2,625
Views
95
CrossRef citations to date
0
Altmetric
Reviews

BET bromodomain inhibitors: a patent review

, MSc PhD, , BSc (Hons) PhD & , BSc (Hons) PhD

Bibliography

  • Sanchez R, Zhou MM. The role of human bromodomains in chromatin biology and gene transcription. Curr Opin Drug Discov Devel 2009;12:659-65
  • Chung C-W, Tough DF. Bromodomains: a new target class for small molecule drug discovery. Drug Discov Today: Ther Strateg 2012;9:e111-e20
  • Prinjha RK, Witherington J, Lee K. Place your BETs: the therapeutic potential of bromodomains. Trends Pharmacol Sci 2012;33:146-53
  • Muller S, Filippakopoulos P, Knapp S. Bromodomains as therapeutic targets. Expert Rev Mol Med 2011;13:e29
  • Furdas SD, Carlino L, Sippl W, et al. Inhibition of bromodomain-mediated protein-protein interactions as a novel therapeutic strategy. Med Chem Comm 2012;3:123-34
  • Belkina AC, Denis GV. BET domain co-regulators in obesity, inflammation and cancer. Nat Rev Cancer 2012;12:465-77
  • Haynes SR, Dollard C, Winston F, et al. The bromodomain: a conserved sequence found in human, Drosophila and yeast proteins. Nucleic Acids Res 1992;20:2603
  • Filippakopoulos P, Knapp S. The bromodomain interaction module. FEBS Lett 2012;586:2692-704
  • Filippakopoulos P, Picaud S, Mangos M, et al. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 2012;149:214-31
  • Dhalluin C, Carlson JE, Zeng L, et al. Structure and ligand of a histone acetyltransferase bromodomain. Nature 1999;399:491-6
  • Vidler LR, Brown N, Knapp S, et al. Druggability analysis and structural classification of bromodomain acetyl-lysine binding sites. J Med Chem 2012;55:7346-59
  • Steiner S, Magno A, Huang D, et al. Does bromodomain flexibility influence histone recognition? FEBS Lett 2013;587:2158-63
  • Winston F, Allis CD. The bromodomain: a chromatin-targeting module? Nat Struct Biol 1999;6:601-4
  • Dawson MA, Kouzarides T, Huntly BJP. Targeting epigenetic readers in cancer. N Eng J Med 2012;367:647-57
  • Hewings DS, Rooney TP, Jennings LE, et al. Progress in the development and application of small molecule inhibitors of bromodomain-acetyl-lysine interactions. J Med Chem 2012;55:9393-413
  • Borah Jagat ÂC, Mujtaba S, Karakikes I, et al. A small molecule binding to the coactivator CREB-binding protein blocks apoptosis in cardiomyocytes. Chem Biol 2011;18:531-41
  • Zhang G, Sanchez R, Zhou MM. Scaling the druggability landscape of human bromodomains, a new class of drug targets. J Med Chem 2012;55:7342-5
  • Price DH. P-TEFb, a cyclin-dependent kinase controlling elongation by RNA polymerase II. Mol Cell Biol 2000;20:2629-34
  • Jang MK, Mochizuki K, Zhou M, et al. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol Cell 2005;19:523-34
  • LeRoy G, Rickards B, Flint SJ. The double bromodomain proteins Brd2 and Brd3 couple histone acetylation to transcription. Mol Cell 2008;30:51-60
  • Gaucher J, Boussouar F, Montellier E, et al. Bromodomain-dependent stage-specific male genome programming by Brdt. EMBO J 2012;31:3809-20
  • Denis GV, McComb ME, Faller DV, et al. Identification of transcription complexes that contain the double bromodomain protein Brd2 and chromatin remodeling machines. J Proteome Res 2006;5:502-11
  • Denis GV, Green MR. A novel, mitogen-activated nuclear kinase is related to a Drosophila developmental regulator. Genes Dev 1996;10:261-71
  • Manning G, Whyte DB, Martinez R, et al. The protein kinase complement of the human genome. Science 2002;298:1912-34
  • Devaiah BN, Lewis BA, Cherman N, et al. BRD4 is an atypical kinase that phosphorylates Serine2 of the RNA Polymerase II carboxy-terminal domain. Proc Natl Acad Sci USA 2012;109(18):6927-32
  • Denis GV, Green MR. A novel, mitogen-activated nuclear kinase is related to a Drosophila developmental regulator. Genes Dev 1996;10:261-71
  • Filippakopoulos P, Qi J, Picaud S, et al. Selective inhibition of BET bromodomains. Nature 2010;468:1067-73
