73
Views
6
CrossRef citations to date
0
Altmetric
Review

Proteomics-based discovery of biomarkers and therapeutic targets in neurodegenerative diseases: perspective of microglia and neuroinflammation

Pages 237-247 | Published online: 28 Feb 2006

Bibliography

  • STREIT WJ, MRAK RE, GRIFFIN WS: Microglia and neuroinflammation: a pathological perspective. J. Neuroinflammation (2004) 1(1):14.
  • KIM SU, DE VELLIS J: Microglia in health and disease. J. Neurosci. Res. (2005) 81(3):302-313.
  • MINGHETTI L: Role of inflammation in neurodegenerative diseases. Curr. Opin. Neurol. (2005) 18(3):315-321.
  • ALDSKOGIUS H: Regulation of microglia – potential new drug targets in the CNS. Expert Opin. Ther. Targets (2001) 5(6):655-668.
  • SUK K: Regulation of neuroinflammation by herbal medicine and its implications for neurodegenerative diseases: a focus on traditional medicines and flavonoids. Neurosignals (2005) 14(1-2):23-33.
  • KIM SI, VOSHOL H, VAN OOSTRUM J et al.: Neuroproteomics: expression profiling of the brain’s proteomes in health and disease. Neurochem. Res. (2004) 29(6):1317-1331.
  • GRANT SG, BLACKSTOCK WP: Proteomics in neuroscience: from protein to network. J. Neurosci. (2001) 21(21):8315-8318.
  • MORRISON RS, KINOSHITA Y, JOHNSON MD et al.: Proteomic analysis in the neurosciences. Mol. Cell Proteomics (2002) 1(8):553-560.
  • FREEMAN WM, HEMBY SE: Proteomics for protein expression profiling in neuroscience. Neurochem. Res. (2004) 29(6):1065-1081.
  • VERCAUTEREN FG, BERGERON JJ, VANDESANDE F, ARCKENS L, QUIRION R: Proteomic approaches in brain research and neuropharmacology. Eur. J. Pharmacol. (2004) 500(1-3):385-398.
  • MATHISEN PM: Gene discovery and validation for neurodegenerative diseases. Drug Discov. Today (2003) 8(1):39-46.
  • DAVIDSSON P, SJOGREN M: The use of proteomics in biomarker discovery in neurodegenerative diseases. Dis. Markers (2005) 21(2):81-92.
  • JOHNSON MD, YU LR, CONRADS TP et al.: The proteomics of neurodegeneration. Am. J. Pharmacogenomics (2005) 5(4):259-270.
  • XIAO Z, PRIETO D, CONRADS TP, VEENSTRA TD, ISSAQ HJ: Proteomic patterns: their potential for disease diagnosis. Mol. Cell Endocrinol. (2005) 230(1-2):95-106.
  • HO L, SHARMA N, BLACKMAN L et al.: From proteomics to biomarker discovery in Alzheimer’s disease. Brain Res. Brain Res. Rev. (2005) 48(2):360-369.
  • BUTTERFIELD DA: Proteomics: a new approach to investigate oxidative stress in Alzheimer’s disease brain. Brain Res. (2004) 1000(1-2):1-7.
  • TSUJI T, SHIOZAKI A, KOHNO R, YOSHIZATO K, SHIMOHAMA S: Proteomic profiling and neurodegeneration in Alzheimer’s disease. Neurochem. Res. (2002) 27(10):1245-1253.
  • HE QY, CHIU JF: Proteomics in biomarker discovery and drug development. J. Cell. Biochem. (2003) 89(5):868-886.
  • STUBBERFIELD CR, PAGE MJ: Applying proteomics to drug discovery. Expert Opin. Investig. Drugs (1999) 8(1):65-70.
  • ESPINA V, DETTLOFF KA, COWHERD S, PETRICOIN EF III, LIOTTA LA: Use of proteomic analysis to monitor responses to biological therapies. Expert Opin. Biol. Ther. (2004) 4(1):83-93.
  • VITZTHUM F, BEHRENS F, ANDERSON NL, SHAW JH: Proteomics: from basic research to diagnostic application. A review of requirements & needs. J. Proteome Res. (2005) 4(4):1086-1097.
