166
Views
50
CrossRef citations to date
0
Altmetric
Review

Protease inhibitors as potential disease-modifying therapeutics for Alzheimer’s disease

&
Pages 1385-1409 | Published online: 28 Oct 2005

Bibliography

  • HY LX, KELLER DM: Prevalence of AD among whites: a summary by levels of severity. Neurology (2000) 55(2):198–204.
  • GOEDERT M, WISCHIK CM, RA, WALKER JE, A: Cloning and sequencing of the cDNA encoding a core protein of the paired filament of Alzheimer's disease: as the microtubule-associated protein tau. Proc. Natl. Acad. Sci. USA1988) 85(10:4051–4055.
  • GOEDERT M, SISODIA SS, PRICE DL: Neurofibrillary tangles and 13-amyloid deposits in Alzheimer's disease. Curr. Opin. Neurobiol (1991) 1(3):441–447.
  • GLENNER GG, WONG CW: Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular protein. Biochem. Biophys.. Commun. (1984) 120(3):885–890.
  • MASTERS CL, SIMMS G, NA et al.: Amyloid plaque core protein in Alzheimer's disease and Down's syndrome. Proc. Natl. Acad. Sci. USA (1985) 82(12):4245–4249.
  • KANG J, LEMAIRE HG, A et al: The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature (1987) 325(6106):733–736.
  • HAASS C, SCHLOSSMACHER MG, HUNG AY et al.: Amyloid 0-peptide is produced by cultured cells during normal metabolism. Nature (1992) 359(6393)322–325.
  • SPILLANTINI MG, MURRELL JR, GOEDERT M et al: Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc. Nati Acad. Sci. USA (1998) 95(13):7737–7741.
  • HUTTON M, LENDON CL, RIZZU P et al.: Association of missense and 5'-splice-site mutations in tau with the inherited dementia FTDP-17. Nature (1998) 393(6686):702–705.
  • ODDO S, CACCAMO A, JD et al: Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular AB and synaptic dysfunction. Neuron (2003) 39(3):409–421.
  • ODDO S, BILLINGS L, KESSLAK JP, CRIBBS DH, LAFERLA FM: AB immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron (2004) 43(3):321–332.
  • HARDY JA, HIGGINS GA: Alzheimer's disease: the amyloid cascade hypothesis. Science (1992) 256(5054):184–185.
  • MULLAN M, CRAWFORD F, K et al.: A pathogenic mutation for probable Alzheimer's disease in the APP gene at the N-terminus of 0-amyloid. Nat. Genet. (1992) 1(5):345–347.
  • GOATE A, CHARTIER-HARLIN MC, MULLAN M et al: Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature (1991) 349(6311):704–706.
  • MURRELL J, FARLOW M, GHETTI B, BENSON MD: A mutation in the amyloid precursor protein associated with hereditary Alzheimer's disease. Science (1991) 254(5028)97–99.
  • NARUSE S, IGARASHI S, H etal: Mis-sense mutation Val-Ile in exon 17 of amyloid precursor protein gene in Japanese familial Alzheimer's disease. Lancet (1991) 337(8747):978–979.
  • ROGAEV El, SHERRINGTON R, ROGAEVA EA et al.: Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature (1995) 376(6543):775–778.
  • SHERRINGTON R, ROGAEV El, LIANG Y et al.: Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature (1995) 375(6534):754–760.
  • LEVY-LAHAD E, WASCO W, P et al: Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science (1995) 269(5226):973–977.
  • LEVY-LAHAD E, WIJSMAN EM, NEMENS E et al.: A familial Alzheimer's disease locus on chromosome 1. Science (1995) 269(5226):970–973.
  • HARDY J: Amyloid, the presenilins and Alzheimer's disease. Trends Neurosci. (1997) 20(4):154–159.
  • HARDY J: The Alzheimer family of diseases: many etiologies, one pathogenesis? Proc. Natl. Acad. Sci. USA (1997) 94(6):2095–2097.
