17:497–514.
  • CRISTOFORI P, LANZONI A, QUARTAROLI M et al.: The calcium-channel blocker lacidipine reduces the development of atherosclerotic lesions in the apoE-deficient mouse. J. Hyperterts. (2000) 18(10):1429–1436.
  • LEONE M, D'AMICO D, FREDIANI E MOSCHIANO F: Verapamil in the prophylaxis of episodic cluster headache: a double-blind study versus placebo. Neurology (2000) 54(6):1382–1385.
  • HOLLISTER LE, TREVINO ESG: Calcium Channel Blockers in Psychiatric Disorders: A Review of the Literature. Can. J. Psychiatry (1999) 44:658–664.
  • ••Comprehensive review.
  • HOFFMEISTER E TETTENBORN D: Calcium agonists and antagonists of the dihydropyridine type: antinociceptive effects, interference with opiate-mu-receptor agonists and neuropharmacological actions in rodents. Psychopharmacology (1986) 90(3):299–307.
  • COHEN CJ, SPIRES S, VAN SKIVER D: Block of T-type Ca channels in guinea pig atrial cells by antiarrhythmic agents and Ca channel antagonists. J. General Physiol. (1992) 100(4):703–728.
  • MATLIB MA: Action of bepridil, a new calcium channel blocker on oxidative phosphorylation, oligomycin-sensitive adenosine triphosphatase activity, swelling, Ca++ uptake and Na+-induced Ca++ release processes of rabbit heart mitochondria in vitro. J. Pharmacol Exp. Ther. (1985) 233(2):376–381.
  • NAGASHIMA S, UEMATSU T, ARAKI S, T: Bepridil hydrochloride alters potential-dependent and receptor-operated calcium channels in vascular smooth muscle of rabbit aorta. J. Pharmacol Exp. Ther. (1985) 234(1):63–71.
  • LEHNING EJ, DOSHI R, ISAKSSON N, STYS PK, LOPACHIN RIVI: Mechanisms of injury-induced calcium entry into peripheral nerve myelinated axons: role of reverse sodium-calcium exchange. J. Neurochem. (1996) 66(2):493–500.
  • WOLF JA, STYS PK, LUSARDI T, MEANEY D, SMITH DH: Traumatic axonal injury induces calcium influx modulated by tetrodotoxin-sensitive sodium channels. J. Neurosci. (2001) 21(6):1923–1930.
  • BROWN AM, WESTENBROEK RE, CATTERALL WA, RANSOM BR: Axonal L-type Ca2+ channels and anoxic injury in rat CNS white matter. J. Neurophysiol. (2001) 85(2):900–911.
  • CLOZEL JP, ERTEL EA, ERTEL SI: Discovery and main pharmacological properties of mibefradil (Ro 40-5967), the first selective T-type calcium channel blocker. I Hyperterts. (1997) 15(5):517–25.
  • SANDMANN ST, UNGER T: L- and T-type calcium channel blockade - the efficacy of the calcium channel antagonist mibefradil. I Gin Basic Cardiol (1999) 2:187.
  • OSTERRIEDER W, HOLCK M: In vitro pharmacologic profile of, a novel Ca2+ channel blocker with potent vasodilator but weak inotropic action. J. Cardiovasc. Pharmacol. (1889) 13:754–759.
  • SANDMANN S, BOHLE RIVI, DREYER T, UNGER T: The T-type calcium channel blocker mibefradil reduced interstitial and perivascular fibrosis and improved hemodynamic parameters in myocardial infarction-induced cardiac failure in rats. Virchows Archiv. (2000) 436(2):147–157.
  • MASON RP, MAK IT, WALTER MF, TULENKO TN, MASON PE: Antioxidant and cytoprotective activities of the calcium channel blocker mibefradil. Biochem. Pharmacol (1998) 55(11):1843–1852.
  • MILLER AL, LANGTON PD: inhibition of myogenic tone, K+-induced force and block of L-type calcium current in rat cerebral arteries. J. Physiol (1998) 508(Pt 3):793–800.
  • DEL POZO E, BAEYENS JM: Effects of calcium channel blockers on neuromuscular blockade induced by aminoglycoside. Eur. j Pharmacal (1986) 128(1-2):49–54.
  • PARADELIS AG, TRIANTAPHYLLIDIS CJ, MIRONIDOU M et al.: Interaction of aminoglycoside antibiotics and calcium channel blockers at the neuromuscular junctions. Meth. Flitclihgs Exp. Clin. Pharmacal (1988) 10(11):687–690.