  • RIGHETTI PG, CAMPOSTRINI N, PASCALI J, HAMDAN M, ASTNER H: Quantitative proteomics: a review of different methodologies. Eur. J. Mass Spectrom. (2004) 10(3):335-348.
  • KUNZ GM, JR., CHAN DW: The use of laser capture microscopy in proteomics research – a review. Dis. Markers (2004) 20(3):155-160.
  • SCHONBERGER SJ, EDGAR PF, KYDD R, FAULL RL, COOPER GJ: Proteomic analysis of the brain in Alzheimer’s disease: molecular phenotype of a complex disease process. Proteomics (2001) 1(12):1519-1528.
  • CARRETTE O, DEMALTE I, SCHERL A et al.: A panel of cerebrospinal fluid potential biomarkers for the diagnosis of Alzheimer’s disease. Proteomics (2003) 3(8):1486-1494.
  • ZHANG J, GOODLETT DR, QUINN JF et al.: Quantitative proteomics of cerebrospinal fluid from patients with Alzheimer’s disease. J. Alzheimers Dis. (2005) 7(2):125-133; discussion 173-180.
  • PUCHADES M, HANSSON SF, NILSSON CL et al.: Proteomic studies of potential cerebrospinal fluid protein markers for Alzheimer’s disease. Brain Res. Mol. Brain Res. (2003) 118(1-2):140-146.
  • LOPEZ MF, MIKULSKIS A, KUZDZAL S et al.: High-resolution serum proteomic profiling of Alzheimer’s disease samples reveals disease-specific, carrier-protein-bound mass signatures. Clin. Chem. (2005).
  • TILLEMAN K, VAN DEN HAUTE C, GEERTS H et al.: Proteomics analysis of the neurodegeneration in the brain of tau transgenic mice. Proteomics (2002) 2(6):656-665.
  • TILLEMAN K, STEVENS I, SPITTAELS K et al.: Differential expression of brain proteins in glycogen synthase kinase-3 transgenic mice: a proteomics point of view. Proteomics (2002) 2(1):94-104.
  • CHOI J, FORSTER MJ, MCDONALD SR et al.: Proteomic identification of specific oxidized proteins in ApoE-knockout mice: relevance to Alzheimer’s disease. Free Radic. Biol. Med. (2004) 36(9):1155-1162.
  • HINERFELD D, TRAINI MD, WEINBERGER RP et al.: Endogenous mitochondrial oxidative stress: neurodegeneration, proteomic analysis, specific respiratory chain defects, and efficacious antioxidant therapy in superoxide dismutase 2 null mice. J. Neurochem. (2004) 88(3):657-667.
  • KANNINEN K, GOLDSTEINS G, AURIOLA S, ALAFUZOFF I, KOISTINAHO J: Glycosylation changes in Alzheimer’s disease as revealed by a proteomic approach. Neurosci. Lett. (2004) 367(2):235-240.
  • SHIN SJ, LEE SE, BOO JH et al.: Profiling proteins related to amyloid deposited brain of Tg2576 mice. Proteomics (2004) 4(11):3359-3368.
  • ZHANG J, GOODLETT DR: Proteomic approach to studying Parkinson’s disease. Mol. Neurobiol. (2004) 29(3):271-288.
  • BASSO M, GIRAUDO S, CORPILLO D et al.: Proteome analysis of human substantia nigra in Parkinson’s disease. Proteomics (2004) 4(12):3943-3952.
  • CHOI J, LEVEY AI, WEINTRAUB ST et al.: Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson’s and Alzheimer’s diseases. J. Biol. Chem. (2004) 279(13):13256-13264.
  • JIN J, MEREDITH GE, CHEN L et al.: Quantitative proteomic analysis of mitochondrial proteins: relevance to Lewy body formation and Parkinson’s disease. Brain Res. Mol. Brain Res. (2005) 134(1):119-138.
  • FUKADA K, ZHANG F, VIEN A, CASHMAN NR, ZHU H: Mitochondrial proteomic analysis of a cell line model of familial amyotrophic lateral sclerosis. Mol. Cell. Proteomics (2004) 3(12):1211-1223.
  • POON HF, HENSLEY K, THONGBOONKERD V et al.: Redox proteomics analysis of oxidatively modified proteins in G93A-SOD1 transgenic mice – a model of familial amyotrophic lateral sclerosis. Free Radic. Biol. Med. (2005) 39(4):453-462.
