32
Views
0
CrossRef citations to date
0
Altmetric
Reviews

DNA vaccines against infectious agents: recent strategies for enhancing immune responses

, PhD
Pages 365-373 | Published online: 07 Apr 2008

Bibliography

  • Wolff JA, Malone RW, Williams P, et al. Direct gene transfer into mouse muscle in vivo. Science 1990;247:1465-8
  • Yang NS, Burkholder J, Roberts B, et al. In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment. Proc Natl Acad Sci USA 1990;87(24):9568-72
  • Xiang ZQ, Spitalnik S, Tran M, et al. Vaccination with a plasmid vector carrying the rabies virus glycoprotein gene induces protective immunity against rabies virus. Virology 1994;199(1):132-40
  • Ulmer JB, Donnelly JJ, Parker SE, et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 1993;259:1745-9
  • Xiang ZQ, Spitalnik SL, Cheng J, et al. Immune responses to nucleic acid vaccines to rabies virus. Virology 1995;209:569-79
  • Luke CJ, Carner K, Liang X, Barbour AG. An OspA-based DNA vaccine protects mice against infection with Borrelia burgdorferi. J Infect Dis 1997;175:91-7
  • Tascon RE, Colston MJ, Ragno S, et al. Vaccination against tuberculosis by DNA injection. Nat Med 1996;2:888-92
  • Sedegah M, Hedstrom R, Hobart P, Hoffman SL. Protection against malaria by immunization with plasmid DNA encoding circumsporozoite protein. Proc Natl Acad Sci USA 1994;91:9866-70
  • Gurunathan S, Sacks DL, Brown DR, et al. Vaccination with DNA encoding the immunodominant LACK parasite antigen confers protective immunity to mice infected with Leishmania major. J Exp Med 1997;186:1137-47
  • Dubensky TW Jr, Liu MA, Ulmer JB. Delivery systems for gene-based vaccines. Mol Med 2000;6:723-732
  • Condon C, Watkins SC, Celluzzi CM, et al. DNA-based immunization by in vivo transfection of dendritic cells. Nat Med 1996;2:1122-8
  • Porgador A, Irvine KR, Iwasaki A, et al. Predominant role for directly transfected dendritic cells in antigen presentation to CD8+ T cells after gene gun immunization. J Exp Med 1998;188:1075-82
  • Iwasaki A, Torres CA, Ohashi PS, et al. The dominant role of bone marrow-derived cells in CTL induction following plasmid DNA immunization at different sites. J Immunol 1997;159:11-4
  • Klinman DM, Sechler JM, Conover J, et al. Contribution of cells at the site of DNA vaccination to the generation of antigen-specific immunity and memory. J Immunol 1998;160:2388-92
  • Lauterbach H, Gruber A, Ried C, et al. Insufficient APC capacities of dendritic cells in gene gun-mediated DNA vaccination. J Immunol 2006;176:4600-7
  • Cornell Research Foundation, Inc. US4945050l; 1990
  • Cornell Research Foundation, Inc. US5036060; 1991
  • Cornell Research Foundation, Inc. US5100792; 1992
  • Ei Dupont De Nemours & Co. US5179022; 1993
  • Powderject Vaccines, Inc. WO9734652; 1997
  • Powderject Vaccines, Inc. WO9813470; 1998
  • Powderject Vaccines, Inc. US5865796; 1999
  • Powderject Vaccines, Inc. WO0054872; 2000
  • Powderject Vaccines, Inc. EP1593862; 2005
  • Powderject Vaccines, Inc. WO9748485; 1997
  • Powderject Vaccines, Inc. WO9821364; 1998
  • Cui Z, Baizer L, Mumper RJ. Intradermal immunization with novel plasmid DNA-coated nanoparticles via a needle-free injection device. J Biotechnol 2003;102:105-15
  • Bennett AM, Phillpotts RJ, Perkins SD, et al. Gene gun mediated vaccination is superior to manual delivery for immunisation with DNA vaccines expressing protective antigens from Yersinia pestis or Venezuelan Equine Encephalitis virus. Vaccine 1999;18:588-96
  • Fynan EF, Webster RG, Fuller DH, et al. DNA vaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations. Proc Natl Acad Sci USA 1993;90:11478-82
  • Garmory HS, Freeman D, Brown KA, Titball RW. Protection against plague afforded by immunisation with DNA vaccines optimised for expression of the Yersinia pestis V antigen. Vaccine 2004;22:947-57