  • KNAUS HG, STRIESSNIG J, KOZA A, GLOSSMANN H: Neurotoxic aminoglycoside antibiotics are potent inhibitors of 1125I1-Omega-Conotoxin GVIA binding to guinea-pig cerebral cortex membranes. Naunyn-Schmiedebergs Arch. Pharmacal (1987) 336(5):583–586.
  • REYNOLDS IJ, GOULD RJ, SNYDER SH: Loperamide: blockade of calcium channels as a mechanism for antidiarrheal effects. J. Pharmacal Exp. Ther. (1984) 231(3):628–632.
  • 00MS LA, DEGRYSE AD, JANSSEN PA: Mechanisms of action of loperamide. Scand. Castroenteral (1984) 96:145–155.
  • CHURCH J, FLETCHER EJ, ABDEL-HAMID K, MACDONALD JF: Loperamide blocks high-voltage-activated calcium channels and N-methyl-D-aspartate-evoked responses in rat and mouse cultured hippocampal pyramidal neurons. Mal Pharmacal (1994) 45(4):747–757.
  • CHAN E CHIU WT, CHEN YJ, WU PJ, CHENG JT: Calcium influx inhibition: possible mechanism of the negative effect of tetrahydropalmatine on left ventricular pressure in isolated rat heart. Planta Medico (1999) 65(4):340–342.
  • CHEN: Calcium antagonists from traditional Chinese herbs. Drug News Perspectives (1990) 3(7):425–428.
  • WANG G, LEMOS JR: Tetrandrine: a new ligand to block voltage-dependent Ca2+ and Ca(+) -activated K+ channels. Life Li. (1995) 56(5):295–306.
  • DONG H, EARLE ML, JIANG Y, LOUTZENHISER KA, TRIGGLE CR: Cardiovascular effects of CPU-23, a novel L-type calcium channel blocker with a unique molecular structure. Br J. Pharmacal (1997) 122(7):1271–1278.
  • TYTGAT J, VEREECKE J, CARMELIET E: Differential effects of verapamil and flunarizine on cardiac L-type and T-type Ca2+ channels. Naunyn-Schmiedeberg's Arch. Pharmacal (1988) 337:690–692.
  • GUBERT S, BRAS() MA, SACRISTAN A, ORTIZ JA: Synthesis of some N-benzhydrylpiperazine derivatives as calcium. Arzneimittel-Forschung (1987) 37(10):1103–1107.
  • TYTGAT J, PAUWELS PJ, VEREECKE J, CARMELIET E: Flunarizine inhibits a high-threshold inactivating calcium channel (N-type) in isolated hippocampal neurons. Brain Res. (1991) 17:549(1):112–117.
  • AKAIKE N, KOSTYUK PG, OSIPCHUK YV: Dihydropyridine-sensitive low-threshold calcium channels in isolated hypothalamic neurones. J. Physial (1989) 412:181–195.
  • RUIZ-NUNO A, VILLARROYA M, CANO-ABAD M et al: Mechanisms of blockade by the novel migraine prophylactic agent, dotarizine, of various brain and peripheral vessel contractility. Eur. Pharmacal (2001) 411(3):289–299.
  • SCHIERLE GS, BRUNDIN P: Excitotoxicity plays a role in the death of tyrosine hydroxylase-immunopositive nigral neurons cultured in serum-free medium. Expl. Neural (1999) 157:338–348.
  • EICHLER ME, DUBINSKY JM, TONG J RICH KM: The ability of diphenylpiperazines to prevent neuronal death in dorsal root ganglion neurons in vitro after nerve growth factor deprivation and in vivo after axotomy. I Neurochem. (1994) 62:2148–2157.
  • GONCALVES T, CARVALHO OLIVEIRA CR: Antioxidant effect of calcium antagonists on microsomal membranes isolated from different brain areas. Eur. Pharmacy]. (1991) 204:315–322.
  • ALPS BJ, CALDER C, HASS WK, WILSON AD: Comparative protective effects of nicardipine, flunarizine, lidoflazine and nimodipine against ischaemic injury in the hippocampus of Mongolian gerbil. Br J. Pharmacy]. (1988) 93:877–883.
  • TORIU N, AKAIKE A, YASUYOSHI H et al.: Lomerizine, a Ca2+ channel blocker, reduces glutamate-induced neurotoxicity and ischemiaireperfusion damage in rat retina. Exp. Eye Res. (2000) 70(4):475–484.
