1,033
Views
39
CrossRef citations to date
0
Altmetric
Reviews

β-Lactamase inhibitors: a review of the patent literature (2010 – 2013)

Pages 1469-1481 | Published online: 23 Aug 2013

Bibliography

  • Moya B, Beceiro A, Cabot G, et al. Pan-beta-lactam resistance development in Pseudomonas aeruginosa clinical strains: molecular mechanisms, penicillin-binding protein profiles, and binding affinities. Antimicrob Agents Chemother 2012;56:4771-8
  • H.R. 2182 (112th): generating Antibiotic Incentives Now Act of 2011. Available from: http://www.govtrack.us/congress/bills/112/hr2182/text
  • The Generating Antibiotic Incentives Now Act of 2011. Available from: http://www.pewhealth.org/uploadedFiles/PHG/Supporting_Items/IB_FS_Antibiotics_GAIN_BIll_Summary.pdf
  • Brown ED. Is the GAIN act a turning point in new antibiotic discovery? Can J Microbiol 2013;59:153-6
  • D'Costa VM, King CE, Kalan L, et al. Antibiotic resistance is ancient. Nature 2011;477(7365):477-61
  • Queenan A-M, Bush K. Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev 2007;20:440-58
  • Poirel L, Potron A, Nordmann P. OXA-48-like carbapenemases: the phantom menace. J Antimicrob Chemother 2012;67:1597-606
  • Zahar JR, Lortholary O, Martin C, et al. Addressing the challenge of extended-spectrum beta-lactamases. Curr Opin Investig Drugs 2009;10:172-80
  • Rossolini GM, D'Andrea MM, Mugnaioli C. The spread of CTX-M-type extended-spectrum beta-lactamases. Clin Microbiol Infect 2008;14(Suppl 1):33-41
  • Bush K. Proliferation and significance of clinically relevant beta-lactamases. Ann NY Acad Sci 2013;1277:84-90
  • Livermore DM, Canton R, Gniadkowski M, et al. CTX-M: changing the face of ESBLs in Europe. J Antimicrob Chemother 2007;59:165-74
  • Walther-Rasmussen J, Hoiby N. Plasmid-borne AmpC beta-lactamases. Can J Microbiol 2002;48:479-93
  • Philippon A, Arlet G, Jacoby GA. Plasmid-determined AmpC-type beta-lactamases. Antimicrob Agents Chemother 2002;46:1-11
  • Juan C, Moya B, Perez JL, Oliver A. Stepwise upregulation of the Pseudomonas aeruginosa chromosomal cephalosporinase conferring high-level beta-lactam resistance involves three AmpD homologues. Antimicrob Agents Chemother 2006;50:1780-7
  • Rodríguez-Martínez JM, Poirel L, Nordmann P. Extended-spectrum cephalosporinases in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2009;53:1766-71
  • Wolter DJ, Lister PD. Mechanisms of beta-lactam resistance among Pseudomonas aeruginosa. Curr Pharm Des 2013;19:209-22
  • Johnson AP, Woodford N. Global spread of antibiotic resistance: the example of New Delhi metallo-beta-lactamase (NDM)-mediated carbapenem resistance. J Med Microbiol 2013;62:499-513
  • Cornaglia G, Giamarellou H, Rossolini GM. Metallo-beta-lactamases: a last frontier for beta-lactams? Lancet Infect Dis 2011;11:381-93
  • Tzouvelekis LS, Markogiannakis A, Psichogiou M, et al. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev 2012;25:682-707
  • Breidenstein EBM, de la Fuente-Nunez C, Hancock REW. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol 2011;19:419-26
  • Evans BA, Hamouda A, Amyes SGB. The rise of carbapenem-resistant Acinetobacter baumannii. Curr Pharm Des 2013;19:223-8
  • Ohki H, Okuda S, Yamanaka T, et al. Synthesis of (thiadiazolyliminoacetamido)-(pyrazoliomethyl)cephem compounds as antimicrobial agents. WO2004039814; 2004
  • Toda A, Ohki H, Yamanaka T, et al. Satoshi synthesis and SAR of novel parenteral anti-pseudomonal cephalosporins: discovery of FR264205. Bioorg Med Chem Lett 2008;18:4849-52
  • Takeda S, Nakai T, Wakai Y, et al. In vitro and in vivo activities of a new cephalosporin, FR264205, against Pseudomonas aeruginosa. Antimicrob Agents Chemother 2007;51:826-30