  • Hooper JW, Kamrud KI, Elgh F, et al. DNA vaccination with hantavirus M segment elicits neutralizing antibodies and protects against seoul virus infection. Virology 1999;255:269-78
  • Davis HL, Michel ML, Mancini M, et al. Direct gene transfer in skeletal muscle: plasmid DNA-based immunization against the hepatitis B virus surface antigen. Vaccine 1994;12:1503-9
  • Kamili S, Spelbring J, Carson D, Krawczynski K. Protective efficacy of hepatitis E virus DNA vaccine administered by gene gun in the cynomolgus macaque model of infection. J Infect Dis 2004;189:258-64
  • Lodmell DL, Ray NB, Parnell MJ, et al. DNA immunization protects nonhuman primates against rabies virus. Nat Med 1998;4:949-52
  • Polack FP, Lee SH, Permar S, et al. Successful DNA immunization against measles: neutralizing antibody against either the hemagglutinin or fusion glycoprotein protects rhesus macaques without evidence of atypical measles. Nat Med 2000;6:776-81
  • Feltquate DM, Heaney S, Webster RG, Robinson HL. Different T helper cell types and antibody isotypes generated by saline and gene gun DNA immunization. J Immunol 1997;158:2278-84
  • Fuller DH, Loudon P, Schmaljohn C. Preclinical and clinical progress of particle-mediated DNA vaccines for infectious diseases. Methods 2006;40:86-97
  • Doria-Rose NA, Pierce CC, Hensel MT, et al. Multigene DNA prime-boost vaccines for SHIV89.6P. J Med Primatol 2003;32:218-28
  • Vaccine development. Vaccines and Immunizations. CDC, Atlanta, USA, 2007. Available from: http://www.cdc.gov/vaccines/resdev/default.htm NIP:DEV [Last accessed 1 February 2008]
  • Gehl J. Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol Scand 2003;177:437-47
  • Bureau MF, Gehl J, Deleuze V, et al. Importance of association between permeabilization and electrophoretic forces for intramuscular DNA electrotransfer. Biochim Biophys Acta 2000;1474:353-9
  • Vandermeulen G, Staes E, Vanderhaeghen ML, et al. Optimisation of intradermal DNA electrotransfer for immunisation. J Control Rel 2007;124:81-7
  • Otten GR, Schaefer M, Doe B, et al. Potent immunogenicity of an HIV-1 gag-pol fusion DNA vaccine delivered by in vivo electroporation. Vaccine 2006;24:4503-9
  • Genetronics, Inc. WO0023563; 2000
  • Genetronics, Inc. US6208893; 2001
  • Genetronics, Inc. US6567694; 2003
  • Genetronics, Inc. US7171264; 2007
  • Genetronics, Inc. US6972013; 2005
  • Powell K. DNA vaccines: back in the saddle again? Nat Biotechnol 2004;22:799-801
  • Ichor Medical Systems, Inc. WO00004949; 2000
  • Ichor Medical Systems, Inc. US6278895; 2001
  • Ichor Medical Systems, Inc. WO05087311; 2005
  • Advisys, Inc. US7245963; 2007
  • Ulmer JB, Wahren B, Liu MA. Gene-based vaccines: recent technical and clinical advances. Trends Mol Med 2006;12:216-22
  • Coban C, Ishii KJ, Gursel M, et al. Effect of plasmid backbone modification by different human CpG motifs on the immunogenicity of DNA vaccine vectors. J Leukoc Biol 2005;78:647-55
  • Leitner WW, Ying H, Restifo NP. DNA and RNA-based vaccines: principles, progress and prospects. Vaccine 1999;18:765-77
  • Vical, INC. US5580859; 1996
  • Vical, INC. US5589466; 1996
  • Montgomery DL, Donnelly JJ, Shiver JW, et al. Protein expression in vivo by injection of polynucleotides. Curr Opin Biotechnol 1994;5:505-10
  • Register KB, Sacco RE, Brockmeier SL. Immune response in mice and swine to DNA vaccines derived from the Pasteurella multocida toxin gene. Vaccine 2007;25:6118-28
  • University of California. WO03066820; 2003
  • Johns Hopkins University. WO02061113; 2002
  • Leifert JA, Rodriguez-Carreno MP, Rodriguez F, Whitton JL. Targeting plasmid-encoded proteins to the antigen presentation pathways. Immunol Rev 2004;199:40-53