  • LAMBERT MP, BARLOW AK, CHROMY BA et al: Diffusible, nonfibrillar ligands derived from A131-42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. USA (1998) 95(11):6448–6453.
  • KLEIN WL: AB toxicity in Alzheimer's disease: globular oligomers (ADDLs) as new vaccine and drug targets. Neurochetn. Int. (2002) 41(5):345–352.
  • GONG Y, CHANG L, VIOLA KL et al: Alzheimer's disease-affected brain: presence of oligomeric A 13 ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc. Natl. Acad. Sci. USA (2003) 100(18):10417–10422.
  • TANZI RE, BERTRAM L: Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective. Cell (2005) 120(4):545–555.
  • LEISSRING MA, FARRIS W, CHANG AY et al: Enhanced proteolysis of 0-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron (2003) 40(6):1087–1093.
  • IWATA N, TSUBUKI S, TAKAKI Y et al.: Identification of the major A131-42-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition. Nat. Med. (2000) 6(2):143–150.
  • DEMATTOS RB, BALES KR, CUMMINS DJ et al: Peripheral anti-A13 antibody alters CNS and plasma A 13 clearance and decreases brain A 13 burden in a mouse model of Alzheimer's disease.. Natl. Acad. Sci. USA (2001) 98(15)8850–8855.
  • CITRON M, OLTERSDORF T, HAASS C et al: Mutation of the 0-amyloid precursor protein in familial Alzheimer's disease increases 3-protein production. Nature (1992) 360(6405):672–674.
  • NEVE RL, FINCH EA, DAWES LR: Expression of the Alzheimer amyloid precursor gene transcripts in the human brain. Neuron (1988) 1(8):669–677.
  • SPILLANTINI MG, HUNT SP, J, GOEDERT M: Expression and cellular localization of amyloid 3-protein precursor transcripts in normal human brain and in Alzheimer's disease. Brain Res. Mol. Brain Res. (1989) 6(2-3):143–150.
  • HEBERT SS, SERNEELS L, T et al: Coordinated and widespread expression of y-secretase in vivo: evidence for size and molecular heterogeneity. Neurobiol. Dis. (2004) 17(2):260–272.
  • VASSAR R, BENNETT BD,-KHAN S et al: 3-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science (1999) 286(5440):735–741.
  • ••First report describing the discovery ofBACE1.
  • GHISO J, MATSUBARA E, A et al.: The cerebrospinal-fluid soluble form of Alzheimer's amyloid is complexed to SP-40,40apolipoprotein n, an inhibitor of the complement membrane-attack complex.. J. (1993) 293\(Part 1)27–30.
  • DEMATTOS RB, CIRRITO JR, PARSADANIAN M et al.: ApoE and clusterin cooperatively suppress AB levels and deposition. Evidence that ApoE regulates extracellular AB metabolism in vivo. Neuron (2004) 41(2):193–202.
  • BRIGHTMAN MW, REESE TS: Junctions between intimately apposed cell membranes in the vertebrate brain. Cell Biol. (1969) 40(3):648–677.
  • CSERR HF, BUNDGAARD M: Blood-brain interfaces in vertebrates: a comparative approach. Am. Physiol (1984) 246(3 Part 2):R277–R288.
  • ZLOKOVIC BV: Neurovascular mechanisms of Alzheimer's neurodegeneration. Trends Neurosci. (2005) 28(4):202–208.
  • •Comprehensive review on AB peptide dynamics.
  • DEANE R, WU Z, SAGARE A etal.: LRP/amyloid 0-peptide interaction mediates differential brain efflux of Al3 isoforms. Neuron (2004) 43(3):333–344.
  • DEANE R, DU YS, RK et al.: RAGE mediates amyloid-13 peptide transport across the blood-brain barrier and accumulation in brain. Nat. Med. (2003) 9(7):907–913.