  • Livermore DM, Mushtaq S, Ge Y, Warner M. Activity of cephalosporin CXA-101 (FR264205) against Pseudomonas aeruginosa and Burkholderia cepacia group strains and isolates. Int J Antimicrob Agents 2009;34:402-6
  • Zamorano L, Juan C, Fernandez-Olmos A, et al. Activity of the new cephalosporin CXA-101 (FR264205) against Pseudomonas aeruginosa isolates from chronically-infected cystic fibrosis patients. Clin Microbiol Infect 2010;16:1482-7
  • Chandorkar GA, Huntington JA, Parsons T, Umeh OC. Methods for treating intrapulmonary infections using cephalosporins. WO2013036783; 2013
  • Livermore DM, Mushtaq S, Ge Y. Chequerboard titration of cephalosporin CXA-101 (FR264205) and tazobactam versus beta-lactamase-producing Enterobacteriaceae. J Antimicrob Chemother 2010;65:1972-4
  • Sader HS, Rhomberg PR, Farrell DJ, Jones RN. Antimicrobial activity of CXA-101, a novel cephalosporin tested in combination with tazobactam against Enterobacteriaceae, Pseudomonas aeruginosa, and Bacteroides fragilis strains having various resistance phenotypes. Antimicrob Agents Chemother 2011;55:2390-4
  • Bulik CC, Tessier PR, Keel RA, et al. In vivo comparison of CXA-101 (FR264205) with and without tazobactam versus piperacillin-tazobactam using human simulated exposures against phenotypically diverse Gram-negative organisms. Antimicrob Agents Chemother 2012;56:544-9
  • ClinicalTrials.gov Identifiers: NCT01445678 and NCT01445665
  • ClinicalTrials.gov Identifiers: NCT01345929 and NCT01345955
  • Coleman K. Diazabicyclooctanes (DBOs): a potent new class of non-beta-lactambeta-lactamase inhibitors. Curr Opin Microbiol 2011;14:550-5
  • Lampilas M, Aszodi J, Rowlands DA, Fromentin C. Azabicyclic compounds, including 1,3-diazabicyclo[2.2.1]heptan-2-one and 1,6-diazabicyclo[3.2.1]octan-7-one derivatives, preparation thereof, and use as medicines, in particular as antibacterial agents. WO2002010172; 2002
  • Aszodi J, Lampilas M, Musicki B, et al. Preparation of fused-ring diazepines, method of preparation and use as anti-bacterial agents. WO2002100860; 2002
  • Aszodi J, Lampilas M, Fromentin C, Rowlands DA. Preparation of azabicycles as inhibitors of beta-lactamases and their use in pharmaceutical compositions containing beta-lactam antibiotics. FR2835186; 2003
  • Lampilas M, Musicki B, Klich M, Rowlands DA. Preparation of fused-ring diazepines as anti-bacterial drugs and inhibitors of beta-lactamases. FR2848210; 2004
  • Bonnefoy A, Dupuis-Hamelin C, Steier V, et al. In vitro activity of AVE1330A, an innovative broad-spectrum non-beta-lactam beta-lactamase inhibitor. J Antimicrob Chemother 2004;54:410-17
  • Stachyra T, Pechereau M-C, Bruneau J-M, et al. Mechanistic studies of the inactivation of TEM-1 and P99 by NXL104, a novel non-beta-lactam beta-lactamase inhibitor. Antimicrob Agents Chemother 2010;54:5132-8
  • Stachyra T, Levasseur P, Pechereau M-C, et al. In vitro activity of the beta-lactamase inhibitor NXL104 against KPC-2 carbapenemase and Enterobacteriaceae expressing KPC carbapenemases. J Antimicrob Chemother 2009;64:326-9
  • Aktas Z, Kayacan C, Oncul O. In vitro activity of avibactam (NXL104) in combination with beta-lactams against Gram-negative bacteria, including OXA-48 beta-lactamase producing Klebsiella pneumonia. Int J Antimicrob Agents 2012;39:86-9
  • Ehmann DE, Jahic H, Ross PL, et al. Avibactam is a covalent, reversible, non–beta-lactam beta-lactamase inhibitor. Proc Natl Acad Sci USA 2012;109:11663-8
  • Endimiani A, Choudhary Y, Bonomo RA. In vitro activity of NXL104 in combination with beta-lactams against Klebsiella pneumoniae isolates producing KPC carbapenemases. Antimicrob Agents Chemother 2009;53:3599-601
  • Livermore DM, Mushtaq S, Warner M, et al. NXL104 combinations versus Enterobacteriaceae with CTX-M extended-spectrum beta-lactamases and carbapenemases. J Antimicrob Chemother 2008;62:1053-6