  • TERLAND O, FLATMARK T: Drug-induced parkinsonism: cinnarizine and flunarizine are potent uncouplers of the vacuolar H+-ATPase in catecholamine storage vesicles. Neuropharmacology (1999) 38(6):879–882.
  • HARAGUCHI K, ITO K, KOTAKI H, SAWADA Y, IGA T: Prediction of drug-induced catalepsy based on dopamine D1,2, and muscarinic acetylcholine receptor occupancies. Drug Metab. Disposition (1997) 25(6):675–684.
  • TAKAHARA A, SUGIYAMA A, DOHMOTO H, YOSHIMOTO R, HASHIMOTO K: Electrophysiological and cardiohemodynamic effects of AH-1058, a new type calcium channel blocker, assessed by the in vivo canine model. I Pharmacy]. (2000) 83(2):107–112.
  • GARCIA J, BEAM KG: Calcium transients associated with the T type calcium current in myotubes. j Genera] Physial (1994) 104(6):1113–1128.
  • CHAN J, GREENBERG DA: SK&F 96365, a receptor-mediated calcium entry inhibitor, inhibits calcium responses to endothelin- I in NG108-15 cells. Biochem. Biophys. Res. Comm. (1991) 177(3):1141–1146.
  • MERRITT JE, ARMSTRONG WP, BENHAM CD etal.: SK&F 96365, a novel inhibitor of receptor-mediated calcium entry. Biochem. J. (1990) 271(2):515–522.
  • SIMON T, JAILON P: Hormone replacement therapy in postmenopausal womem at cardiovascular risk: epidemiology and clinical trials. Eur. Heart J. (2000) G2–G6.
  • FARHAT M, LAVIGNE M, RAMWELL P: The vascular protective effects of estrogen. FASEB J. (1996) 10:615–624.
  • COLLINS P, BEALE CM, ROSANO GM: Oestrogen as a calcium channel blocker. Eur. Heart J. (1996) 17:27–31.
  • GRADY D, RUBIN S, PETTITI D: Hormone therapy to prevent disease and prolong life in postmenopausal women. Ann. Intern. Med (1992) 117:1016–1037
  • BOYER JC, MAGOUS R, CHRISTEN MO, BALMES JL, BALI JP: Contraction of human colonic circular smooth muscle cells is inhibited by the calcium channel blocker pinaverium bromide. Cell Cakium (2001) 29(6):429–438.
  • VON WEGERER J, HESSLINGER B, BERGER M, WALDEN J: A calcium antagonistic effect of the new antiepileptic drug lamotrigine. Eur. Neuropsychapharmacal (1997) 7(2):77–81.
  • TODOROVIC SM, LINGLE CJ: Pharmacological properties of T-type Ca2+ current in adult rat sensory neurons: effects of anticonvulsant and anesthetic agents. J. Neuraphysial (1998) 79(1):240–252.
  • AMBROSIO AF, SILVA AP, MALVA JO et al.: Carbamazepine inhibits L-type Ca2+ in cultured rat hippocampal neurons stimulated with glutamate receptor agonists. Neuropharmacology (1999) 38(9):1349–1359.
  • DOUGHTY JM, MILLER AL, LANGTON PD: Non-specificity of chloride channel blockers in rat cerebral arteries: block of the L-type calcium channel. j Physiol. (1998) 507(2):433–439.
  • LEWIS RJ, NIELSEN KJ, CRAIK DJ, LOUGHNAN ML: Novel omega-conotoxins from Conus catus discriminate among neuronal calcium channel subtypes. Biol. Chem. (2000) 275(45):35335–35344.
  • RAMILO CA, ZAFARALLA GC, NADASDI L et al.: Novel a- and to-conotoxins from Conus striatus venom. Biochemistry (1992) 31(41):9919–9926.
  • OLIVERA BM: Conus Venom Peptides, Receptor and Ion Channel Targets, and Drug Design: 50 Million Years of Neuropharmacology. Md. Biol. Cell (1997) 8:2101–2109.
  • JONES RIVI, CARTIER GE, MCINTOSH JM eta].: Composition and therapeutic utility of conotoxins from genus Conus. Expert Opin. Ther. Patents (2001) 11(4):603–623.
  • ••The most recent and comprehensive reviewon conotoxins.
  • SLUKA KA. Blockade of calcium channels can prevent the onset of secondary hyperalgesia and allodynia induced by intradermal injection of capsaicin in rats. Pain (1997) 71(2):157–164.
