96
Views
6
CrossRef citations to date
0
Altmetric
Patent Evaluation

Hybrid nanocrystals: University of Kentucky US20060280680A1

, & , PhD
Pages 341-348 | Published online: 25 Feb 2012

Bibliography

  • Lipinski CA. Avoiding investment in doomed drugs, is poor solubility an industry wide problem? Curr Drug Discov 2001;17-19
  • Lipinski CA. Poor aqueous solubility-an industry wide problem in drug discovery. Am Pharm Rev 2002;5:82-5
  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 1997;23(1-3):3-25
  • Gao L, Zhang DR, Chen MH. Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system. J Nanopart Res 2008;10(5):845-62
  • Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discov 2004;3(9):785-96
  • Devalapally H, Chakilam A, Amiji MM. Role of nanotechnology in pharmaceutical product development. J Pharm Sci 2007;96(10):2547-65
  • Woodle MC, Martin FJ, Yau-Young A, Redemann CT. inventors; Liposome Technology, Inc., assignee. Liposomes with enhanced circulation time. US5013556; 1991
  • Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 2008;7(9):771-82
  • Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov 2003;2(5):347-60
  • Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 2006;6(9):688-701
  • Peer D, Karp JM, Hong S, Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007;2:751-60
  • Li T. inventor University of Kentucky, assignee. Hybrid nanocrystals for treatment and bioimaging of disease. US20060280680A1; 2006
  • Liversidge GG, Cundy KC, Bishop JF, Czekai DA. inventors; Sterling Drugs, Inc., assignee. Surface modified drug nanoparticles. US5145684; 1992
  • Jenkins SA, Liversidge GG. inventors. Nanoparticulate and controlled release compositions comprising cyclosporine. US7825087; 2010
  • Desai NP, Soon-Shiong P, Trieu V. inventors; Abraxis BioScience, LLC, assignee. Compositions and methods of delivery of pharmacological agents. US7923536; 2011
  • Desai NP, Soon-Shiong P, Sandford PA, inventors; VivoRx Pharmaceuticals, Inc., assignee. Methods for in vivo delivery of substantially water insoluble pharmacologically active agents and compositions useful therefor. US5439686; 1995
  • Noyes AA, Witney WR. The rate of solution of solid substances in their own solutions. J Am Chem Soc 1897;19:930-4
  • Hefter GT, Tomkins RPT. The Experimental Determination of Solubilities. J. Wiley & Sons; Chichester, West Sussex, England; Hoboken, NJ: 2003
  • Shegokar R, Muller RH. Nanocrystals: industrially feasible multifunctional formulation technology for poorly soluble actives. Int J Pharm 2010;399(1-2):129-39
  • Junghanns JU, Muller RH. Nanocrystal technology, drug delivery and clinical applications. Int J Nanomedicine 2008;3(3):295-309
  • Muller RH, Gohla S, Keck CM. State of the art of nanocrystals–special features, production, nanotoxicology aspects and intracellular delivery. Eur J Pharm Biopharm 2011;78(1):1-9
  • List M, Sucker H. inventors; Sandoz Ltd., assignee. Pharmaceutical colloidal hydrosols for injection. GB2200048; 1988
  • List M, Sucker H. inventors; Sandoz Ltd., assignee. Hydrosols of pharmacologically active agents and their pharmaceutical compositions comprising them. US5389382; 1995
  • Sucker H, Gassmann P. inventors; Sandoz Ltd., assignee. Improvements in pharmaceutical compositions. GB2269536A; 1994
  • Muller RH, Becker R, Kruss B, Peters K. inventors; Medac Gesellschaft Fur Klinische Spezialpraparate, assignee. Pharmaceutical nanosuspensions for medicament administration as systems with increased saturation solubility and rate of solution. US5858410; 1999
  • Kipp JE, Wong JCT, Doty MJ, inventors; Baxter International, Inc., assignee. Method for preparing submicron particle suspensions. US6884436; 2005
  • Johnson BK, Saad W, Prud'homme RK. Nanoprecipitation of pharmaceuticals using mixing and block copolymer stabilization. Polymeric Drug Delivery Ii: Polymeric Matrices and Drug Particle Engineering. Amer Chemical Soc; Washington; DC; USA; 2006. p. 278-91
  • Zahr AS, de Villiers M, Pishko MV. Encapsulation of drug nanoparticles in self-assembled macromolecular nanoshells. Langmuir 2005;21(1):403-10
  • Zhang H, Hollis CP, Zhang Q, Li T. Preparation and antitumor study of camptothecin nanocrystals. Int J Pharm 2011;415(1-2):293-300
  • Hwang SJ, Kim MS, Kim JS, inventors; Chunganam National University, assignee. Manufacturing method and apparatus of ultrafine particles having uniform particle size distribution. US20110200678; 2011
  • Minko T, Dharap SS, Pakunlu RI, Wang Y. Molecular targeting of drug delivery systems to cancer. Curr Drug Targets 2004;5(4):389-406
  • Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 2001;41:189-207
  • Jain RK. Delivery of molecular medicine to solid tumors: lessons from in vivo imaging of gene expression and function. J Control Release 2001;74(1-3):7-25
  • Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 2010;7(11):653-64
  • Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000;407(6801):249-57
  • Simkin PA. Synovial permeability in rheumatoid arthritis. Arthritis Rheum 1979;22(7):689-96
  • Hooper DC, Scott GS, Zborek A, Uric acid, a peroxynitrite scavenger, inhibits CNS inflammation, blood-CNS barrier permeability changes, and tissue damage in a mouse model of multiple sclerosis. Faseb J 2000;14(5):691-8
  • Kimura H, Yasukawa T, Tabata Y, Ogura Y. Drug targeting to choroidal neovascularization. Adv Drug Deliv Rev 2001;52(1):79-91
  • Bae YH, Park K. Targeted drug delivery to tumors: myths, reality and possibility. J Control Release 2011;153(3):198-205
  • Fung WP, Przybylski M, Ringsdorf H, Zaharko DS. In vitro inhibitory effects of polymer-linked methotrexate derivatives on tetrahydrofolate dehydrogenase and murine L5178Y cells. J Natl Cancer Inst 1979;62(5):1261-4
  • Low PS, Horn MA, Heinstein PF. inventors; Purdue Research Foundation, assignee. Method for enhancing transmembrane transport of exogenous molecules. US5635382; 1997
  • Krauth MT, Bohm A, Agis H, Effects of the CD33-targeted drug gemtuzumab ozogamicin (Mylotarg) on growth and mediator secretion in human mast cells and blood basophils. Exp Hematol 2007;35(1):108-16
  • Alitalo K, Aprelikova O, Pajusola K, inventors; Icentia, Ltd. and Ludwig Institute for Cancer Research, assignee. FLT4 (VEGFR-3) as a target for tumor imaging and anti-tumor therapy. US7034105; 2006
  • Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification - the correlation of in-vitro drug product dissolution and in-vivo bioavailability. Pharm Res 1995;12(3):413-20
  • Keck CM, Muller RH. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm 2006;62(1):3-16
  • Kesisoglou F, Panmai S, Wu Y. Nanosizing–oral formulation development and biopharmaceutical evaluation. Adv Drug Deliv Rev 2007;59(7):631-44
  • Merisko-Liversidge E, Liversidge GG. Nanosizing for oral and parenteral drug delivery: A perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv Drug Deliv Rev 2011;63(6):427-40
  • Merisko-Liversidge E, Liversidge GG, Cooper ER. Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci 2003;18(2):113-20
  • Merisko-Liversidge EM, Liversidge GG. Drug nanoparticles: formulating poorly water-soluble compounds. Toxicol Pathol 2008;36(1):43-8
  • Muller RH, Jacobs C, Kayser O. Nanosuspensions as particulate drug formulations in therapy Rationale for development and what we can expect for the future. Adv Drug Deliv Rev 2001;47(1):3-19
  • Muller RH, Keck CM. Twenty years of drug nanocrystals: where are we, and where do we go? Eur J Pharm Biopharm 2012;80(1):1-3
  • Muller RH, Peters K. Nanosuspensions for the formulation of poorly soluble drugs - I. Preparation by a size-reduction technique. Int J Pharm 1998;160(2):229-37
  • Rogers TL, Gillespie IB, Hitt JE, Development and characterization of a scalable controlled precipitation process to enhance the dissolution of poorly water-soluble drugs. Pharm Res 2004;21(11):2048-57
  • Salazar J, Ghanem A, Muller RH, Moschwitzer JP. Nanocrystals: comparison of the size reduction effectiveness of a novel combinative method with conventional top-down approaches. Eur J Pharm Biopharm 2012 [Epub ahead of print]
  • Wang GD, Mallet FP, Ricard F, Heng JYY. Pharmaceutical nanocrystals. Curr Opin Chem Eng 2011; In press
  • Zhang HF, Wang D, Butler R, Formation and enhanced biocidal activity of water-dispersable organic nanoparticles. Nat Nanotechnol 2008;3(8):506-11
  • Kahr B, Gurney RW. Dyeing crystals. Chem Rev 2001;101(4):893-951
  • Bucar DK, Macgillivray LR. Preparation and reactivity of nanocrystalline cocrystals formed via sonocrystallization. J Am Chem Soc 2007;129(1):32-3
  • Trask AV. An overview of pharmaceutical cocrystals as intellectual property. Mol Pharm 2007;4(3):301-9
  • Schultheiss N, Newman A. Pharmaceutical cocrystals and their physicochemical properties. Cryst Growth Des 2009;9(6):2950-67
  • Hupalowska A, Miaczynska M. The new faces of endocytosis in signaling. Traffic 2012;13(1):9-18
  • Anitei M, Hoflack B. Bridging membrane and cytoskeleton dynamics in the secretory and endocytic pathways. Nat Cell Biol 2012;14(1):11-19
  • Caswell PT, Vadrevu S, Norman JC. Integrins: masters and slaves of endocytic transport. Nat Rev Mol Cell Biol 2009;10(12):843-53
  • Krauss M, Haucke V. Shaping membranes for endocytosis. Rev Physiol Biochem Pharmacol 2012;161:45-66
  • Zhao RS, Hollis CP, Zhang H, Hybrid nanocrystals: achieving concurrent therapeutic and bioimaging functionalities toward solid tumors. Mol Pharm 2011;8(5):1985-91
  • Sanhai WR, Sakamoto JH, Canady R, Ferrari M. Seven challenges for nanomedicine. Nat Nanotechnol 2008;3(5):242-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.