  • ZLOKOVIC BV, MARTEL CL, MATSUBARA E et al.: Glycoprotein 330/ megalin: probable role in receptor-mediated transport of apolipoprotein J alone and in a complex with Alzheimer's disease amyloid at the blood-brain and blood-cerebrospinal fluid barriers. Proc. Nati Acad. Sri. USA (1996) 93(9):4229–4234.
  • GAMES D, ADAMS D, R et al.: Alzheimer-type neuropathology in transgenic mice overexpressing V717F 0-amyloid precursor protein. Nature (1995) 373(6514):523–527.
  • HSIAO K, CHAPMAN P, NILSEN S et al: Correlative memory deficits, Al3 elevation, and amyloid plaques in transgenic mice. Science (1996) 274(5284):99–102.
  • KAWARABAYASHI T, YOUNKIN LH, SAIDO TC et al.: Age-dependent changes in brain, CSF, and plasma amyloid (0) protein in the Tg2576 transgenic mouse model of Alzheimer's disease. J. Neurosci. (2001) 21(2):372–381.
  • SAVAGE MJ, TRUSKO SP, DS et al.: Turnover of amyloid 0-protein in mouse brain and acute of its level by phorbol ester.. (1998) 18(5):1743–1752.
  • BARTEN DM, GUSS VL, CORSA JA et al.: Dynamics of 0-amyloid reductions in brain, cerebrospinal fluid, and plasma of 0-amyloid precursor protein transgenic mice treated with a y-secretase inhibitor. Phannacol. Exp. Ther. (2005) 312(2):635–643.
  • HOLCOMB L, GORDON MN, McGOWAN E etal.: Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat. Med. (1998) 4(1):97–100.
  • JOHNSON-WOOD K, LEE M, MOTTER R et al.: Amyloid precursor protein processing and A 042 deposition in a transgenic mouse model of Alzheimer's disease. Proc. Nati Acad. Li. USA (1997) 94(4):1550–1555.
  • CIRRITO JR, MAY PC, O'DELL MA et al.: In vivo assessment of brain interstitial fluid with microdialysis reveals plaque-associated changes in amyloid-0 metabolism and half-life. J. Neurosci. (2003) 23(26):8844–8853.
  • LAMB BT, SISODIA SS, LAWLER AM et al.: Introduction and expression of the 400 kilobase amyloid precursor protein gene in transgenic mice. Nat. Genet. (1993) 5(1):22–30.
  • ANDERSON JJ, HOLTZ G, BASKIN PP et al: Reductions in 0-amyloid concentrations in vivo by the y-secretase inhibitors BMS-289948 and BMS-299897. Biochem. Phannacol. (2005) 69(4):689–698.
  • BEST JD, JAY MT, OTU F etal.: Quantitative measurement of changes in amyloid-0(40) in the rat brain and cerebrospinal fluid following treatment with the y-secretase inhibitor LY-411575 [1\12-('23)-243, 5-difluoropheny1)-2-hydroxyethanoyll -Ni-[(7S)-5-methyl-6-oxo-6,7-dihydro-5H-dibenzo cll azepin-7-yll-L-alaninamidel. I Phannacol. Exp. Ther. (2005) 313(2):902–908.
  • GRIMWOOD S, HOGG J, JAY MT et al.: Determination of guinea-pig cortical y-secretase activity ex vivo following the systemic administration of a y-secretase inhibitor. Neurophannacology (2005) 48(7):1002–1011.
  • LANZ TA, HOSLEY JD, ADAMS WJ, MERCHANT KM: Studies of Al3 pharmacodynamics in the brain, CSF and plasma in young (plaque-free) Tg2576 mice using the y-secretase inhibitor, LY-411575. Phannacol. Exp. Ther. (2004) 309(1):49–55.
  • ANDREASEN N, MINTHON L, VANMECHELEN E etal.: Cerebrospinal fluid tau and A1342 as predictors of development of Alzheimer's disease in patients with mild cognitive impairment. Neurosci. Lett. (1999) 273(1):5–8.
