312
Views
6
CrossRef citations to date
0
Altmetric
Review

Novel diagnostic tools and solutions for multiple sclerosis treatment: a patent review (2009 – 2014)

&

Bibliography

  • World Health Organization. Atlas multiple sclerosis resources in the world 2008. WHO Press; Geneva, Switzerland: 2008
  • Johnson KP. The remarkable story of Copaxone. An approach to the treatment of multiple sclerosis. DiaMedica Publishing; New York: 2010
  • Charcot JM. Histology of “sclerose en plaque” (in French). Gazette Hosp (Paris) 1868;41:554-66
  • Holliday SM, Benfield P. Interferon-beta-1a. BioDrugs 1997;8(4):317-30
  • The IFNB Multiple Sclerosis Study Group. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 1993;43(4):655-61
  • Bornstein MB, Miller A, Slagle S, et al. A pilot trial of Cop 1 in exacerbating–remitting multiple sclerosis. N Eng J Med 1987;317:408-14
  • Supreme court sides with Teva in drug dispute. New York Times. 20.01.2015
  • Aharoni R, Teitelbaum D, Sela M, et al. Copolymer 1 induces T cells of the T helper type 2 that crossreact with myelin basic protein and suppress experimental autoimmune encephalomyelitis. Proc Nat Acad Sci USA 1997;94(20):10821-6
  • Goodin DS, Cohen BA, O’Connor P, et al. Assessment: The use of natalizumab (Tysabri) for the treatment of multiple sclerosis (an evidence-based review). Report of the therapeutics and technology assessment subcommittee of the american academy of neurology. Neurology 2008;71(10):766-73
  • Goodin DS, Arnason BG, Coyle PK, et al. The use of mitoxantrone (Novantrone) for the treatment of multiple sclerosis. Neurology 2003;61(10):1332-8
  • Confavreux C, Vukusic S, Moreau T, et al. Relapses and progression of disability in multiple sclerosis. N Engl J Med 2000;343:1430-8
  • Kremenchutzky M, Cottrell D, Rice G, et al. The natural history of multiple sclerosis: a geographically based study 7. Progressive–relapsing and relapsing–progressive multiple sclerosis: a re-evaluation. Brain 1999;122(10):1941-50
  • Lublin FD, Reingold SC. Defining the clinical course of multiple sclerosis. Neurology 1996;46:907-11
  • Vukusic S, Confavreux C. Prognostic factors for progression of disability in the secondary progressive phase of multiple sclerosis. J Neurol Sci 2003;206(2):135-7
  • Leary SM, Thompson AJ. Primary progressive multiple sclerosis. CNS Drugs 2005;19(5):369-76
  • McDonald WI, Compston A, Edan G, et al. Recommended diagnostic criteria for multiple sclerosis: Guidelines from the international panel on the diagnosis of multiple sclerosis. Ann Neurol 2001;50(1):121-7
  • Polman CH, Reingold SC, Banwell B, et al. Diagnostic criteria for multiple sclerosis: 2010 revision to the McDonald criteria. Ann Neurol 2011;69(2):292-302
  • Polman CH, Reingold SC, Edan G, et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald criteria”. Ann Neurol 2005;58(2):840-6
  • Nakahara J, Maeda M, Aiso S, et al. Current concepts in multiple sclerosis: autoimmunity versus oligodendrogliopathy. Clin Rev Allergy Immunol 2012;42:26-34
  • Miljković D, Spasojević I. Multiple sclerosis: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal 2013;19(18):2286-334
  • Podbielska M, Hogan EL. Molecular and immunogenic features of myelin lipids: incitants or modulators of multiple sclerosis? Mult Scler 2009;15:1011-29
  • Balashov KE, Khoury SJ, Hafler DA, et al. Inhibition of T cell responses by activated human CD8+ T cells is mediated by interferon-gamma and is defective in chronic progressive multiple sclerosis. J Clin Invest 1995;95(6):2711-19
  • Haas J, Hug A, Viehöver A, et al. Reduced suppressive effect of CD4+CD25high regulatory T cells on the T cell immune response against myelin oligodendrocyte glycoprotein in patients with multiple sclerosis. Eur J Immunol 2005;35(11):3343-52