  • NEBE J, VANEGAS H, SCHAIBLE HG: Spinal application of omega-conotoxin GVIA, an N-type calcium channel antagonist, attenuates enhancement of dorsal spinal neuronal responses caused by intra-articular injection of mustard oil in the rat. Exp. Brain Res. (1998) 120(1):61–69.
  • VALENTINO K, NEWCOMB R, GADBOIS T et al.: A selective N-type calcium channel antagonist protects against neuronal loss after global cerebral ischemia. Proc. Natl. Acad. Sci. USA (1993) 90(16)7894–7897.
  • CRAIG AG, NORBERG T, GRIFFIN D, HOEGER C: Contulakin-G, an 0-glycosylated invertebrate neurotensin. Biol. Chem. (1999) 274(20):13752–13759.
  • FAINZILBER M, LODDER JC, VAN DER SCHORS RC, LI KW: A novel hydrophobic omega-conotoxin blocks dihydropyridine-sensitive channels. Biochemistry (1996) 35(26):8748–8752.
  • KOBAYASHI K, SASAKI T, SATO K, KOHNO T: Three-dimensional solution structure of omega-conotoxin TxVII, an L-type calcium channel blocker. Biochemistry (2000) 39(48):14761–14767.
  • PISER TM, LAMPE RA, KEITH RA, THAYER SA: Omega-grammotoxin SIA blocks multiple, voltage-gated, Ca2+ channel subtypes in cultured rat hippocampal neurons. Ma. Pharmacol. (1995) 48(1):131–139.
  • MCDONOUGH SI, LAMPE RA, KEITH RA, BEAN BP: Voltage-dependent inhibition of N- and P-type calcium channels by the peptide toxin omega-grammotoxin-SIA. Md. Pharmacol. (1997) 52(6):1095–1104.
  • NEWCOMB R, SZOKE B, PALMA A, WANG G: Selective peptide antagonist of the class E calcium channel from the venom of the tarantula Hysterocrates gigas. Biochemistry (1998) 37(44):15353–15362.
  • ORI M, IKEDA H: Spider Venoms and Spider Toxins. I Toxicol. (1998) 17(3):405–426.
  • ••Interesting review on spider toxins.
  • ADAMS ME, MINTZ IM, REILY MD, THANABAL V, BEAN BP: Structure and properties of omega-agatoxin IVB, a new antagonist of P-type calcium channels. Md. Pharmacol. (1993) 44(4):681–688.
  • TERAMOTO T, KUWADA M, NIIDOME T, SAWADA K: A novel peptide from funnel web spider venom, omega-Aga-TK, selectively blocks, P-type calcium channels. Biochem. Biophys. Res. Com. (1993) 196(1):134–140.
  • SULLIVAN JM, LASATER EM: Sustained and transient calcium currents in horizontal cells of the white bass retina. j Genera] Physiol. (1992) 99(1):84–107.
  • HAGIWARA K, SAKAI K, MIWA A, NAKAJIMA T: Complete amino acid sequence of a new type of neurotoxin from the venom of the spider Agelena opulent a. Biomed. Res. (1990) 11:181.
  • BOWERS CW, PHILLIPS HS, LEE P, JAN YN, JAN LY: Identification and purification of an irreversible presynaptic neurotoxin from the venom of the spider Hololena curta. Proc. Natl. Acad. Sci. USA (1987) 84(10):3506–3510.
  • LEUNG HT, BYERLY L: Characterization of single calcium channels in Drosophila nerve and muscle cells. Neurosci. (1991) 11(10):3047–3059.
  • LUNDY PM, HONG A, FREW R: Inhibition of a dihydropyridine, omega-conotoxin insensitive Ca2+ channel in rat synaptosomes by venom of the spider Hololena curta. Eur. j Pharmacol. (1992) 225 (1) :51–56.
  • LUNDY PM, FREW R: Evidence of mammalian Ca2+ channel inhibitors in venom of the spider Plectreurys tristis. Toxicon (1993) 31(10):1249–1256.
  • B0DI J, NISHIO H, ZHOU Y et al.: Synthesis of an 0-palmitoylated 44-residue peptide amide (PLTX II) blocking presynaptic calcium channels in Drosophila. Peptide Res. (1995) 8(4):228–235.
  • PENG K, CHEN XD, LIANG SP: The effect of Huwentoxin-I on Ca(2+) channels in differentiated NG108-15 cells, a patch-clamp study. Toxicon (2001) 39(4):491–498.
  • YOSHIOKA DM, CHIBA T, MATSUKAW AM, NISHIMURA M, AKIZAWA T: Diversity of Joro Spider Toxins. Cyber Congress on Analytical BioSciences (1997).
