139
Views
24
CrossRef citations to date
0
Altmetric
Miscellaneous

VLA-4 antagonists

Pages 991-1008 | Published online: 25 Feb 2005

Bibliography

  • ERLE DJ, BRISKIN MJ, BUTCHER EC, PARDO A, LAZAROVITS Al, TIDWELL M: Expression and function of the MAdCAM-1 receptor, integrin a487, on human leukocytes. j. Immunol (1994) 153:517–528.
  • HENDERSON RB, LIM LHK, TESSIER PA et al.: The use of lymphocyte function-associated antigen deficient mice to determine the role of LFA-1, Mac-1 and a4 integrin in the inflammatory response of neutrophils. j. Exp. Med. (2001) 194(2):219–226.
  • OSBORN L, VASSALLO C, BROWNING BG et al: Arrangement of domains, and amino acid residues required for binding of vascular cell adhesion molecule-1 to its counter-receptor VLA-4 (a431). j Cell Biol. (1994) 124(4):601–608.
  • •Describes mutagenesis experiments that define the major binding epitope for VLA-4 on VCAM.
  • RENZ ME, CHIU H, JONES S et al: Structural requirements for adhesion of soluble recombinant murine vascular cell adhesion molecule-1 to a481. j Cell Biol (1994) 125:1395–1406.
  • •Describes mutagenesis experiments that define the major binding epitope for VLA-4 on VCAM.
  • CLEMENTS JM, NEWHAM P, SHEPHERD M et al.: Identification of a key integrin-binding sequence in VCAM-1 homologous to the LDV active site in fibronectin. j. Cell Sci. 107:2127-2135.
  • •Describes mutagenesis experiments that define the major binding epitope for VLA-4 on VCAM.
  • CHIU HH, CROWE DT, RENZ ME, PRESTA LG, JONES S, WEISSMAN IL, FONG S: Similar but nonidentical amino acid residues on vascular cell adhesion molecule-1 are involved in the interaction with a481 and a4I37 under different activity states. j. Immunol (1995) 155:5257–5267.
  • •Describes mutagenesis experiments that define the major binding epitope for VLA-4 on VCAM.
  • JONES EY, HARLOS K, BOTTOMLEY MJ et al.: Crystal structure of an integrin-binding fragment of vascular cell adhesion molecule-1 at 1.8 A resolution. Nature (1995) 373:539–544.
  • •Reports the crystal structure of the portion of VCAM responsible for binding VLA-4.
  • WANG JH, PEPINSKY RB, STEHLE T etal.: The crystal structure of an N-terminal two-domain fragment of vascular cell adhesion molecule 1 (VCAM-1): A cyclic peptide based on the domain 1 C-D loop can inhibit VCAM-1 a4 integrin interaction. Proc. Natl. Acad. Sci. USA (1995) 92:5714–5718.
  • •Reports the crystal structure of the portion of VCAM responsible for binding VLA-4.
  • MAKAREM R, NE WHAM P, ASKARI JA etal.: Competitive binding of vascular cell adhesion molecule-1 and the HepII/IIICS domain of fibronectin to the integrin a481. J. Bic/. Chem. (1994) 269:4005–4011.
  • KOMORIYA A, GREEN IJ, MERVI M etal.: The minimal essential sequence for a major cell type-specific adhesion site (CS-1) within the alternatively spliced Type III connecting segment domain of fibronectin is leucine-aspartic acid-valine. j Biol. Chem. (1991) 266:15075–15079.
  • JONGEWAARD IN, AI PM, SMITH JW: The Type III connecting segment of fibronectin contains an aspartic acid residue that regulates the rate of binding to integrin a481. Cell Adhesion Comm. (1996) 3:487–495.
  • BAYLESS KJ, DAVIS GE: Identification of dual a481 integrin binding sites within a 38 amino acid domain in the N-terminal thrombin fragment of human osteopontin. ?Biol. Chem. (2001) 276:13483–13489.
  • SPRING FA, PARSONS SF, ORTLEPP S etal.: Intercellular adhesion molecule-4 binds a4131 and a+-family integrins through novel integrin-binding mechanisms. Blood (2001) 98(2):458–466.
  • BRISKIN M, WINSON-HINES D, SHYJAN A et al.: Human mucosal addressin cell adhesion molecule-1 is preferentially expressed in intestinal tract and associated lymphoid tissue. Am. Pathol (1997) 151:97–110.