  • Rodriguez F, Zhang J, Whitton JL. DNA immunization: ubiquitination of a viral protein enhances cytotoxic T-lymphocyte induction and antiviral protection but abrogates antibody induction. J Virol 1997;71:8497-503
  • Wu Y, Kipps TJ. Deoxyribonucleic acid vaccines encoding antigens with rapid proteasome-dependent degradation are highly efficient inducers of cytolytic T lymphocytes. J Immunol 1997;159:6037-43
  • Tobery TW, Siliciano RF. Targeting of HIV-1 antigens for rapid intracellular degradation enhances cytotoxic T lymphocyte (CTL) recognition and the induction of de novo CTL responses in vivo after immunization. J Exp Med 1997;185:909-20
  • Dobano C, Rogers WO, Gowda K, Doolan DL. Targeting antigen to MHC Class I and Class II antigen presentation pathways for malaria DNA vaccines. Immunol Lett 2007;111:92-102
  • Chiron Corp. US7211659; 2007
  • Eurocine, AB. WO04047661; 2004
  • Vical, Inc. US7105574; 2006
  • Alpar HO, Somavarapu S, Atuah KN, Bramwell VW. Biodegradable mucoadhesive particulates for nasal and pulmonary antigen and DNA delivery. Adv Drug Deliv Rev 2005;57:411-30
  • Chu CJ, Dijkstra J, Lai MZ, et al. Efficiency of cytoplasmic delivery by pH-sensitive liposomes to cells in culture. Pharm Res 1990;7:824-34
  • Chiron Corp. US6753015; 2004
  • Corixa Corp. WO0203961; 2002
  • Greenland JR, Letvin NL. Chemical adjuvants for plasmid DNA vaccines. Vaccine 2007;25:3731-41
  • Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Rel 2001;70:1-20
  • Alpar HO, Bramwell VW. Current status of DNA vaccines and their route of administration. Crit Rev Ther Drug Carrier Syst 2002;19:307-83
  • Mahon BP. The rational design of vaccine adjuvants for mucosal and neonatal immunization. Curr Med Chem 2001;8:1057-75
  • Gursel M, Verthelyi D, Gursel I, et al. Differential and competitive activation of human immune cells by distinct classes of CpG oligodeoxynucleotide. J Leukoc Biol 2002;71:813-20
  • Verthelyi D, Klinman DM. Immunoregulatory activity of CpG oligonucleotides in humans and nonhuman primates. Clin Immunol 2003;109:64-71
  • Capolunghi F, Cascioli S, Giorda E, et al. CpG drives human transitional B cells to terminal differentiation and production of natural antibodies. J Immunol 2008;180:800-8
  • Spies B, Hochrein H, Vabulas M, et al. Vaccination with plasmid DNA activates dendritic cells via Toll-like receptor 9 (TLR9) but functions in TLR9-deficient mice. J Immunol 2003;171:5908-12
  • Takeshita F, Tanaka T, Matsuda T, et al. Toll-like receptor adaptor molecules enhance DNA-raised adaptive immune responses against influenza and tumors through activation of innate immunity. J Virol 2006;80:6218-24
  • Powderject Vaccines, Inc. US7223739; 2007
  • Shiver JW, Fu TM, Chen L, et al. Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature 2002;415:331-5
  • Otero M, Calarota SA, Felber B, et al. Resiquimod is a modest adjuvant for HIV-1 gag-based genetic immunization in a mouse model. Vaccine 2004;22:1782-90
  • Merck & Co. US6995008; 2006
  • Vivax Immunotherapeutics Pty Ltd. US7276242; 2007
  • Xin KQ, Hamajima K, Sasaki S, et al. IL-15 expression plasmid enhances cell-mediated immunity induced by an HIV-1 DNA vaccine. Vaccine 1999;17:858-66
  • Lee AH, Suh YS, Sung YC. DNA inoculations with HIV-1 recombinant genomes that express cytokine genes enhance HIV-1 specific immune responses. Vaccine 1999;17:473-9
  • Kim JJ, Trivedi NN, Nottingham LK, et al. Modulation of amplitude and direction of in vivo immune responses by co-administration of cytokine gene expression cassettes with DNA immunogens. Eur J Immunol 1998;28:1089-103
  • Calarota SA, Weiner DB. Enhancement of human immunodeficiency virus type 1-DNA vaccine potency through incorporation of T-helper 1 molecular adjuvants. Immunol Rev 2004;199:84-99