  • Mushtaq S, Warner M, Williams G, et al. Activity of chequerboard combinations of ceftaroline and NXL104 versus beta-lactamase-producing Enterobacteriaceae. J Antimicrob Chemother 2010;65:1428-32
  • Sader HS, Flamm RK, Jones RN. Antimicrobial activity of ceftaroline-avibactam tested against recent clinical isolates from USA medical centers (2010-2011). Antimicrob Agents Chemother 2013;57:1982-8
  • Mushtaq S, Warner M, Livermore DM. In vitro activity of ceftazidime+NXL104 against Pseudomonas aeruginosa and other non-fermenters. J Antimicrob Chemother 2010;65:2376-81
  • Walkty A, DeCorby M, Lagace-Wiens PRS, et al. In vitro activity of ceftazidime combined with NXL104 versus Pseudomonas aeruginosa isolates obtained from patients in Canadian hospitals (CANWARD 2009 Study). Antimicrob Agents Chemother 2011;55:2992-4
  • Castanheira M, Sader HS, Farrell DJ, et al. Activity of ceftaroline-avibactam tested against Gram-negative organism populations, including strains expressing one or more beta-lactamases and methicillin-resistant Staphylococcus aureus carrying various Staphylococcal cassette chromosome mec types. Antimicrob Agents Chemother 2012;56:4779-85
  • Levasseur P, Girard A-M, Claudon M, et al. In vitro antibacterial activity of the ceftazidime-avibactam (NXL104) combination against Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 2012;56:1606-8
  • Goldstein EJC, Citron DM, Merriam C, et al. Comparative in vitro activity of ceftaroline, ceftaroline-avibactam, and other antimicrobial agents against aerobic and anaerobic bacteria cultured from infected diabetic foot wounds. Diagn Microbiol Infect Dis 2013;76(3):347-51. Available from: http://dx.doi.org/10.1016/j.diagmicrobio.2013.03.019
  • Eleftheriadou I, Tentolouris N, Argiana V, et al. Methicillin-resistant Staphylococcus aureus in diabetic foot infections. Drugs 2010;70:1785-97
  • Citron DM, Goldstein EJC, Merriam CV, et al. Bacteriology of moderate-to-severe diabetic foot infections and in vitro activity of antimicrobial agents. J Clin Microbiol 2007;45:2819-28
  • Citron DM, Tyrrell KL, Merriam CV, Goldstein EJC. In vitro activity of ceftaroline against 623 diverse strains of anaerobic bacteria. Antimicrob Agents Chemother 2010;54:1627-32
  • Snydman DR, Jacobus NV, McDermott LA. In vitro activity of ceftaroline against a broad spectrum of recent clinical anaerobic isolates. Antimicrob Agents Chemother 2011;55:421-5
  • Citron DM, Tyrrell KL, Merriam V, Goldstein EJC. In vitro activity of ceftazidime-NXL104 against 396 strains of beta-lactamase producing anaerobes. Antimicrob Agents Chemother 2011;55:3616-20
  • Dubreuil LJ, Mahieux S, Neut C, et al. Anti-anaerobic activity of a new beta-lactamase inhibitor NXL104 in combination with beta-lactams and metronidazole. Int J Antimicrob Agents 2012;39:500-4
  • Blot S, De Waele JJ, Vogelaers D. Essentials for selecting antimicrobial therapy for intra-abdominal infections. Drugs 2012;72:e17-32
  • ClinicalTrials.gov Identifier: NCT00690378
  • ClinicalTrials.gov Identifier: NCT00752219
  • Lucasti C, Popescu I, Ramesh MK, et al. Comparative study of the efficacy and safety of ceftazidime/avibactam plus metronidazole versus meropenem in the treatment of complicated intra-abdominal infections in hospitalized adults: results of a randomized, double-blind, Phase II trial. J Antimicrob Chemother 2013;68:1183-92
  • ClinicalTrials.gov Identifier: NCT01291602
  • ClinicalTrials.gov Identifier: NCT01290900
  • ClinicalTrials.gov Identifier: NCT01395420
  • ClinicalTrials.gov Identifier: NCT01430910
  • ClinicalTrials.gov Identifier: NCT01281462
  • ClinicalTrials.gov Identifier: NCT01448395