  • LIU S, THOMAS SM, WOODSIDE DG etal.: Binding of paxillin to a4 integrins modifies integrin-dependent biological responses. Nature (1999) 402:676–681.
  • HAN J, LIU, S, ROSE, DM, SCHLAEPFER DD, MCDONALD H, GINSBERG MH: Phosphorylation of the integrin a4 cytoplasmic domain regulates paxillin binding. I Biol. Chem. (2001) 276:40903–40909.
  • ANDREWS RE KEPLEY CL, YOUSSEF L, WILSON RS, OLIVER JM: Regulation of the very late antigen-4-mediated adhesive activity of normal and nonreleaser basophils: roles for Src, Syk and phosphatidylinositol 3-kinase. j. Leukocyte Biol. (2001) 70(5):776–782.
  • HUGHES PE, PFAFF M: Integrin affinity modulation. Trend Cell Biol. (1998) 8:359–364.
  • BOCHNER BS: Road signs guiding leukocytes along the inflammation superhighway. j. Allergy Clin. Immunol (2000) 106:817–828.
  • SCHWARTZ MA, SCHALLER MD, GINSBERG MH: Integrins: emerging paradigms of signal transduction. Ann. Rev Cell Dev. Biol. (1995) 11:549–599.
  • LU C, TAKAGI J, SPRINGER TA: Association of the membrane proximal regions of the a and 13 subunit cytoplasmic domains constrains an integrin in the inactive state. j. Biol. Chem. (2001) 276:14642–14648.
  • HUMPHRIES MJ: Integrin Structure. Biochem. Soc. Trans. (2000) 28:311–329.
  • SPRINGER TA: Folding of the N-terminal, ligand-binding region of integrin asubunits into a I3-propeller domain. Proc. Natl. Acad. Li. USA (1997) 94:65–72.
  • •Theoretical study predicting the conformation of the a-subunit of %IV
  • TAKAGI J, BEGLOVA N, YALAMANCHILI P, BLACKLOW SC, SPRINGER TA: Definition of EGF-like, closely interacting modules that bear activation epitopes in integrin 13- subunits. Proc. Natl. Acad. Li. USA (2001) 98(20):11175–11180.
  • YOU TJ, MAXWELL DS, KOGAN TP, CHEN Q et al.: A 3D structure model of integrin a481 complex: Construction of a homology model of I31 and ligand binding analysis. Biophysical J. (2002) 82:447–457.
  • XIONG J-P, STEHLE T, DIEFENBACH B: Crystal Structure of the extracellular segment of integrin avi33. Science (2001) 294:339–345.
  • ••Reports the first crystal structure of theextracellular domains of an integrin together with these domains including a bound ligand.
  • XIONG JP, STEHLE T, ZHANG R et al.: Crystal structure of the extracellular segment of integrin ad33 in complex with an Arg-Gly-Asp ligand. Science (2002) 296:151–155.
  • ••Reports the first crystal structure of theextracellular domains of an integrin together with these domains including a bound ligand.
  • LEITINGER B, HOGG N: From crystal clear ligand binding to designer I domains. Nat. Struc. Biol. (2000) 7:614–616.
  • HUMPHRIES MJ: Integrin cell adhesion receptors and the concept of agonism. TIPS (2000) 21:29–32.
  • PACHECO KA, TARKOWSKI M, KLEMM J, ROSENWASSER LJ: CD49d Expression and function on allergen-stimulated T cells from blood and airway. Am. Respir Cell Mal Biol. (1998) 18:286–293.
  • BOCCHINO V, BERTORELLI G, D1PPOLITO R et al: The increased number of very late activation-4 positive cells correlates with eosinophils and severity of disease in the induced sputum of asthmatic patients. j Allergy Chit. Immunol (2000) 105:65–70.
  • MACKAY IR, ROSEN FS: T-cell function and migration. N Eng] I Med. (2000) 343:1020–1034.
  • BERLIN C, BARGATZE RE CAMPBELL JJ etal.: a4 Integrins mediate lymphocyte attachment and rolling under physiologic flow. Cell (1995) 80:413–422.
  • JOHNSTON B, ISSEKUTZ TB, KUBES P: The a4-integrin supports leukocyte rolling and adhesion in chronically inflamed postcapillary venules in vivo. j Exp. Med. (1996) 183:1995–2006.
  • WARDLAW AJ: Adhesion receptors. Drugs Future (1999) 24:279–286.
  • GANG L: Small molecule antagonists of the LFA-1/ICAM-1 interaction as potential therapeutic agents. Expert Opin. Ther. Patents (2001) 11(9):1383–1393.