  • ••Interesting mini-review on spider toxins.
  • YASUDA O, MORIMOTO S, JIANG Bet al.: F52. a mamba venom toxin, is a specific blocker of the L-type calcium channels. Artery (1994) 21(5):287–302.
  • DE WEILLE JR, SCHWEITZ H, MAES P, TARTAR A, LAZDUNSKI M: Calciseptine, a peptide isolated from black mamba venom, is a specific blocker of the L-type calcium channel. Proc. Nati Acad. Li. USA (1991) 88(6):2437–2440.
  • YASUDA O, MORIMOTO S, CHEN Y et al.: Calciseptine binding to a 1,4-dihydropyridine recognition site of the L-type calcium channel of rat synaptosomal membranes. Biochem. Biophys. Res. Com. (1993) 194(2):587–594.
  • SCHWEITZ H, HEURTEAUX C, BOIS P et al: Calcicludine, a venom peptide of the Kunitz-type protease inhibitor family, is a potent blocker of high-threshold Ca2+ channels with a high affinity for L-type channels in cerebellar granule neurons. Proc. Nail. Acad. Sci. USA (1994) 91(3):878–882.
  • BROWN AM, YATANI A, LACERDA AE, GURROLA GB, POSSANI LD: Neurotoxins that act selectively on voltage-dependent cardiac calcium channels. Circ. Res. (1987) 61(4):I6–9.
  • POSSANI LD, MARTIN BM, YATANI A et al.: Isolation and physiological of taicatoxin, a complex toxin with specific effects on calcium channels. Toxicon (1992) 30(11):1343–1364.
  • FANTINI E, ATHIAS P, TIROSH R, PINS ON A: Effect of TaiCatoxin (TCX) on the electrophysiological, mechanical and biochemical characteristics of spontaneously beating ventricular cardiomyocytes. Md. Cellul. Biochem. (1996) 160–161:61–66.
  • GELFAND VI, BERSHADASKY AD: Microtubule dynamics: mechanism, regulation and function. Ann. Rev Cell Biol. (1991) 7:93–116
  • GROSS R, KAYSER M, SCHRAMM M, TANIEL R, THOMAS G: Cardiovascular effects of the calcium-agonistic dihydropyridine BAY K 8644 in conscious dogs. Arch. Int. (1985) 277(2):203–216.
  • SHELTON RC, GREBB JA, FREED WJ: Induction of seizures in mice by intracerebroventricular administration of the calcium channel agonist BAY k 8644. Brain Res. (1987) 402:399–402.
  • RAMPE D, LACERDA AE: A new site for the activation of cardiac calcium channels defined by the nondihydropyridine FPL 64176.j Pharmacol. Ex. Ther. (1991) 259(3):982–987.
  • ZHENG W, RAMPE D, TRIGGLE DJ: Pharmacological, radioligand binding, and electrophysiological characteristics of FPL 64176, a novel nondihydropyridine Ca2+ channel activator, in cardiac and vascular preparations. Md. Pharmacol. (1991) 40(5):734–741.
  • MURATA M, NAOKI H, IWASHITA T et al.: Structure of maitotoxim. I Am. Chem. Soc. (1993) 115:2060–2062.
  • ZHENG W, DEMATTEI JA, WU JP et al.: Complete relative stereochemistry of maitotoxin. I Am. Chem. Soc. (1996) 118:7946–7968.
  • FREEDMAN SB, MILLER RJ, MILLER DM, TINDALL DR: Interactions of maitotoxin with voltage-sensitive calcium channels in cultured neuronal cells. Proc. Nati Acad. Sci. USA (1984) 81(104582–4585.
  • TAKAHASHI M, OHIZUMI Y, YASUMOTO T: Maitotoxin, a Ca2+ channel activator candidate. I Biol. Chem. (1982) 257(13):7287–7289.
  • GUSOVSKY F, DALY JW: Maitotoxin: a unique pharmacological tool for research on calcium-dependent mechanisms. Biochem. Pharmacol. (1990) 39:1633–1639.
  • XI D, VAN DOLAH FM, RAMSDELL JS: Maitotoxin induces a voltage dependent membrane depolarization in GH4 pituitary cells via activation of type L voltage dependent calcium channels. I Biol. Chem. (1992) 267:25025–25031.
  • CATALDI M, SECONDO A, D'ALESSIO A etal.: Studies on maitotoxin-induced intracellular Ca(2+) elevation in chinese hamster ovary cells stably transfected with cDNAs encoding for L-type Ca(2+) channel subunits. I Pharmacol. Exp. Ther. (1999) 290(2):725–730.