  • Boyd JA, Cherryman JH, Golden M, et al. Process for the preparation of heterocyclic compounds including trans-7-oxo-6-(sulfooxy)-1,6-diazabicyclo[3,2,1]octane-2-carboxamide, its salts and synthetic intermediates. WO2012172368; 2012
  • Blizzard TA, Chen H, Gude C, et al. Preparation of sulfooxydiazabicyclooctanecarboxamide derivatives and analogs for use as beta-lactamase inhibitors. WO2009091856; 2009
  • Mangion I, Huffman MA, Ruck RT, et al. Process for preparation of 1,6-diazabicyclo[3.2.1]octane derivatives. WO2010126820; 2010
  • Mangion IK, Ruck RT, Rivera N, et al. A concise synthesis of a beta-lactamase inhibitor. Org Lett 2011;13:5480-3
  • Hirsch EB, Ledesma KR, Chang K-T, et al. In vitro activity of MK-7655, a novel beta-lactamase inhibitor, in combination with imipenem against carbapenem-resistant. Gram-negative bacteria. Antimicrob Agents Chemother 2012;56:3753-7
  • ClinicalTrials.gov Identifier: NCT01275170
  • ClinicalTrials.gov Identifier: NCT01505634
  • ClinicalTrials.gov Identifier: NCT01506271
  • Ledoussal B, Gourdel ME. Preparation of azabicycles as inhibitors of beta-lactamases and their use in pharmaceutical compositions containing beta-lactam antibiotics. FR2930553; 2009
  • Ledoussal B, Gourdel M-E. Preparation of azabicycles as inhibitors of beta-lactamases and their use in pharmaceutical compositions containing beta-lactam antibiotics. WO2009133442; 2009
  • Patil VT, Tadiparthi R, Birajdar S, Bhagwat S. Preparation of trans-7-oxo-6-(sulfoxy)-1,6-diazabicyclo[3.2.1]octane-2-carbonitrile salts for the treatment of bacterial infections. WO2013038330; 2013
  • Shlaes D, Levasseur P. Use of (1R,2S,5R)-1,6-diazabicyclo[3.2.1]octane-2-carboxamide, 7-oxo-6-(sulfooxy)-, monosodium salt as a diagnostic reagent for detecting serine beta-lactamases. EP2135959; 2009
  • Dedhiya MG, Bhattacharya S, Ducandas V, et al. Novel crystalline forms of trans-7-oxo-6-(sulfooxy)-1,6-diazabicyclo[3,2,1]octane-2-carboxamide sodium salt. CA2716914; 2011
  • Abe T, Okue M, Sakamaki Y. Optically active diazabicyclooctane derivatives as beta-lactamase inhibitors and process for preparing them. US20120165533; 2012
  • Abe T, Okue M, Sakamaki Y. Preparation of optically-active diazabicyclooctane derivative and method for manufacturing same. WO2012086241; 2012
  • Lampilas M, Rowlands DA, Kebsi A, et al. New nitrogen-heterocyclic compounds, their preparation and their use as antibacterial drugs. WO2008142285; 2008
  • Lampilas M, Rowlands D, Ledoussal B, et al. New nitrogen-heterocyclic compounds, especially fused-ring diazepines, their preparation and their use as antibacterial drugs. WO2010038115; 2010
  • Levasseur P, Pace JL, Coleman K, Lowther J. Antibacterial nitrogen-heterocyclic compounds, especially fused-ring diazepines, their preparation and their synergistic effect in combinations with other antibacterial antibiotics. WO2010041112; 2010
  • Ledoussal B, Gourdel M-E, Renaud E, et al. New nitrogen-heterocyclic compounds, especially fused-ring diazepines, their preparation and their use as antibacterial drugs. WO2010041108; 2010
  • Patel MV, Deshpand PK, Bhawasar S, et al. Nitrogen containing compound 1,6-diazabicyclo[3,2,1]octan-7-one derivatives and their use in the treatment of bacterial infections. WO2013030733; 2013
  • Bhagwat S, Deshpande PK, Bhawasar S, et al. Preparation of diazabicyclooctanone derivatives for use as antibacterial agents. WO2013030735; 2013
  • Kiener PA, Waley SG. Reversible inhibitors of penicillinases. Biochem J 1978;169:197-204
  • Ness S, Martin R, Kindler AM, et al. Structure-based design guides the improved efficacy of deacylation transition state analogue inhibitors of TEM-1 beta-lactamase. Biochemistry 2000;39:5312-21