  • OHKAWARA Y, YAMAUCHI K, MARUYAMA N etal.: In situ expression of the cell adhesion molecules in bronchial tissues from asthmatics with airflow limitation: in vivo evidence of VCAM-1/ VLA-4 interaction in selective eosinophil infiltration. Am. j Respir: Cell Mol Biol. (1995) 12:4–12.
  • •Reports the increase in VCAM levels in asthmatic patients.
  • ZANGRILLI JG, SHAVER JR, CIRELLI RA et al: VCAM-1 levels after segmental challenge correlate with eosinophil influx and IL-4 and IL-5 production, and the late phase response. Am. j Respir: Grit. Care Med. (1995) 151:1346–1353.
  • •Reports the increase in VCAM levels in asthmatic patients.
  • BORCHERS MT, CROSBY J, FARMER S et al: Blockade of CD49d inhibits allergic airway pathologies independent of effects on leukocyte recruitment. Am. I Physic] (2001) 280 (4)1813–L821.
  • •Reports on the therpeutic potential of anti-VLA-4 antibodies in animal models of allergic asthma.
  • HENDERSON WR, CHI EY, ALBERT RK etal.: Blockade of CD-49d (a4 integrin) on intrapulmonary but not circulating leukocytes inhibits airway inflammation and hyperresponsiveness in a mouse model of asthma. j Cl/n. Invest (1997) 100:3083–3092.
  • •Reports on the therpeutic potential of anti-VLA-4 antibodies in animal models of allergic asthma.
  • RICHARDS IM, KOLBASA KP, HATFIELD CA et al.: Role of very late activation antigen-4 in the lungs and airway lumen of sensitized brown Norway rats. Am. ?Respir: Cell Mol Biol. (1996) 15:172–183.
  • •Reports on the therpeutic potential of anti-VLA-4 antibodies in animal models of allergic asthma.
  • SAGARA H, MATSUDA H, WADA N et al: A monoclonal antibody against very late activation antigen-4 inhibits eosinophil accumulation and late asthmatic response in a guinea pig model of asthma. Int. Arch. Allergy Immunol (1997) 112:287–294.
  • •Reports on the therpeutic potential of anti-VLA-4 antibodies in animal models of allergic asthma.
  • LIN KC, ATEEQ HS, HSIUNG SH et al: Selective tight-binding inhibitors of integrin a4I31 that inhibit allergic airway responses. ?Med. Chem. (1999) 42:920–934.
  • KRAUSE BRIAN R, AUERBACH BRUCE J, BOCAN THOMAS MA: Direct vascular targets for atherosclerosis prevention. Curr. Med. Chem. Immunol Endocr. Metab. Agents (2001) 1:39–46.
  • SAXENA U, MEDFORD RIVI: Vascular adhesion molecule-I (VCAM-1), an inflammatory gene target for new therapeutics. Curr. Opin. Cardiovasc. Pul Rena] Invest. Drugs (2000) 2:258–262.
  • MISIAKOS EP, KOURAKLIS G, AGAPITOS E et al: Expression of PDGF-A, TGEb and VCAM-1 during the developmental stages of experimental atherosclerosis. Eur. Surg. Res. (2001) 33(4):264–269.
  • CYBULSKY MI, IIYAMA K, LI H et al: A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. I CM]. Invest. (2001) 107:1255–1262.
  • SHIH PT, BRENNAN ML, VORA DK et al.: Blocking of very late antigen-4 intergrin decreases leukocyte entry and fatty streak formation in mice fed an atherogenic diet. Circ. Res. (1999) 84:345–351.
  • ••This study of mice deficient in VCAMprovides compelling evidence for the role of the VCAMNLA-4 interation in the early stages of atherosclerosis.
  • KUNSCH C, MEDFORD RIVI: Oxidative stress as a regulator of gene expression in the vasculature. Circ. Res. (1999) 85(8):753–766.
  • MENG CQ: Probucol (restenosis) Daiichi. Cum: Opin. Cardiovasc. Pul Renal Invest. Drugs (2000) 2(3):294–298.
  • SOMERS PK, MEDFORD RM, SAXENA U: Dithiocarbamates: effects on lipid hydroperoxides and vascular inflammatory gene expression. Free Radical Biol. Med. (2000) 28(10):1532–1537.
  • MENG CQ, ZHENG XS, HOLT LA etal.: Nitrobenzene compounds inhibit expression of VCAM- I. Bioorg. Med. Chem. Lett. (2001) 11:1823–1827.