  • Nicodeme E, Jeffrey KL, Schaefer U, et al. Suppression of inflammation by a synthetic histone mimic. Nature 2010;468:1119-23
  • King B, Trimarchi T, Reavie L, et al. The ubiquitin ligase FBXW7 modulates leukemia-initiating cell activity by regulating MYC stability. Cell 2013;153:1552-66
  • Huang B, Yang X-D, Zhou M-M, et al. Brd4 coactivates transcriptional activation of NF-kB via specific binding to acetylated RelA. Mol Cell Biol 2009;29:1375-87
  • Zhang G, Liu R, Zhong Y, et al. Down-regulation of NF-κB transcriptional activity in HIV-associated kidney disease by BRD4 inhibition. J Biol Chem 2012;287:28840-51
  • Mochizuki K, Nishiyama A, Jang MK, et al. The bromodomain protein Brd4 stimulates G1 gene transcription and promotes progression to S phase. J Biol Chem 2008;283:9040-8
  • Zuber J, Shi J, Wang E, et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 2011;478:524-8
  • Mertz JA, Conery AR, Bryant BM, et al. Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc Natl Acad Sci USA 2011;108:16669-74
  • Dawson MA, Prinjha RK, Dittmann A, et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 2011;478:529-33
  • Puissant A, Frumm SM, Alexe G, et al. Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer Discov 2013;3(3):308-23
  • Cheng Z, Gong Y, Ma Y, et al. Inhibition of BET bromodomain targets genetically diverse glioblastoma. Clin Cancer Res 2013;19:1748-59
  • Tolani B, Gopalakrishnan R, Punj V, et al. Targeting Myc in KSHV-associated primary effusion lymphoma with BET bromodomain inhibitors. Oncogene 2013; doi: 10.1038/onc.2013.242
  • Wyspianska B, Bannister AJ, Barbieri I, et al. BET protein inhibition shows efficacy against JAK2V617F driven neoplasms. Leukemia 2013; doi: 10.1038/leu.2013.234
  • Kubonishi I, Takehara N, Iwata J, et al. Novel t(15;19)(q15;p13) chromosome abnormality in a thymic carcinoma. Cancer Res 1991;51:3327-8
  • French CA, Miyoshi I, Kubonishi I, et al. BRD4-NUT fusion oncogene: a novel mechanism in aggressive carcinoma. Cancer Res 2003;63:304-7
  • French CA, Ramirez CL, Kolmakova J, et al. BRD-NUT oncoproteins: a family of closely related nuclear proteins that block epithelial differentiation and maintain the growth of carcinoma cells. Oncogene 2007;27:2237-42
  • Reynoird N, Schwartz BE, Delvecchio M, et al. Oncogenesis by sequestration of CBP/p300 in transcriptionally inactive hyperacetylated chromatin domains. EMBO J 2010;29:2943-52
  • Zhou M, Huang K, Jung KJ, et al. Bromodomain protein Brd4 regulates human immunodeficiency virus transcription through phosphorylation of CDK9 at threonine 29. J Virol 2009;83:1036-44
  • Ottinger M, Pliquet D, Christalla T, et al. The interaction of the gammaherpesvirus 68 orf73 protein with cellular BET proteins affects the activation of cell cycle promoters. J Virol 2009;83:4423-34
  • Gagnon D, Joubert S, Senechal H, et al. Proteasomal degradation of the papillomavirus E2 protein is inhibited by overexpression of bromodomain-containing protein 4. J Virol 2009;83:4127-39
  • Gyuris A, Donovan DJ, Seymour KA, et al. The chromatin-targeting protein Brd2 is required for neural tube closure and embryogenesis. BBA-Gene Regul Mech 2009;1789:413-21
  • Pal DK, Evgrafov OV, Tabares P, et al. BRD2 (RING3) Is a probable major susceptibility gene for common juvenile myoclonic epilepsy. Am J Hum Genet 2003;73:261-70
  • Lorenz S, Taylor KP, Gehrmann A, et al. Association of BRD2 polymorphisms with photoparoxysmal response. Neurosci Lett 2006;400:135-9
  • Wang F, Liu H, Blanton WP, et al. Brd2 disruption in mice causes severe obesity without Type 2 diabetes. Biochem J 2010;425:71-83
  • Denis GV, Nikolajczyk BS, Schnitzler GR. An emerging role for bromodomain-containing proteins in chromatin regulation and transcriptional control of adipogenesis. FEBS Lett 2010;584:3260-8
  • Boehm D, Calvanese V, Dar RD, et al. BET bromodomain-targeting compounds reactivate HIV from latency via a Tat-independent mechanism. Cell Cycle 2012;12:452-62