  • Misu T, Onodera H, Fujihara K, et al. Chemokine receptor expression on T cells in blood and cerebrospinal fluid at relapse and remission of multiple sclerosis: imbalance of Th1/Th2-associated chemokine signaling. J Neuroimmunol 2001;114(1-2):207-12
  • Ziemssen T, Kümpfel T, Klinkert WE, et al. Glatiramer acetate-specific T-helper 1- and 2-type cell lines produce BDNF: implications for multiple sclerosis therapy. Brain 2002;125(11):2381-91
  • Alcaro MC, Lolli F, Migliorini P, et al. Peptides as autoimmune diseases antigenic probes. Chemistry Today 2007;25(3):14-16
  • Pandey S, Alcaro MC, Scrima M, et al. Designed glucopeptides mimetics of myelin protein epitopes as synthetic probes for the detection of autoantibodies, biomarkers of multiple sclerosis. J Med Chem 2012;55(23):10437-47
  • Pandey S, Dioni I, Lambardi D, et al. Alpha actinin is specifically recognized by multiple sclerosis autoantibodies isolated using an N-glucosylated peptide epitope. Mol Cell Proteomics 2013;12:277-82
  • Panza F, Pratesi F, Valoriani D, et al. Immunoglobulin G subclass profile of anticitrullinated peptide antibodies specific for Epstein Barr Virus-derived and histone-derived citrullinated peptides. J Rheumatol 2014;41(2):407-8
  • Papini AM. The use of post-translationally modified peptides for detection of biomarkers of immune-mediated diseases. J Peptide Sci 2009;15:621-8
  • Pratesi F, Dioni I, Tommasi C, et al. Antibodies from patients with rheumatoid arthritis target citrullinated histone 4 contained in neutrophils extracellular traps. Ann Rheumatic Dis 2013;73:1414-22
  • Carotenuto A, D’Ursi AM, Nardi E, et al. Conformational analysis of a glycosylated human myelin oligodendrocyte glycoprotein peptide epitope able to detect antibody response in multiple sclerosis. J Med Chem 2001;44:2378-81
  • Lolli F, Mazzanti B, Pazzagli M, et al. The glycopeptide CSF114(Glc) detects serum antibodies in multiple sclerosis. J Neuroimmunol 2005;167:131-7
  • Lolli F, Mulinacci B, Carotenuto A, et al. An N-glucosylated peptide detecting disease-specific autoantibodies, biomarkers of multiple sclerosis. Proc Nat Acad Sci USA 2005;102(29):10273-8
  • Baka Z, György B, Géher P, et al. Citrullination under physiological and pathological conditions. Joint Bone Spine 2012;79:431-6
  • de Seze J, Duducquoi S, Lefranc D, et al. IgG reactivity against citrullinated myelin basic protein in multiple sclerosis. J Neuroimmunol 2001;117(1-2):149-55
  • Kim JK, Mastronardi FG, Wood DD, et al. Multiple Sclerosis: an important role for post-translational modifications of myelin basic protein in pathogenesis. Mol Cell Proteomics 2003;2:453-62
  • Moscarello M, Mastronardi FG, Wood DD. The role of citrullinated proteins suggests a novel mechanism in the pathogenesis of multiple sclerosis. Neurochem Res 2007;32(2):251-6
  • Tranquill LR, Cao L, Ling NC, et al. Enhanced T cell responsiveness to citrulline-containing myelin basic protein in multiple sclerosis patients. Mult Scler 2000;6(4):220-5
  • Zamboni P, Menegatti E, Bartolomei I, et al. Intracranial venous haemodynamics in multiple sclerosis. Cur Neurov Res 2007;4:252-8
  • Zamboni P. System for diagnosing multiple sclerosis. WO2009107152; 2008
  • Barreto AD, Brod SA, Bui TT, et al. Chronic cerebrospinal venous insufficiency: case–control neurosonography results. Ann Neurol 2013;73(6):721-8
  • ElSankari S, Balédent O, Pesch VV, et al. Concomitant analysis of arterial, venous, and CSF flows using phase-contrast MRI: a quantitative comparison between MS patients and healthy controls. J Cereb Blood Flow Metab 2013;33:1314-21