  • PREVITALI SC, HARTUNG HP: The role of integrins in immune-mediated diseases of the nervous system. Trends Neurosci. (1999) 22:30–38.
  • THEIEN BE, VANDERLUGT CL, EAGAR TN et al.: Discordant effects of anti-VLA-4 treatment before and after onset of relapsing experimental autoimmune encepahlomyelitis. I Chit. Invest. (2001) 107:995–1006.
  • ARCHELOS JJ, PREVITALI SC, HARTUNG HP: The role of integrins in immune mediated diseases of the nervous system. TINS (1999) 22:30–38.
  • KANWAR JR, HARRISON JEB, WANG Detal.: 137 Integrins contribute to demyelinating disease of the central nervous system. Neuroimmunol (2000) 103:146–152
  • BROCKE S, PIERCY C, STEINMAN L, WEISSMAN IL, VEROMAA T: Antibodies to CD44 and integrin a4, but not L-selectin, prevent central nervous system inflammation and experimental encephalomylitis by blocking secondary leukocyte recruitment. Proc. Nat] Acad. Li. USA (1999) 96:6896–6901.
  • REPARON-SCHUIJT CC, VAN ESCH WJE, VAN KOOTEN C et al: Regulation of synovial B cell survival in rheumatoid arthritis by vascular cell adhesion molecule 1 (CD106) expressed on fibroblast-like synoviocytes. Arthritis Rheum. (2000) 43:1115–1121.
  • KITANI A, NAKASHIMA N, IZUMIHARAT etal.: Soluble VCAM-1 induces chemotaxis of Jurkat and synovial fluid T cells bearing high affinity very late antigen-4. j Immunol (1998) 161:4931–4938.
  • TOKUHIRA M, HOSAKA S, VOLIN MV et al.: Soluble vascular cell adhesion molecule 1 mediation of monocyte chemotaxis in rheumatoid arthritis. Arthritis Rheum. (2000) 43:1122–1133.
  • SEIFFGE D: Protective effects of monoclonal antibody to VLA-4 on leukocyte adhesion and course of disease in adjuvant arthritis in rats. j Rheumatol (1996) 23:2086–2091.
  • CARTER RA, WICKS IP:Vascular cell adhesion molecule 1 (CD 106): a multifaceted regulator of joint inflammation. Arthritis Rheum. (2001) 44(5):985–994.
  • BRANDTZAEG P, HARALDSEN G, HELGELAND L, NILSEN EM, RUGTVEIT J: New insights into the immunopathology of human inflammatory bowel disease. Drugs Today (1999) 35(Suppl. A):33–70.
  • HESTERBERG PE, WINSOR-HINES D, BRISKIN MJ etal.: Rapid resolution of chronic colitis in the cotton-top tamarin with an antibody to a gut homing integrin a437. Gastroenterology (1996) 111:1373–1380.
  • KATO S, HOKARI R, MATSUZAKI K et al: Amelioration of murine experimental colitis by inhibition of mucosal addressin cell adhesion molecule-1. _J. Pharmacol Esp. Ther. (2000) 295:183–189.
  • PICARELLA D, HURLBUT E ROTTMAN J, SHI X, BUTCHER E, RINGLER DJ: Monoclonal antibodies specific for 137 integrin and mucosal addressin cell adhesion molecule-1 (MAdCAIVI-1) reduce inflammation in the colon of scid mice reconstituted with CD45RB high CD4+ T cells. I Immunol (1997) 158:2099–2106.
  • SORIANO A, SALAS A, SALAS A: VCAM-1, but not ICAM-1 or MAdCAM-1, immunoblockade ameliorates DSS-induced colitis in mice. Lab. Invest. (2000) 80:1541–1551.
  • POON BY, WARD CA, GILES WR, KUBES P: Emigrated neutrophils regulate vertricular contractillity via a4 integrin. Circ. Res. (1999) 84:1245–1251.
  • POON BY, WARD CA, COOPER CB, GILES WR, BURNS AR: a4Integrin mediates neutrophil-induced free radical injury to cardiac myocytes. j Cell Biol. (2001) 152:857–866.
  • BURNE MJ, ELGHAND OUR A, HAQ M et al.: IL-1 and TNF independent pathways mediate ICAM-1NCAM-1 up-regulation in ischemic reperfusion injury. Leukocyte Biol. (2001) 70(2):192–198.