  • ANDREASEN N, HESSE C, P etal.: Cerebrospinal fluid 0-amyloid(1–42) in Alzheimer's disease: differences between early- and late-onset Alzheimer's disease and stability during the course of disease. Arch. Neurol. (1999) 56(6):673–680.
  • ANDREASEN N, BLENNOW K: CSF biomarkers for mild cognitive impairment and early Alzheimer's disease.. Neurosurg. (2005) 107(3):165–173.
  • WOLFE MS, XIA W, OSTASZEWSKI BL et al.: Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and y-secretase activity. Nature (1999) 398(6727):513–517.
  • ••Postulates that PSN form the catalyticcenter of an aspartyl-type protease thus constitute the long-sought y-secretase enzyme.
  • WEIHOFEN A, BINNS K, MK, ASHMAN K, MARTOGLIO B: Identification of signal peptide peptidase, a presenilin-type aspartic protease. Science (2002) 296(5576):2215–2218.
  • RAWSON RB, ZELENSKI NG, NIJHAWAN D et al.: Complementation cloning of 52P, a gene encoding a putative metalloprotease required for intramembrane cleavage of SREBPs. Mol. Cell (1997) 1(1):47–57.
  • URBAN S, LEE JR, FREEMAN M: Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell (2001) 107(2):173–182.
  • •This paper and references [60] and [61] describe the identification of different members of the family of intramembrane-type cleaving proteases.
  • OKOCHI M, STEINER H, A et al.: Presenilins mediate a dual intramembranous y-secretase cleavage of Notch-1. EMBO J. (2002) 21(205408–5416.
  • SASTRE M, STEINER H, FUCHS K et al.: Presenilin-dependent y-secretase processing of 0-amyloid precursor protein at a site corresponding to the S3 cleavage of Notch. EMBO Rep. (2001) 2:835–841.
  • WEIDEMANN A, EGGERT S, REINHARD FB et al.: A novel epsilon-cleavage within the transmembrane domain of the Alzheimer amyloid precursor protein demonstrates homology with Notch processing. Biochemistry (2002) 41(02825–2835.
  • FUNAMOTO S, MORISHIMA-KAWASHIMA M, TANIMURA Y et al.: Truncated carboxyl-terminal fragments of 0-amyloid precursor protein are processed to amyloid 0-proteins 40 and 42. Biochemistry (2004) 43(42):13532–13540.
  • QI-TAKAHARA Y,-KAWASHIMA M, TANIMURA Y et al.: Longer forms of amyloid 13 protein: implications for the mechanism of intramembrane cleavage byã-secretase. J. Neurosci. (2005) 25(2):436–445..
  • WANG R, MESCHIA JF, COTTER RJ, SS: Secretion of the â/A4 precursor protein. Identification of cleavage site in cultured mammalian cells.. Biol. Chem. (1991) 266(25):16960–16964.
  • BEHER D, WRIGLEY JD, OWENS AP, MS: Generation of-terminally truncated amyloid-â peptides dependent on ã-secretase activity.. Neurochem. (2002) 82(3):563–575.
  • GU Y, MISONOU H, SATO T et al.: intramembrane cleavage of the â-amyloid precursor protein family ã-secretase-like cleavage of. J. Biol. Chem. (2001) 276(38):35235–35238.
  • WOLFE MS, XIA W, MOORE CL et al.: probes and molecular suggest that Alzheimer’s ã-secretase is an intramembrane-cleaving protease. Biochemistry (1999) 38(15):4720–4727.
  • SHEARMAN MS, BEHER D, EE et al.: L-685,458, an aspartyl transition state mimic, is a potent of amyloid â-protein precursor ã-secretase activity. Biochemistry (2000) 39(30):8698–8704.