  • RAMSTROM M, IVONIN I, JOHANSSON A et al.: Cerebrospinal fluid protein patterns in neurodegenerative disease revealed by liquid chromatography-Fourier transform ion cyclotron resonance mass spectrometry. Proteomics (2004) 4(12):4010-4018.
  • HALLIWELL B: Oxygen radicals, nitric oxide and human inflammatory joint disease. Ann. Rheum. Dis. (1995) 54(6):505-510.
  • NAKAJIMA K, KOHSAKA S: Microglia: activation and their significance in the central nervous system. J. Biochem. (2001) 130(2):169-175.
  • LIU B, HONG JS: Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J. Pharmacol. Exp. Ther. (2003) 304(1):1-7.
  • CHAVARRIA A, ALCOCER-VARELA J: Is damage in central nervous system due to inflammation? Autoimmun. Rev. (2004) 3(4):251-260.
  • GEHRMANN J, MATSUMOTO Y, KREUTZBERG GW: Microglia: intrinsic immuneffector cell of the brain. Brain Res. Brain Res. Rev. (1995) 20(3):269-287.
  • GREMO F, SOGOS V, ENNAS MG et al.: Features and functions of human microglia cells. Adv. Exp. Med. Biol. (1997) 429:79-97.
  • STOLL G, JANDER S: The role of microglia and macrophages in the pathophysiology of the CNS. Prog. Neurobiol. (1999) 58(3):233-247.
  • STREIT WJ, WALTER SA, PENNELL NA: Reactive microgliosis. Prog. Neurobiol. (1999) 57(6):563-581.
  • KREUTZBERG GW: Microglia: a sensor for pathological events in the CNS. Trends Neurosci. (1996) 19(8):312-318.
  • MINGHETTI L, LEVI G: Microglia as effector cells in brain damage and repair: focus on prostanoids and nitric oxide. Prog. Neurobiol. (1998) 54(1):99-125.
  • GONZALEZ-SCARANO F, BALTUCH G: Microglia as mediators of inflammatory and degenerative diseases. Ann. Rev. Neurosci. (1999) 22:219-240.
  • ARAQUE A, PEREA G: Glial modulation of synaptic transmission in culture. Glia (2004) 47(3):241-248.
  • VESCE S, BEZZI P, VOLTERRA A: The active role of astrocytes in synaptic transmission. Cell Mol. Life Sci. (1999) 56(11-12):991-1000.
  • ASCHNER M: Astrocytes as mediators of immune and inflammatory responses in the CNS. Neurotoxicology (1998) 19(2):269-281.
  • GALEA E, FEINSTEIN DL, REIS DJ: Induction of calcium-independent nitric oxide synthase activity in primary rat glial cultures. Proc. Natl. Acad. Sci. USA (1992) 89(22):10945-10949.
  • SAWADA M, KONDO N, SUZUMURA A, MARUNOUCHI T: Production of tumor necrosis factor-α by microglia and astrocytes in culture. Brain Res. (1989) 491(2):394-397.
  • SIMMONS ML, MURPHY S: Induction of nitric oxide synthase in glial cells. J. Neurochem. (1992) 59(3):897-905.
  • PANICKAR KS, NORENBERG MD: Astrocytes in cerebral ischemic injury: morphological and general considerations. Glia (2005) 50(4):287-298.
  • PEKNY M, NILSSON M: Astrocyte activation and reactive gliosis. Glia (2005) 50(4):427-434.
  • GIFFARD RG, SWANSON RA: Ischemia-induced programmed cell death in astrocytes. Glia (2005) 50(4):299-306.
  • BECHER B, PRAT A, ANTEL JP: Brain-immune connection: immuno-regulatory properties of CNS-resident cells. Glia (2000) 29(4):293-304.
  • POPOVICH PG, JONES TB: Manipulating neuroinflammatory reactions in the injured spinal cord: back to basics. Trends Pharmacol. Sci. (2003) 24(1):13-17.
  • STREIT WJ: Microglia and neuroprotection: implications for Alzheimer’s disease. Brain Res. Brain Res. Rev. (2005) 48(2):234-239.