  • RELTON JK, SLOAN KE, FREW EM, WHALLEY ET, ADAMS S), LOBB RR: Inhibition of a4 integrin protects against transient focal cerebral ischemia in normotensive and hypertensive rats. Stroke (2001) 32:199–205.
  • PAPAYANNOPOULOU T, CRADDOCK C, NAKAMOTO B, PRIESTLEY GV, WOLF NS: The VLA-4NCAM-1 adhesion pathway defines contrasting mechanisms of lodgement of transplanted murine hemopoietic progenitors between bone marrow and spleen. Proc. Natl. Acad. Sci. USA (1995) 92:9647–9651.
  • CHAN JYH, WATT SM: Adhesion receptors on haematopoietic progenitor cells. Br .j Haemtol (2001) 112:541–557.
  • WEEKES CD, KUSZYNSKI CA, SHARP JG: VLA-4 mediated adhesion to bone marrow stromal cells confers chemoresistance to adherent lymphoma cells. Leuk. Lymphoma (2001) 40:631–645.
  • MICHIGAMI T, SHIMIZU N, WILLIAMS PJ etal.: Cell-cell contact between marrow stromal cells and myeloma cells via VCAM-1 and a431 integrin enhances production of osteoclast-stimulating activity. Blood (2000) 96:1953–1960.
  • DAMIANO JS, CRESS AE, HAZLEHURST LA, SHTIL AA, DALTON WS: Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood (1999) 93:1658–1667.
  • KWEE L, BALDWIN HS, SHEN HM, STEWART CL, BUCK CA, LAB OW MA: Defective development of the embryonic and extra embryonic circulatory systems in vascular cell adhesion molecule (VCAM-1) deficient mice. Development (1995) 121:489–503.
  • GURTNER GC, DAVIS V, LI H, MCCOY MJ, SHARPE A, CYBULSKY MI: Targeted disruption of the murine VCAM-1 gene: essential role of VCAM-1 in chorioallontoic fusion and placentation. Genes Dev. (1995) 9:1–14.
  • KONI PA, JOSHI SK, TEMANN UA, OLSON D, BURKLY L, FLAVELL RA: Conditional vasucular cell adhesion molecule 1 deletion in mice: impaired lymphocyte migration to bone marrow. Esp. Med. (2001) 193:741–753.
  • LEUKER CE, LABOW M, MUELLER W, WAGNER N: Neonatally induced inactivation of the vascular cell adhesion molecule-1 gene impairs B cell localization and T cell-dependent humoral immune response. j Exp. Med. (2001) 193:755–767.
  • ANTHONI D, RIJCKEN E, MENNIGEN R, SENNINGER N, BENNETT CF, SCHURMANN G: Inhibition of leukocyte-endothelial interaction by antisense oligonucleotides against VCAM-1 in a rat model of inflammatory bowel disease. Chit: Forum Esp. Kiln. Forsch. (2000:179–181.
  • ELICES M: Natalizumab Elan: Curr. Opin. Antidrillarnm. Immunomodulatory Invest. Drugs (2000) 2:228–235.
  • CARTER JL, AGIUS M, MASS M et al: A placebo-controlled, pharmacodynamic, pharmacokinetic, tolerability and safety study of three doses of intravenous Natalizumab in multiple sclerosis. Neurology (2000) 54:A259\(Suppl. 3).
  • •Reports the first reported clinical studies of the anti-a4 antibody Natalizumab in multiple sclerosis.
  • SHEREMATA WA, VOLLMER TL, STONE LA, WILLMER-HULME AJ, KOLLER M: A safety and pharmacokinetic study of intravenous Natalizumab in patients with MS. Neurology (1999) 52:1072–1074.
  • •Reports the first reported clinical studies of the anti-a4 antibody Natalizumab in multiple sclerosis.
  • TUBRIDY N, BEHAN PO, CAPILDEO R et al.: The effect of anti- a4 integrin antibody on brain lesion activity in MS. Neurology (1999) 53:466–472.
  • •Reports the first reported clinical studies of the anti-a4 antibody Natalizumab in multiple sclerosis.
  • GORDON FH, CLEMENT CWY, HAMILTON MI et al: A randomized placebo-controlled trial of a humanized monoclonal antibody to a4 integrin in active Crohn's disease. Gastroenterology (2001) 121:268–274.
  • •Report the first clinical studies of the anti-a4 antibody in Crohn's disease.