  • DE STROOPER B, SAFTIG P, K et al.: Deficiency of-1 inhibits the normal cleavage of precursor protein. Nature (1998) 391(6665):387–390. •• Demonstrates that PSNs are critically for ã-secretase activity.
  • LI YM, XU M, LAI MT et al.: ã-secretatase inhibitors to the active site covalently label 1. Nature (2000) 405:689–694.
  • ESLER WP, KIMBERLY WT, BL et al.: Transition-state inhibitors of ã-secretase bind to presenilin-1. Nat. Cell Biol. (2000) 2:428–434.
  • SEIFFERT D, BRADLEY JD, CM et al.: Presenilin-1 and 2 molecular targets for ã secretase. J. Biol. Chem. (2000) 275:34086–34091.
  • •• Together with references [74] and [75] this demonstrates that PSNs are the for ã-secretase inhibitors and thus the catalytic site of this enzyme.
  • WRIGLEY JD, NUNN EJ, NYABI O al.: Conserved residues within the active site of ã-secretase influence enzyme activity and binding. J. Neurochem. (2004) 90(6):1312–1320.
  • RICHTER C, TANAKA T, YADA RY: of activation of the gastric proteinases: pepsinogen, and prochymosin. Biochem. J. (1998) 335\(Part 3):481–490.
  • KNAPPENBERGER KS, TIAN G, YE X al.: Mechanism of ã-secretase cleavage: is ã-secretase regulated through involving the presenilin-1 9 loop? Biochemistry (2004) 43(20):6208–6218.
  • BEHER D, WRIGLEY JD, NADIN A al.: Pharmacological knock-down of the 1 heterodimer by a novel ã-secretase inhibitor: implications for biology. J. Biol. Chem. (2001) 276(48):45394–45402.
  • ANNAERT WG, ESSELENS C, BAERT V al.: Interaction with telencephalin and the precursor protein predicts a ring for presenilins. Neuron (2001) 32(4):579–589.
  • ESLER WP, KIMBERLY WT, BL et al.: Activitydependent of the presenilin– ã-secretase complex reveals nicastrin and a ã substrate. Proc. Natl. Acad. Sci. USA (2002) 99(5):2720–2725.
  • TIAN G, SOBOTKA-BRINER CD, J et al.: Linear non-competitive of solubilized human ã-secretase pepstatin A methylester, L-685458, and benzodiazepines.. Biol. Chem. (2002) 277:31499–31505.
  • BEHER D, FRICKER M, NADIN A et al.: vitro characterization of the presenilindependent ã-secretase complex using a novel ligand. Biochemistry (2003) 42(27):8133–8142.
  • SHAH S, LEE SF, TABUCHI K et al.: functions as a ã-secretase-substrate. Cell (2005) 122(3):435–447.
  • • Compelling biochemical study that nicastrin is an initial receptor site of ã-secretase.
  • YU G, NISHIMURA M, ARAWAKA S al.: Nicastrin modulates presenilinmediated/glp-1 signal transduction âAPP processing. Nature (2000) 407(6800):48–54.
  • GOUTTE C, TSUNOZAKI M, VA, PRIESS JR: APH-1 is a membrane protein essential for Notch signaling pathway in elegans embryos. Proc. Natl.. Sci. USA (2002) 99(2):775–779.
  • FRANCIS R, McGRATH G, ZHANG J al.: Aph-1 and pen-2 are required for pathway signaling, ã-secretase of âAPP, and presenilin protein. Dev. Cell (2002) 3(1):85–97.
  • • This paper together reference [86] and [87] the identification of novel of the ã-secretase complex.
  • EDBAUER D, WINKLER E, REGULA JT al.: Reconstitution of ã-secretase activity.. Cell Biol. (2003) 5(5):486–488.
  • •• First report on the reconstitution of ã-secretase activity in a cellular system (yeast), which lacks this enzyme; together reference [90] and [91] this implies the enzyme consists of the integral proteins PSN, NCT, Pen-2 and–1.