  • Brown JE, Margolis MP, Gaddis ML. Diagnostic and therapeutic methods, devices, and systems for multiple sclerosis, deep vein thrombosis, and pulmonary embolism patients. WO092444; 2012
  • Yin HL, Stossel TP. Control of cytoplasmic actin gel–sol transformation by gelsolin, a calcium-dependent regulatory protein. Nature 1979;281:583-6
  • Bucki R, Levental I, Kulakowska A, et al. Plasma gelsolin: function, prognostic value, and potential therapeutic use. Curr Protein Pept Sci 2008;9(6):541-51
  • Mintzer E, Sargsyan H, Bittman R. Lysophosphatidic acid and lipopolysaccharide bind to the PIP2-binding domain of gelsolin. Biochim Biophys Acta 2006;1758(1):85-9
  • Stossel TP, Lee P-S, Dittel B, et al. Use of gelsolin to treat multiple sclerosis and to diagnose neurological disease. US8440662; 2013
  • Lovato L, Cianti R, Gini B, et al. Transketolase and 2′,3′-cyclic-nucleotide 3′-phosphodiesterase type I isoforms are specifically recognized by IgG autoantibodies in Multiple Sclerosis patients. Mol Cell Proteomics 2008;7:2337-49
  • Bevilacqua M, Tryon V, Bankaitis-Davis D, et al. Gene expression profiling for identification, monitoring and treatment of multiple sclerosis. WO2008008487; 2006
  • Somers V, Stinissen P. Biomarkers for multiple sclerosis. WO2008125651; 2007
  • Ibrahim S. Mononucleotide polymorphisms of the human chromosome 4 in the inositol polyphosphate 4-phosphatase type ii gene (INPP4b gene) for diagnosing or pre-diagnosing multiple sclerosis. WO2011101466; 2010
  • Monson N. VH4 codon signature for multiple sclerosis. WO2010011894; 2008
  • Koelsch K, Zheng NY, Zhang Q, et al. Mature B cells class switched to IgD are autoreactive in healthy individuals. J Clin Invest 2007;117(6):1558-65
  • Klinger E, Tessler S, Hussein H, et al. Methods for treating multiple sclerosis using antisense oligonucleotides. US8759314; 2014
  • Bielekova B, Goodwin B, Richert N, et al. Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: Results of a phase II clinical trial with an altered peptide ligand. Nat Med 2000;6:1167-75
  • Wraith D, Streeter H. Compositions comprising myelin basic protein peptides and medical uses thereof. EP2211892; 2011
  • Buckel P, Jacob U. FC gamma receptor for the treatment of B cell mediated multiple sclerosis. WO2010026168; 2008
  • Lennon VA, Wingerchuk DM, Kryzer TJ, et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 2004;364(9451):2106-12
  • Sheridan III JP. Methods for monitoring the efficacy of anti-IL-2R antibodies in multiple sclerosis patients. EP2425250; 2014
  • Wynn D, Kaufman M, Montalban X, et al. Daclizumab in active relapsing multiple sclerosis (CHOICE study): a Phase II, randomised, double-blind, placebo-controlled, add-on trial with interferon beta. Lancet Neurol 2010;9(4):381-90
  • Kirchner J, Mustelin TM. ANG-2 inhibition to treat multiple sclerosis. WO2009158432; 2008
  • Arbeit RD, Maki D, Tally FP, et al. The safety and efficacy of daptomycin for the treatment of complicated skin and skin-structure infections. Clin Infect Dis 2004;38(12):1673-81
  • Keith D, Govardhan C, Khalaf N. Methods for preparing purified daptomycin. WO2002056829; 2001
  • Guarnaccia JB. Daptomycin for multiple sclerosis. WO2011043788; 2009
  • Gelder FB, Webster GA. Composition and methods for treatment of multiple sclerosis. WO2010147484; 2009
  • Inohara N, Ogura Y, Fontalba A, et al. Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn’s Disease. J Biol Chem 2003;278(8):5509-12
  • Martinon F, Agostini L, Meylan E, et al. Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Cur Biol 2004;14(21):1929-34
  • Rustin P, Rötig A. Quinone derivatives for treating or preventing diseases associated with iron overload. EP0402703; 1998
  • Zs-Nagy I. Chemistry, toxicology, pharmacology and pharmacokinetics of idebenone: a review. Arch Gerontol Geriatr 1990;11(3):177-86