  • GHOSH S, GOLDIN E, MALCHOW HA et al: A randomized double-blind, placebo-controlled, pan-European study of a recombinant humanized antibody to a4 integrin (AntegreMD) in moderately to severe active Crohn's disease. Gastroenterology (2001) 120:(Suppl. 1)A127–A128.
  • •Report the first clinical studies of the anti-a4 antibody in Crohn's disease.
  • GORDON FH, HAMILTON MI, FREE R et al.: Treatment of active ulcerative colitis with a recombinant humanized antibody to a-4 integrin (Antegren®). Gastroenterology (1999) 116:A726.
  • •Report the first clinical studies of the anti-a4 antibody in Crohn's disease.
  • NOWLIN DM, GORCSAN F, MOSCINSKI M, CHIANG S, LOBL TJ, CARDARELLI PM: A novel cyclic pentapeptide inhibits a4/I31 and a5/131 integrin-mediated cell adhesion. j Biol. Chem. (1993) 268:20352–20359.
  • FOTOUHI N, JOSHI E FRY D et al: The design and synthesis of potent cyclic peptide VCAM-VLA-4 antagonists incorporating an achiral Asp-Pro mimetic. Bioorg. Med. Chem. Lett. (2000) 10:1171–1173.
  • JACKSON DY, QUAN C, ARTIS DR et al.: Potent a4I31 peptide antagonists as potential anti-inflammatory agents. j Med Chem. (1997) 40:3359–3368.
  • FOTOUHI N, JOSHI P, TILLEY JW et al: Cyclic thioether peptide mimetics as VCAM-VLA-4 antagonists. Bioorg. Med. Chem. Lett. (2000) 10:1167–1169.
  • DUTTA AS, GORMLEY JJ, COATH M et al.: Potent cyclic peptide inhibitors of VLA-4 (a431 integrin) -mediatedcell adhesion. Discovery of compounds like cyclo(MePhe-Leu-Asp-Val-dArg-dArg) (ZD7349) compatible with depot formulation. j PepL Sci. (2000) 6:398–412.
  • DUTTA AS, MANDY C, GORMLEY JJ et al.: Potent cyclic monomeric and dimeric peptide inhibitors of VLA-4 (a4l31 integrin)-mediated cell adhesion based on the Ile-Leu-Asp-Val tetrapeptide. I Peptide Sci. (2000) 6:321–341.
  • ARRHENIUS T, CHIEM A, ELICES M et al.: Small molecule inhibitors of the leukocyte integrin VLA-4. Peptides Chem. Struct Biol. PTOC. Am. Pept. Symp. 14th (1996)337–339.
  • ABRAHAM WM, ASHFAQ A, SIELCZAK MW, NARITA M, ARRHENIUS T, ELICES MJ: Blockade of late-phase airway response and airway hyperresponsiveness in allergic sheep with a small-molecule peptide inhibitor of VLA-4. Am. J Respir Ctit. Care Med. (1999) 156:696–703
  • RICHARD B, WAY W, HUYGHE B et al:CY-9701, a small molecule VLA-4 inhibitor modulates proinflammatory cytokines in an allergic mouse asthma model. Am. I Respit: Grit. Care Med. (1999) 159:(Suppl. 2):327.
  • CHEN LL, WHITTY A, LOBB RR, ADAMS SP, PEPINSKY RB: Multiple activation states of integrin a4131 detected through their different affinities for a small molecule ligand. I Biol. Chem. (1999) 274:13167–13175.
  • •First evidence that Kd and off rates are sensitive to the activation state of the cell expressing ce4[31.
  • CHEN LL, WHITTY A, SCOTT D et al:Evidence that ligand and metal ion binding to integrin a4l31 are regulated through a coupled equiLibrium. I Biol. Chem. (2001) 276(39)36520–36529.
  • LOCKEY P, STOPPARD A, WHITE E, WHITE M, WONG W: IVL-745, a potent, selective, low molecular weight antagonist of VLA-4 mediated cell adhesion. Am. I Respit: Grit. Care Med. (2000) 161:A201.
  • •Contains the first reports of the pharmacology of the development candidate IVL-745.
  • BAHRA P, EBS WORTH K, LAWRENCE CE, WEBBER SE, WILLIAMS RJ: The VLA-4 agtagonist IVL-745 is a novel and potent inhibitor of human lymphocyte adhesion to VCAM-1. Am. I Respir. Grit. Care Med. (2000) 161:A201.
  • •Contains the first reports of the pharmacology of the development candidate IVL-745.