  • Barouch DH, Letvin NL, Seder RA. The role of cytokine DNAs as vaccine adjuvants for optimizing cellular immune responses. Immunol Rev 2004;202:266-74
  • Barouch DH, Fu TM, Montefiori DC, et al. Vaccine-elicited immune responses prevent clinical AIDS in SHIV(89.6P)-infected rhesus monkeys. Immunol Lett 2001;79:57-61
  • Genexine Co. Ltd. WO0168802; 2001
  • University of Maryland. US6569418; 2003
  • Chiron Corp. WO9953960; 2000
  • Schering Corp. US721770; 2007
  • Robinson HL, Montefiori DC, Johnson RP, et al. Neutralizing antibody-independent containment of immunodeficiency virus challenges by DNA priming and recombinant pox virus booster immunizations. Nat Med 1999;5:526-34
  • Cherpelis S, Shrivastava I, Gettie A, et al. DNA vaccination with the human immunodeficiency virus type 1 SF162DeltaV2 envelope elicits immune responses that offer partial protection from simian/human immunodeficiency virus infection to CD8(+) T-cell-depleted rhesus macaques. J Virol 2001;75:1547-50
  • Boyer JD, Robinson TM, Maciag PC, et al. DNA prime Listeria boost induces a cellular immune response to SIV antigens in the rhesus macaque model that is capable of limited suppression of SIV239 viral replication. Virology 2005;333:88-101
  • Tang Y, Villinger F, Staprans SI, et al. Slowly declining levels of viral RNA and DNA in DNA/recombinant modified vaccinia virus Ankara-vaccinated macaques with controlled simian-human immunodeficiency virus SHIV-89.6P challenges. J Virol 2002;76:10147-54
  • Ferrari ME, Hermanson G, Rolland A. Development of anthrax DNA vaccines. Curr Opin Mol Ther 2004;6:506-12
  • Tanghe A, D'souza S, Rosseels V, et al. Improved immunogenicity and protective efficacy of a tuberculosis DNA vaccine encoding Ag85 by protein boosting. Infect Immun 2001;69:3041-7
  • Jones TR, Narum DL, Gozalo AS, et al. Protection of Aotus monkeys by Plasmodium falciparum EBA-175 region II DNA prime-protein boost immunization regimen. J Infect Dis 2001;183:303-12
  • Li S, Rodrigues M, Rodriguez D, et al. Priming with recombinant influenza virus followed by administration of recombinant vaccinia virus induces CD8+ T-cell-mediated protective immunity against malaria. Proc Natl Acad Sci USA 1993;90:5214-8
  • Sedegah M, Belmonte M, Epstein JE, et al. Successful induction of CD8 T cell-dependent protection against malaria by sequential immunization with DNA and recombinant poxvirus of neonatal mice born to immune mothers. J Immunol 2003;171:3148-53
  • Sedegah M, Brice GT, Rogers WO, et al. Persistence of protective immunity to malaria induced by DNA priming and poxvirus boosting: characterization of effector and memory CD8(+)-T-cell populations. Infect Immun 2002;70:3493-949
  • Vaughan K, Rhodes GH, Gershwin LJ. DNA immunization against respiratory syncytial virus (RSV) in infant rhesus monkeys. Vaccine 2005;23:2928-42
  • Boxus M, Tignon M, Roels S, et al. DNA immunization with plasmids encoding fusion and nucleocapsid proteins of bovine respiratory syncytial virus induces a strong cell-mediated immunity and protects calves against challenge. J Virol 2007;81:6879-89
  • Maue AC, Waters WR, Palmer MV, et al. An ESAT-6:CFP10 DNA vaccine administered in conjunction with Mycobacterium bovis BCG confers protection to cattle challenged with virulent M. bovis. Vaccine 2007;25:4735-46
  • Cai H, Yu DH, Hu XD, et al. A combined DNA vaccine-prime, BCG-boost strategy results in better protection against Mycobacterium bovis challenge. DNA Cell Biol 2006;25:438-47
  • ClinicalTrials.gov. National Institutes of Health; USA. Available from: http://www.clinicaltrials.gov [Last accessed 29 November 2007]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.