  • Meier T, Bielekova B, McFarland HF. Quinone derivative 2,3-dimethoxy-5-methyl-6-(10-hydroxydecyl)-1,4-benzoquinone for the treatment of primary progressive multiple sclerosis. WO2010124713; 2009
  • Lukashev ME, O’Neill G. Composition and uses for treating multiple sclerosis. WO2008097596; 2007
  • Kappos L, Radue EW, O’Connor P, et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med 2010;362(5):387-401
  • Bombrun A, Schwarz M, Crosigniani S, et al. 6-amino-pyrimidine-4-carboxamide derivatives and related compounds which bind to the sphingosine 1-phosphate (S1P) receptor for the treatment of multiple sclerosis. EP2183224; 2013
  • Muzerelle M, Quattropani A, Montagne C, et al. Oxadiazole fused heterocyclic derivatives useful for the treatment of multiple sclerosis. US8741923; 2014
  • Bykovskaia SN, Eliseeva DD, Zavalishin IA. Treatment method for relapsing-remitting multiple sclerosis. WO2014003605; 2012
  • Brentzel HJ, Lopez-Bresnahan M, Ammoury N. Combination of interferon-beta and a cladribine regimen for treating multiple sclerosis. EP2026832; 2012
  • Selby R, Brandwein J, O’Connor P. Safety and tolerability of subcutaneous cladribine therapy in progressive multiple sclerosis. Can J Neurol Sci 1998;25(4):295-9
  • Romine JS, Sipe JC, Koziol JA, et al. A double-blind, placebo-controlled, randomized trial of cladribine in relapsing-remitting Multiple Sclerosis. Proc Assoc Am Physicians 1999;111(1):35-44
  • Rice GPA, Filippi M, Comi G, et al. Cladribine and progressive MS. Clinical and MRI outcomes of a multicenter controlled trial. Neurology 2000;54(5):1145-55
  • Bryrnes W, Douillet P, Frangin G. Use of the combination of teriflunomide and interferon beta for treating multiple sclerosis. WO2011005907; 2009
  • Wettstein J. Use of (Z) -2-cyano-3-hydroxy-but-2-enoic acid-(4’-trifluoromethylphenyl)-amide for treating multiple sclerosis Use of (Z)-2-cyano-3-hydroxy-but-2-enoic acid-(4’-trifluoromethylphenyl)-amide for treating multiple sclerosis. US6794410; 2001
  • Forte M, Bourdette D. Cyclic undecapeptides and derivatives as multiple sclerosis therapies. EP2195009; 2014
  • Giovannoni G, Munschauer FE, Deisenhammer F. Neutralising antibodies to interferon beta during the treatment of multiple sclerosis. J Neurol Neurosurg Psychiatry 2002;73:465-9
  • Bloomgren G, Richman S, Hotermans C, et al. Risk of natalizumab-associated progressive multifocal leukoencephalopathy. N Engl J Med 2012;366:1870-80
  • Clifford DB, DeLuca A, Simpson DM, et al. Natalizumab-associated progressive multifocal leukoencephalopathy in patients with multiple sclerosis: lessons from 28 cases. Lancet Neurol 2010;9(4):438-46
  • Zamboni P, Galeotti R, Menegatti E, et al. Chronic cerebrospinal venous insufficiency in patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 2009;80:392-9
  • Alcaro MC, Papini AM. Contribution of peptides to multiple sclerosis research. Biopolymers 2006;84:349-67
  • Sospedra M, Martin R. Immunology of Multiple Sclerosis. Ann Rev Immunol 2005;23:683-747
  • Martino G, Hartung HP. Immunopathogenesis of multiple sclerosis: the role of T cells. Cur Opin Neurol 1999;12(3):309-21
  • Vergelli M, Mazzanti B, Traggiai E, et al. Short-term evolution of autoreactive T cell repertoire in multiple sclerosis. J Neurosci Res 2001;66(3):517-24
  • McFarland HF, Martin R. Multiple sclerosis: a complicated picture of autoimmunity. Nat Immunol 2007;8:913-19
  • Lucchinetti C, Brück W, Noseworthy J. Multiple sclerosis: recent developments in neuropathology, pathogenesis, magnetic resonance imaging studies and treatment. Curr Opin Neurol 2001;14(3):259-69

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.