  • CAIRNS JA, KAIK K, LLOYD J, WEBBER SE, WILLIAMS RJ: The VLA-4 antagonist, IVL-745 is a novel and potent inhibitor of eosinophil adhesion to VCAM. Am. I Resp. Grit. Care Med. (2000) 161:A202.
  • •Contains the first reports of the pharmacology of the development candidate IVL-745.
  • EBSWORTH K, LAWRENCE CE, WEBBER SE, WILLIAMS RJ: The VLA-4 agtagonist IVL-745 is a novel and potent inhibitor of VCAM-1 co-stimulated human T-cell activation. Am. I Respir. Grit. Care Med. (2000) 161:A201.
  • •Contains the first reports of the pharmacology of the development candidate IVL-745.
  • UNDERWOOD SL, PRINCE L, PAGE K, WEBBER SE, FOSTER ML: hi vivo profile of the novel VLA-4 antagonist IVL-745 in antigen induced airway inflammation in the rat. Am. I Respir. Grit. Care Med. (2000) 161:A199.
  • •Contains the first reports of the pharmacology of the development candidate IVL-745.
  • WATTANASIN S, WEIDMANN B, ROCHE D etal.: Design and synthesis of potent and selective inhibitors of the integrin VLA-4. Bioorg. Med. Chem. Lett. (2001) 11:2955-2958. Ica DUPLANTIER AJ, BECKIUS GE, CHAMBERS, RJ et al: Isoxazolyl, oxazolyl, and thiazolylpropionic acid derivatives as potent a431 integrin antagonists. Bioorg. Med. Chem. Lett. (2001) 11:2593–2596.
  • MUELLER G, ALBERS M, FISCHER R etal.: Discovery and evaluation of piperidinyl carboxylic acids as potent a431 integrin antagonists. Bioorg. Med. Chem. Lett. (2001) 11:3019–3021.
  • HOLLAND GW, KASSIR JM, SCOTT IL etal.: TBC3486: novel highly potent, and selective VLA-4 antagonist. Book of Abstracts 219th American Chemical Society National Meeting, MEDI 10. March (2000). Ica KASSIR PVT, SCOTT IL, BIEDIGER RJ etal.: Novel N,N-disubstituted amides that are highly potent VLA-4 antagonists. Book of Abstracts 219th American Chemical Society National Meeting, MEDI 284. March (2000).
  • SCOTT IL, RAJU BG, REN K etal.: Novel urea derivatives that are potent VLA-4 antagonists. Book of Abstracts, 219th American Chemical Socieh National illeeting, MEDI 283. March (2000).
  • CHEN L, TILLEY JW, HAUNG TN etal.: N-Acyl phenylalanine analogues as potent small molecule VLA-4 antagonists. Bioorg. Med. Chem. Lett. (2000) 10:725–727.
  • DE LASZLO SE, LI B, MCCAULEY E etal.: Identification of unique VLA-4 antagonists from a combinatorial library. Bioorg. Med. Chem. Lett. (2002) 12:685–688.
  • ARCHIBALD SC, HEAD JC, GOZZARD N etal.: Discovery and evaluation of potent, tyrosine-based a4I31 integrin antagonists. Bioorg. Med. Chem. Lett. (2000) 10:997–999.
  • PORTER J: From cyclic peptide to small molecule antagonists of VLA-4. 11th Symposium on medicinal chemistry in eastern England April (2000).
  • KOPKA IE, YOUNG DN, LIN LS etal.: Substituted N- (3,5-dichlorobenzenesulfonyl)-L-prolyl-phenylalanine analogues as potent VLA-4 antagonists. Bioorg. Med. Chem. Lett. (2002) 12:637–640.
  • •The binding activity and pharmacoltinetics of all four diastereomers of a prolyl-phenylalanine derivative are reported.
  • SARANTAKIS D, BAUDY RB, BICKSLER JJ et al.: Acylated p-amino-L-phenylalanines-with VLA-4NCAM-1 inhibitory activity. Book of Abstracts, 220th American Chemical Socieo, National Meeting, MEDI 136. August (2000).
  • SARANTAKIS D, BICKSLER JJ, CANNON C et al: VLA-4NCAM inhibitors - dipeptide p-amino-L-phenylalanine amides. Book of Abstracts, 220th American Chemical Socieo, National Meeting, MEDI 137, MEDI 058. August (2000).
  • rIEEGARDEN BR, RISHTON GM, YAMAGISHI M et al: Discovery of TR-9109: a novel small molecule inhibitor of c(4131 integrin mediated cell adhesion. Book of Abstracts, 218th American Chemical Society National Meeting. August (1999).