  • Shoichet BK, Prati F. alpha-boronated N-acyl-3-aminomethylbenzoates and N-benzylamides as beta-lactamase inhibitors active in nanomolar concentrations. US7271186; 2007
  • Burns CJ, Jackson RW, Goswami R, Xu H. Preparation of alpha-aminoboronic acids as beta-lactamase inhibitors. US20100120715; 2010
  • Reddy R, Boyer S, Totrov M, Hecker S. Heterocyclic boronic acid ester derivatives and therapeutic uses thereof. WO2013033461; 2013
  • Hirst G, Reddy R, Hecker S, et al. Cyclic boronic acid ester derivatives and therapeutic uses thereof. WO2012021455; 2012
  • Livermore DM, Mushtaq S. Activity of biapenem (RPX2003) combined with the boronate beta-lactamase inhibitor RPX7009 against carbapenem-resistant Enterobacteriaceae. J Antimicrob Chemother 2013;68(8):1825-31
  • ClinicalTrials.gov Identifier: NCT01751269
  • ClinicalTrials.gov Identifier: NCT01772836
  • Shoichet BK, Prati F, Caselli E, et al. Sulfonamido-substituted boronic acids as beta-lactamase inhibitors for treatment of antibiotic-resistant bacterial infections. WO2013056163; 2013
  • Eidam O, Romagnoli C, Caselli E, et al. Design, synthesis, crystal structures, and antimicrobial activity of sulfonamide boronic acids as beta-lactamase inhibitors. J Med Chem 2010;53:7852-63
  • Eidam O, Romagnoli C, Dalmasso G, et al. Fragment-guided design of subnanomolar beta-lactamase inhibitors active in vivo. Proc Natl Acad Sci USA 2012;109:17448-53
  • Prati F, Caselli E. Boronic acid inhibitors of beta-lactamases as therapeutic agents in treatment of antibiotic-resistant infection diseases. WO2013053372; 2013
  • Sakurai Y, Yoshida Y, Saitoh K, et al. Characteristics of aztreonam as a substrate, inhibitor and inducer for beta-lactamases. J Antibiot 1990;43:403-10
  • Heinze-Krauss I, Angehrn P, Charnas RL, et al. Structure-based design of beta-lactamase inhibitors. 1. Synthesis and evaluation of bridged monobactams. J Med Chem 1998;41:3961-71
  • Desarbre E, Gaucher B, Page MGP, Roussel P. Useful combinations of monobactam antibiotics with beta-lactamase inhibitors. WO2007065288; 2007
  • Micetich RG, Maiti SN, Fiakpui C, et al. Preparation of 3-(heteroarylacetamido)-2-oxo-azetidine-1-sulfonic acids derivatives as antibacterial agents. WO2002022613; 2002
  • Page MGP, Dantier C, Desarbre E, et al. In vitro and in vivo properties of BAL30376, a beta-lactam and dual beta-lactamase inhibitor combination with enhanced activity against Gram-negative bacilli that express multiple beta-lactamases. Antimicrob Agents Chemother 2011;55:1510-19
  • Bhattacharjee A, Sen MR, Prakash P, Anupurba S. Role of beta-lactamase inhibitors in enterobacterial isolates producing extended-spectrum beta-lactamases. J Antimicrob Chemother 2008;61:309-14
  • Payne DJ, Cramp R, Winstanley DJ, Knowles DJC. Comparative activities of clavulanic acid, sulbactam, and tazobactam against clinically important beta-lactamases. Antimicrob Agents Chemother 1994;38:767-72
  • Livermore DM, Mushtaq S, Warner M. Activity of BAL30376 (monobactam BAL19764 + BAL29880 + clavulanate) versus Gram-negative bacteria with characterized resistance mechanisms. J Antimicrob Chemother 2010;65:2382-95
  • Page MGP, Dantier C, Desarbre E. In vitro properties of BAL30072, a novel siderophore sulfactam with activity against multiresistant Gram-negative bacilli. Antimicrob Agents Chemother 2010;54:2291-302
  • Mushtaq S, Woodford N, Hope R, et al. Activity of BAL30072 alone or combined with beta-lactamase inhibitors or with meropenem against carbapenem-resistant Enterobacteriaceae and non-fermenters. J Antimicrob Chemother 2013;68(7):1601-8
  • Blizzard TA, Chen HY, Wu JY, et al. 7-Oxo-2,6-Diazabicyclo[3.2.0]heptane-6-sulfonic acid derivatives as beta-lactamase inhibitors and their preparation, pharmaceutical compositions and use in the treatment of bacterial infections. WO2008039420; 2008