  • Greenwald RJ, Tumang JR, Sinha A, et al. E mu-BRD2 transgenic mice develop B-cell lymphoma and leukemia. Blood 2004;103:1475-84
  • Romesser PB, Perlman DH, Faller DV, et al. Development of a malignancy-associated proteomic signature for diffuse large B-cell lymphoma. Am J Pathol 2009;175:25-35
  • Belkina AC, Nikolajczyk BS, Denis GV. BET protein function is required for inflammation: Brd2 genetic disruption and BET inhibitor JQ1 impair mouse macrophage inflammatory responses. J Immunol 2013;190:3670-8
  • Gamsjaeger R, Webb SR, Lamonica JM, et al. Structural basis and specificity of acetylated transcription factor GATA1 recognition by BET family bromodomain protein Brd3. Mol Cell Biol 2011;31:2632-40
  • Lamonica JM, Deng W, Kadauke S, et al. Bromodomain protein Brd3 associates with acetylated GATA1 to promote its chromatin occupancy at erythroid target genes. Proc Natl Acad Sci USA 2011;108:E159-68
  • Shang E, Nickerson HD, Wen D, et al. The first bromodomain of Brdt, a testis-specific member of the BET sub-family of double-bromodomain-containing proteins, is essential for male germ cell differentiation. Development 2007;134:3507-15
  • Matzuk MM, McKeown MR, Filippakopoulos P, et al. Small-molecule inhibition of BRDT for male contraception. Cell 2012;150:673-84
  • Owen DR, Trzupek JD. Epigenetic drugs that do not target enzyme activity. Drug Discov Today: Technologies 2012; 10.1016/j.ddtec.2012.10.008
  • Chung C-W, Coste H, White JH, et al. Discovery and characterization of small molecule inhibitors of the BET family bromodomains. J Med Chem 2011;54:3827-38
  • Mirguet O, Lamotte Y, Donche F, et al. From ApoA1 upregulation to BET family bromodomain inhibition: discovery of I-BET151. Bioorg Med Chem Lett 2012;22:2963-7
  • Seal J, Lamotte Y, Donche F, et al. Identification of a novel series of BET family bromodomain inhibitors: binding mode and profile of I-BET151 (GSK1210151A). Bioorg Med Chem Lett 2012;22:2968-72
  • Fish PV, Filippakopoulos P, Bish G, et al. Identification of a chemical probe for bromo and extra C-terminal bromodomain inhibition through optimization of a fragment-derived hit. J Med Chem 2012;55:9831-7
  • Picaud S, Da Costa D, Thanasopoulou A, et al. PFI-1, a Highly Selective Protein Interaction Inhibitor, Targeting BET Bromodomains. Cancer Res 2013;73:3336-46
  • Bailey D, Jahagirdar R, Gordon A, et al. RVX-208: a small molecule that increases apolipoprotein A-I and high-density lipoprotein cholesterol in vitro and in vivo. J Am Coll Cardiol 2010;55:2580-9
  • Genest J, Krimbou L, Wong N. RVX. 208: a small molecule that raises HDL. Clin Lipidol 2010;5:597-600
  • Khmelnitsky YL, Mozhaev VV, Cotterill IC, et al. In vitro biosynthesis, isolation, and identification of predominant metabolites of 2-(4-(2-hydroxyethoxy)-3,5-dimethylphenyl)-5,7-dimethoxyquinazolin-4(3H)-one (RVX-208). Eur J Med Chem 2013;64:121-8
  • Nicholls SJ, Gordon A, Johansson J, et al. Efficacy and safety of a novel oral inducer of apolipoprotein A-I synthesis in statin-treated patients with stable coronary artery disease: a randomized controlled trial. J Am Coll Cardiol 2011;57:1111-19
  • Nicholls S, Gordon A, Johannson J, et al. ApoA-I induction as a potential cardioprotective strategy: rationale for the SUSTAIN and ASSURE studies. Cardiovasc Drug Ther 2012;26:181-7
  • Chung C-W, Dean AW, Woolven JM, et al. Fragment-based discovery of bromodomain inhibitors part 1: inhibitor binding modes and implications for lead discovery. J Med Chem 2012;55:576-86
  • Hewings DS, Fedorov O, Filippakopoulos P, et al. Optimization of 3,5-dimethylisoxazole derivatives as potent bromodomain ligands. J Med Chem 2013;56:3217-27
  • Bamborough P, Diallo H, Goodacre JD, et al. Fragment-based discovery of bromodomain inhibitors part 2: optimization of phenylisoxazole sulfonamides. J Med Chem 2012;55:587-96
  • Zhao L, Cao D, Chen T, et al. Fragment-based drug discovery of 2-thiazolidinones as inhibitors of the histone reader BRD4 bromodomain. J Med Chem 2013;56:3833-51