  • SIDDURI A, TILLEY JW, HULL K et al: N-Cycloalkanoyl-L-phenylalanine derivatives as VCAM/VLA-4 antagonists. Bioorg. Med. Chem. Lett. (2002) 12:In press.
  • CHEN L, TILLEY JW, GUTHRIE RW et al: N-Benzylpyroglutamyl-L-phenylalanine derivatives as VCAMNLA-4 antagonists. Bioorg. Med. Chem. Lett. (2000) 10:729–733.
  • SIDDURI A, TILLEY JW, CHEN L et al: N-Aroyl-L-phenylalanine derivatives as VCAM/VLA-4 antagonists. Bioorg. Med Chem. Lett. (2002) 12:In press.
  • TILLEY JW, KAPLAN G, ROWAN K, SCHWINGE V, WOLITZKY B: Imide and lactam derivatives of N-benzylpyroglutamyl-L-phenylalanine as VCAM/VLA-4 antagonists. Bioorg Med Chem. Lett. (2001) 11:1–4.
  • SIDDURI A, LOU JP, CAMPBELL R, ROWEN K, TILLEY JW: Synthesis of constrained L-phenylalanine derivatives incorporating a benzazepinone or an azepinone ring as VCAMNLA-4 antagonists. Tett. Lett. (2001) 42:8757–8760.
  • PORTER JR, ARCHIBALD SC, CHILDS, K et al.: Squaric acid derivatives as VLA-4 integrin antagonists. Bioorg. Med. Chem. Lett. (2002) 12:1051–1054.
  • CHANG LL, TROUNG, Q, MUMFORD, RA et al.: The discovery of small molecule carbamates as potent dual a4131/a4137 integrin antagonists. Bioorg. Med. Chem. Lett. (2002) 12:159–163.
  • CHEN L, TILLEY JW, TRILLES R et al: N-Acyl-L-phenylalanine derivatives as potent VLA-4 antagonists that mimic a cyclic peptide conformation. Bioorg. Med. Chem. Lett. (2002) 12:137–140.
  • SIRCAR I, GUDMUNDSSON K, MARTIN R et a/.: Discovery of TR-14035; an orally active dual a4-I31 integrin antagonist. 218th American Chemical Society National Meeting. Abstracts MEDI 59 and MEDI 60. August (1999).
  • HAGMANN WK, DURETTE PL, LANZA T et al.: The discovery of sulfonated dipeptides as potent VLA-4 antagonists. Bioorg. Med. Chem. Lett. (2001) 11:2709–2713.
  • LIN LS, LANZA T, MCCAULEY E et al.: Specific and dual acting antagonists of a431 and a4I37integrins. Bioorg. Med. Chem. Lett. (2002) 12:133–136.
  • YANG GX, CHANG LL, TRUONG Q et al.: N-Tetrahydrofuroyl-W-phenylalanine derivatives as potent VLA-4 antagonists. Biaarg. Med. Chem. Lett. (2002) 12:1497–1500.
  • DOHERTY GA, YANG G, BORGES E et al.: Substituted tetrahydrofuroyl-L-phenylalanine derivatives as potent and specific VLA-4 inhibitors. Bioorg. Med. Chem. Lett. (2002) 12:1501–1505.
  • LI B, DE LASZLO SE, KAMENECKA T et al.: N-(Arylacetyfi-biphenylalanines as potent VLA-4 antagonists. Bioorg. Med. Chem. Lett. (2002) 12:In press
  • KAMENECKA TM, LANZA T, DE LASZLO SE et al: N-Aryl-prolyl-dipeptides as potent antagonists of VLA-4. Bioorg. Med. Chem. Lett. (2002) 12:In press.
  • DOHERTY GA, KAMENECKA T, MCCAULEY E et al: N-Aryl 2,6-dimethoxybiphenylalanine analogues as VLA-4 antagonists. Bioorg. Med. Chem. Lett. (2002) 12:729–731
  • LIN LS, KOPKA IE, MUMFORD RA et al.: The discovery of acylated 3-amino acids as potent and orally bioavailable VLA-4 antagonists. Bioorg. Med. Chem. Lett. (2002) 12:611–614.

Websites

  • AtheroGenics press release available at www.atherogenics.com.
  • ISIS Pharmaceuticals press release available at: www.ISIS.com
  • Biogen company press release available at: www.biogen.com
  • GlaxoSmithKline corporate web site: www.gsk.com.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.