  • Blizzard TA, Chen H, Kim S, et al. Side chain SAR of bicyclic beta-lactamase inhibitors (BLIs). 1. Discovery of a class C BLI for combination with imipinem. Bioorg Med Chem Lett 2010;20:918-21
  • Chen H, Blizzard TA, Kim S, et al. Side chain SAR of bicyclic beta-lactamase inhibitors (BLIs). 2. N-Alkylated and open chain analogs of MK-8712. Bioorg Med Chem Lett 2011;21:4267-70
  • Mobashery S, Hesek D, Chang M. Preparation of phthalanilate and related compounds as antibacterial agents. WO2011026107; 2011
  • Mansour TS, Venkatesan AM. Preparation of bicyclic and tricyclic substituted 6-methylidene carbapenems as broad spectrum beta-lactamase inhibitors. US20100063023; 2010
  • Plantan I, Prezelj A, Urleb U, et al. Preparation of new trinem antibiotics and inhibitors of beta-lactamases. WO2009153297; 2009
  • Plantan I, Prezelj A, Urleb U, et al. Preparation of new trinem antibiotics and inhibitors of beta-lactamases. EP2135871; 2009
  • Maiti SN, Ling R, Yip J, et al. Preparation of fused bridged bicyclic heteroaryl substituted 6-alkylidene penems as potent beta-lactamase inhibitors. US20110288063; 2011
  • Udayampalayam PS, Paul-Satyaseela M, Narayanan S, et al. beta-Lactamase inhibitors and their use as Antimicrobial agents. WO2012070071; 2012
  • Bulusu ARCM. Preparation of substituted clavulanic acid as beta-lactamase inhibitors. WO2011032192; 2011
  • Buynak JD, Sheri A, Pagadala SRR. Preparation and antibacterial activity of beta-lactamase inhibitory compounds. US20100009954; 2010
  • Sheri A, Pagadala SRR, Young K, et al. Optimization of a carbapenem/ beta-lactamase inhibitor combination against highly resistant Gram-negative microorganisms [Poster F1-1496]. 49th Interscience Conference Antimicrobial Agents Chemotherapy; San Francisco, CA; 2009
  • Chikauchi K, Kurazono M, Abe T, et al. Metallo-beta-lactamase inhibitors containing maleic acid derivatives, and use thereof with beta-lactam antibiotics. WO2007034924; 2007
  • Chikauchi K, Ida M, Abe T, et al. Preparation of maleic acid derivatives as metallo-beta-lactamase inhibitors. US20080090825; 2008
  • Ishii Y, Eto M, Mano Y, et al. In vitro potentiation of carbapenems with ME1071, a novel metallo-beta-lactamase inhibitor, against metallo-beta-lactamase-producing Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 2010;54:3625-9
  • Livermore DM, Mushtaq S, Morinaka A, et al. Activity of carbapenems with ME1071 (disodium 2,3-diethylmaleate) against Enterobacteriaceae and Acinetobacter spp. with carbapenemases, including NDM enzymes. J Antimicrob Chemother 2013;68:153-8
  • Morinaka A, Maebashi K, Ida T, et al. NDM (New Delhi metallo-beta-lactamase)) inhibitor containing maleic acid derivative, and use thereof with beta-lactam antibiotic. WO2013015388; 2013
  • Morinaka A. Metallo-beta-lactamase-producing bacterium evaluation method. WO2010114037; 2010
  • Guo Y, Wang J, Yang C, et al. Application of isatin thiosemicarbazone-like compound in inhibiting ndm-1 activity. CN102626408; 2012
  • Horton L, Palzkill T, Chen P, Song Y. Small molecule compounds as broad-spectrum inhibitors of metallo-beta-lactamases. WO2012088283; 2012
  • Chen P, Horton LB, Mikulski RL, et al. 2-Substituted 4,5-dihydrothiazole-4-carboxylic acids are novel inhibitors of metallo-beta-lactamases. Bioorg Med Chem Lett 2012;22:6229-32
  • Dmitrienko GI, Ghavami A, Goodfellow VJ, et al. Preparation of cephalosporin derivatives useful as beta-lactamase inhibitors. WO2011103686; 2011
  • Zhao Z, Yu Y, Liu F, et al. New Delhi metallo-beta-lactamase 1 aptamer, its screening technique and application. CN102965377; 2013

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.