  • TAKASUGI N, TOMITA T, HAYASHI I al.: The role of presenilin cofactors in the ã-secretase complex. Nature (2003) 422(6930):438–441.
  • KIMBERLY WT, LAVOIE MJ, BL et al.: ã-Secretase is a protein complex comprised of, nicastrin, aph-1, and pen-2.. Natl. Acad. Sci. USA (2003) 42(22):6664–6673
  • WRIGLEY JD, SCHUROV I, NUNN EJ al.: Functional overexpression of ã-secretase reveals protease-independent functions and a critical role of for protease activity. J. Biol. Chem. (2005) 280(13):12523–12535.
  • HAASS C: Take five-BACE and the ã-secretase quartet conduct Alzheimer’s â-peptide generation. EMBO J. (2004) 23(3):483–488.
  • HU Y, FORTINI ME: Different cofactor in ã-secretase assembly: evidence a nicastrin–Aph-1 subcomplex.. Cell Biol. (2003) 161(4):685–690.
  • LAVOIE MJ, FRAERING PC, BL et al.: Assembly of the ã-secretase complex involves early formation an intermediate subcomplex of Aph-1 nicastrin. J. Biol. Chem. (2003) 278(39):37213–37222.
  • KAETHER C, CAPELL A, EDBAUER D al.: The presenilin C-terminus is required ER-retention, nicastrin-binding and C, CAPELL A, EDBAUER D et al: The presenilin C-terminus is required for ER-retention, nicastrin-binding and 1403 Op/n. lnvestig. Drugs (2005) 14(11)-secretase activity. EMBO J. (2004) 23(24):4738–4748.
  • DE STROOPER B: Aph-1, Pen-2, and nicastrin with presenilin generate an active y-secretase complex. Neuron (2003) 38(1):9–12.
  • SHIROTANI K, EDBAUER D, PROKOP S, HAASS C, STEINER H: of distinct y-secretase complexes with different APH-1 variants. J. Biol. Chem. (2004) 279(40):41340–41345.
  • LAI MT, CHEN E, CROUTHAMEL MC eta].: Presenilin-1 and presenilin-2 exhibit distinct yet overlapping y-secretase activities../. Biol. Chem. (2003) 278(25):22475–22481
  • MA G, LIT, PRICE DL, WONG PC: APH-la is the principal mammalian APH-1 isoform present in y-secretase complexes during embryonic development. J. Neurosci. (2005) 25(1):192–198.
  • SERNEELS L, DEJAEGERE T, CRAESSAERTS K et al: Differential contribution of the three Aphl genes to y-secretase activity in vivo. Proc. Natl. Acad. Sci. USA (2005) 102(5):1719–1724.
  • MASTRANGELO P, MATHEWS PM, CHISHTI MA et al.: Dissociated phenotypes in presenilin transgenic mice define functionally distinct y-secretases.. Nati Acad. Sci. USA (2005) 102(25):8972–8977.
  • •Implies together with [101] that different y-secretase enzyme complexes exert different functions in vivo.
  • LICHTENTHALER SF, WANG R, GRIMM H et al.: Mechanism of the cleavage specificity of Alzheimer's disease y-secretase identified by phenylalanine-scanning mutagenesis of the transmembrane domain of the amyloid precursor protein.. Nati Acad. Sci. USA (1999) n96(6):3053–3058.
  • BUXBAUM JD, LIU KN, LUO Y et al: Evidence that tumor necrosis factor a converting enzyme is involved in regulated a-secretase cleavage of the Alzheimer amyloid protein precursor. J. Biol. Chem. (1998) 273(43):27765–27767.
  • POLLACK SJ, LEWIS H: Secretase inhibitors for Alzheimer's disease: challenges of a promiscuous protease. Curr. Opin. Investig. Drugs (2005) 6(1):35–47.