  • Mitsubishi Tanabe Pharma Corporation. Antitumor agent. WO 2009084693; 2009
  • Yoshitomi Pharmaceutical Industries. Thienotriazolodiazepine compounds and medicinal uses thereof. WO1998011111; 1998
  • Mitsubishi Pharma Corporation. Thienotriazolodiazepine compound and a medicinal use thereof. WO2006129623; 2006
  • Dana-Farber Cancer Institute, Inc. Compositions and methods for treating neoplasia, inflammatory disease and other disorders. WO2011143669; 2011
  • Dana-Farber Cancer Institute, Inc. Compositions and methods for treating leukemia. WO2011143660; 2011
  • Dana-Farber Cancer Institute, Inc. Compositions and methods for modulating metabolism. WO2011143651; 2011
  • Bayer GMBH. 6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepines. WO2013030150; 2013
  • Glaxosmithkline LLC. Benzodiazepine bromodomain inhibitor. WO2011054845; 2011
  • Glaxosmithkline LLC. Condensed azepine derivatives as bromodomain inhibitors. WO2011054844; 2011
  • Glaxosmithkline LLC. Benzotriazolodiazepine compounds inhibitors of bromodomains. WO2011161031; 2011
  • Constellation Pharmaceuticals, Inc. Bromodomain inhibitors and uses thereof. WO2012075383; 2012
  • Gehling VS, Hewitt MC, Vaswani RG, et al. Discovery, design, and optimization of isoxazole azepine BET inhibitors. ACS Med Chem Lett 2013;4:835-40
  • Constellation Pharmaceuticals, Inc. Bromodomain inhibitors and uses thereof. WO2012151512; 2012
  • Pfizer, Inc. Novel heterocyclic compounds as bromodomain inhibitors. WO2013027168; 2013
  • Glaxosmithkline LLC. Tetrahydroquinolines derivatives as bromodomain inhibitors. WO2011054848; 2011
  • Glaxosmithkline LLC. Imidazo [4, 5-C] quinoline derivates as bromodomain inhibitors. WO2011054846; 2011
  • Glaxosmithkline LLC. Bromodomain inhibitors for treating autoimmune and inflammatory diseases. WO2011054843; 2011
  • Glaxosmithkline LLC. 4-(8-methoxy-1-((1-methoxypropan-2-yl)-2-(tetrahydro-2h-pyran-4-Yl)-1 h-imidazo[4,5-c]quinolin-7-yl)-3,5-dimethylisoxazole and its use as bromodomain inhibitor. WO2013024104; 2013
  • Resverlogix Corp. Compounds for the prevention and treatment of cardiovascular diseases. WO2008092231; 2008
  • Resverlogix Corp. Methods of preparing quinazolinone derivatives. WO2009158404; 2009
  • Resverlogix Corp. Novel anti-inflammatory agents. WO2010123975; 2010
  • Constellation Pharmaceuticals, Inc. Bromodomain inhibitors and uses thereof. WO2012174487; 2012
  • Abbvie, Inc. Bromodomain inhibitors. WO2013097601; 2013
  • Coferon, Inc. Bivalent bromodomain ligands, and methods of using same. WO2013033268; 2013
  • Inhibitors of bromodomains as modulators of gene expression. WO2012116170; 2012
  • Kelly TK, De Carvalho DD, Jones PA. Epigenetic modifications as therapeutic targets. Nat Biotech 2010;28:1069-78
  • Arrowsmith CH, Bountra C, Fish PV, et al. Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov 2012;11:384-400
  • Brennan P, Filippakopoulos P, Knapp S. The therapeutic potential of acetyl-lysine and methyl-lysine effector domains. Drug Discov Today: Ther Strateg 2012;9:e101-e10
  • Houzelstein D, Bullock SL, Lynch DE, et al. Growth and early postimplantation defects in mice deficient for the bromodomain-containing protein Brd4? Mol Cell Biol 2002;22:3794-802
  • Crawford NP, Alsarraj J, Lukes L, et al. Bromodomain 4 activation predicts breast cancer survival. Proc Natl Acad Sci USA 2008;105:6380-5
  • Rodriguez RM, Huidobro C, Urdinguio RG, et al. Aberrant epigenetic regulation of bromodomain Brd4 in human colon cancer. J Mol Med 2012;90:587-95
  • Banerjee C, Archin N, Michaels D, et al. BET bromodomain inhibition as a novel strategy for reactivation of HIV-1. J Leukocyte Biol 2012;92:1147-54
  • Welsch ME, Snyder SA, Stockwell BR. Privileged scaffolds for library design and drug discovery. Curr Opin Chem Biol 2010;14:347-61
  • Meyer N, Penn LZ. Reflecting on 25 years with MYC. Nat Rev Cancer 2008;8:976-90

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.