  • SATAKE M, MACKENZIE L, YASUMOTO T: Identification of Protoceratium reticulatum as the biogenetic origin of yessotoxin. Natural Toxins (1997) 5(4):164–167.
  • DE LA ROSA LA, ALFONSO A, VILARISTO N, VIEYTES MR, BOTANA LM: Modulation of cytosolic calcium levels of human lymphocytes by yessotoxin, a novel marine phycotoxin. Biochem. Pharmacol. (2001) 61(7):827–833.
  • HOLMES MJ, LEWIS RJ, JONES A, HOY AW: Cooliatoxin, the first toxin from Coolia mamas (Dinophyceae). Natural Toxins (1995) 3(5):355–362.
  • SATAKE M, TUBARO A, LEE JS, YASUMOTO T: Two new analogs of yessotoxin, homoyessotoxin and 45-hydroxyhomoyessotoxin, isolated from mussels of the Adriatic Sea. Natural Toxins (1997) 5(3):107–110.
  • DAIGUJI M, SATAKE M, RAMSTAD H et al.: Structure and fluorometric HPLC determination of 1-desulfoyessotoxin, a new yessotoxin analog isolated from mussels from Norway. Natural Toxins (1998) 6(6):235–239.
  • CIMINIELLO P, FATTORUSSO E, FORINO M, POLETTI R, VIVIANI R: Structure determination of carboxyhomoyessotoxin, a new yessotoxin analogue isolated from adriatic mussels. Chem. Res. Tarim]. (2000) 13(8):770–774.
  • GUKOVSKAYA AS, TREPAKOVA ES, ZINCHENKO V1 KORYSTOV YN, BEZUGLOV VV: Effect of the sulfhydryl reagent thimerosal on cytosolic free Ca2+ and membrane potential of thymocytes. Biochim. Biophys. Acta (1992) 1111(1):65–74.
  • FEARON IM, PALMER AC, AJ, BALL SG, VARADI G, PEERS C: Modulation of recombinant human cardiac L-type Ca2+ channel al C subunits by redox agents and hypoxia.. (1999) 514(3):629–637.
  • VAUPEL DB, LANGE WR, LONDON ED: Effects of verapamil on morphine-induced euphoria, analgesia and respiratory depression in humans. I Pharmacol. Exp. Ther (1993) 267(3):1386–1394.
  • DAYER P, DESMEULES J, COLLART L: Pharmacology of tramadol. Drugs (1997) 53(2):18–24.
  • GUPTA MC, GARG SK: Effect of nimodipine, a dihydropyridine calcium channel antagonist, on the steady state pharmacokinetics of phenytoin (DPH) in rhesus monkeys. Methods and Findings in Exp. Clin Pharmacol. (1999) 21(6):453–455.
  • EDELMAN DA, PAUL RA: Does combination therapy with a calcium channel blocker and an ACE inhibitor have additive effects on blood pressure reduction? Intl Clin. Pic. (2000) 54(2):105–109.
  • YE ZG, VAN DYKE K: Reversal of chloroquine resistance in falciparum malaria independent of calcium channels. Biochem. Biophys. Res. Com. (1988) 155(1):476–481.
  • KAPLAN NM: The calcium channel blocker controversy. Hypertension Res. (1996) 19(2):57–64.
  • JOLLIS JG, SIMPSON RJJR, CHOWDHURY MK et al.: Calcium channel blockers and mortality in elderly patients with myocardial infarction. Arch. Intern. Med. (1999) 159(19)2341–2348.
  • KIZER JR, KIMMEL SE: Epidemiologic review of the calcium channel blocker drugs. An up-to-date perspective on the proposed hazards. Arch. Intern. Med (2001) 161(9):1145–1158.
  • FRITZE J, WALDEN J: Clinical findings with nimodipine in dementia: test of the calcium hypothesis. I Neural Trans. (1995) 46:439–453.
  • HUANG HM, OU HC, HSIEH SJ: Antioxidants prevent amyloid peptide-induced apoptosis and alteration of calcium homeostasis in cultured cortical neurons. Life Sci. (2000) 66(19):1879–1892.

Websites

  • http://www.cpa-apc.org/Subscriptions/ Archives/ 191999/Sep/hollister.htm
  • http://neo.pharm.hiroshima-u.acjp/ccab/ 2nd/mini_review/mr121/yoshioka.html

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.