  • STREIT WJ: Microglia and Alzheimer’s disease pathogenesis. J. Neurosci. Res. (2004) 77(1):1-8.
  • GIULIAN D: Ameboid microglia as effectors of inflammation in the central nervous system. J. Neurosci. Res. (1987) 18(1):155-171, 132-153.
  • GIULIAN D, HAVERKAMP LJ, LI J et al.: Senile plaques stimulate microglia to release a neurotoxin found in Alzheimer brain. Neurochem. Int. (1995) 27(1):119-137.
  • VON KNETHEN A, LOTERO A, BRUNE B: Etoposide and cisplatin induced apoptosis in activated RAW 264.7 macrophages is attenuated by cAMP-induced gene expression. Oncogene (1998) 17(3):387-394.
  • ALBINA JE, CUI S, MATEO RB, REICHNER JS: Nitric oxide-mediated apoptosis in murine peritoneal macrophages. J. Immunol. (1993) 150(11):5080-5085.
  • ADLER B, ADLER H, JUNGI TW, PETERHANS E: Interferon-α primes macrophages for lipopolysaccharide-induced apoptosis. Biochem. Biophys. Res. Commun. (1995) 215(3):921-927.
  • LIU B, WANG K, GAO HM et al.: Molecular consequences of activated microglia in the brain: overactivation induces apoptosis. J. Neurochem. (2001) 77(1):182-189.
  • LEE P, LEE J, KIM S et al.: NO as an autocrine mediator in the apoptosis of activated microglial cells: correlation between activation and apoptosis of microglial cells. Brain Res. (2001) 892:380-385.
  • SUK K, LEE J, HUR J et al.: Activation-induced cell death of rat astrocytes. Brain Res. (2001) 900:342-347.
  • HANISCH UK: Microglia as a source and target of cytokines. Glia (2002) 40(2):140-155.
  • MCGEER PL, MCGEER EG: The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res. Brain Res. Rev. (1995) 21(2):195-218.
  • ENOSE Y, DESTACHE CJ, MACK AL et al.: Proteomic fingerprints distinguish microglia, bone marrow, and spleen macrophage populations. Glia (2005) 51(3):161-172.
  • GAN L, YE S, CHU A et al.: Identification of cathepsin B as a mediator of neuronal death induced by Aβ-activated microglial cells using a functional genomics approach. J. Biol. Chem. (2004) 279(7):5565-5572.
  • ZHOU Y, WANG Y, KOVACS MI, JIN J, ZHANG J: Microglial activation induced by neurodegeneration – a proteomic analysis. Mol. Cell Proteomics (2005).
  • POTOLICCHIO I, CARVEN GJ, XU X et al.: Proteomic analysis of microglia-derived exosomes: metabolic role of the aminopeptidase CD13 in neuropeptide catabolism. J. Immunol. (2005) 175(4):2237-2243.
  • EGNACZYK GF, POMONIS JD, SCHMIDT JA et al.: Proteomic analysis of the reactive phenotype of astrocytes following endothelin-1 exposure. Proteomics (2003) 3(5):689-698.
  • LAFON-CAZAL M, ADJALI O, GALEOTTI N et al.: Proteomic analysis of astrocytic secretion in the mouse. Comparison with the cerebrospinal fluid proteome. J. Biol. Chem. (2003) 278(27):24438-24448.
  • HAUCK SM, SUPPMANN S, UEFFING M: Proteomic profiling of primary retinal Müller glia cells reveals a shift in expression patterns upon adaptation to in vitro conditions. Glia (2003) 44(3):251-263.
  • POCERNICH CB, BOYD-KIMBALL D, POON HF et al.: Proteomics analysis of human astrocytes expressing the HIV protein Tat. Brain Res. Mol. Brain Res. (2005) 133(2):307-316.
  • YANG JW, SUDER P, SILBERRING J, LUBEC G: Proteome analysis of mouse primary astrocytes. Neurochem. Int. (2005) 47(3):159-172.
  • MORGAN D, GORDON MN, TAN J et al.: Dynamic complexity of the microglial activation response in transgenic models of amyloid deposition: implications for Alzheimer therapeutics. J. Neuropathol. Exp. Neurol. (2005) 64(9):743-753.

Patents

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.