  • SCHEINFELD MH, GHERSI E, K, FOWLKES BJ, D'ADAMIO L: of 13-amyloid precursor-like -1 and -2 by y-secretase regulates transcription../. Biol. Chem. (2002) 277(46):44195–44201.
  • EGGERT S, PALIGA K, SOBA P etal: The proteolytic processing of the amyloid precursor protein gene family members-1 and APLP-2 involves a-,y-,and c-like cleavages. Modulation of APLP-1 processing by Nglycosylation.. Biol. Chem. (2004) 279(18):18146–18156.
  • NI CY, MURPHY MP, GOLDE TE, CARPENTER G: y-Secretase cleavage and nuclear localization of ErbB-4 receptor tyrosine kinase. Science (2001) 294(5549):2179–2181.
  • LEE HJ, JUNG KM, HUANG YZ et al: Presenilin-dependent y-secretase-like intramembrane cleavage of ErbB4. J. Biol. Chem. (2002) 277(8):6318–6323.
  • ANDERSSON CX,-RODRIGUEZ J, LAOS S et al: Shedding and y-secretase-mediated intramembrane proteolysis of the mucin-type molecule CD43. Biochem. J. (2005) 387\(Part 2):377–384.
  • LAMMICH S, OKOCHI M, TAKEDA M et al.: Presenilin-dependent intramembrane proteolysis of CD44 leads to the liberation of its intracellular domain and the secretion of an Af3-like peptide../. Biol. Chem. (2002) 277(47)44754–44759.
  • SCHULZ JG, ANNAERT W, J et al: Syndecan 3 intramembrane proteolysis is presenilin/y-secretase-dependent and modulates cytosolic signaling. J. Biol. Chem. (2003) 278(49):48651–48657.
  • KIM DY, INGANO LA, KOVACS DM: Nectin- la, an immunoglobulin-like receptor involved in the formation of synapses, is a substrate for presenilin/y-secretase-like cleavage. J. Biol. Chem. (2002) 277(50:49976–49981.
  • MARAMBAUD P, WEN PH, DUTT A et al: A CBP binding transcriptional repressor produced by the PS1/c-cleavage of N-cadherin is inhibited by PS1 FAD mutations. Cell (2003) 114(5):635–645.
  • MARAMBAUD P, SHIOI J, SERBAN G et al: A presenilin-l/y-secretase cleavage releases the E-cadherin intracellular domain and regulates disassembly of adherens junctions. EMBO J. (2002) 21(8):1948–1956.
  • TANIGUCHI Y, KIM SH, SISODIA SS: Presenilin-dependent `y-secretase' of deleted in colorectal cancer (DCC). J. Biol. Chem. (2003) 278(33):30425–30428.
  • JUNG KM, TANS, LANDMAN N eta].: Regulated intramembrane proteolysis of the p75 neurotrophin receptor modulates its association with the TrItA receptor. J. Biol. Chem. (2003) 278(43):42161–42169.
  • GOWRISHANKAR K, ZEIDLER MG, VINCENZ C: Release of a membrane-bound death domain by y-secretase processing of the p75NTR homolog NRADD. J. Cell Sci. (2004) 117\(Part 18):4099–4111.
  • HAMBSCH B, GRINEVICH V, SEEBURG PH, SCHWARZ MK:-Protocadherins, presenilin-mediated release of C-terminal fragment promotes locus expression. J. Biol. Chem. (2005) 280(16):15888–15897.
  • HAAS IG, FRANK M, VERON N, KEMLER R: Presenilin-dependent processing and nuclear function of y-protocadherins. J. Biol. Chem. (2005) 280(10):9313–9319.
  • KIM DY, INGANO LA, CAREY BW, PETTINGELL WH, KOVACS DM:/y-secretase-mediated cleavage of the voltage-gated sodium channel 02-subunit regulates cell adhesion and migration. J. Biol. Chem. (2005) 280(24):23251–23261.
  • WONG HK, SAKURAI T, OYAMA F et al.: 13 Subunits of voltage-gated sodium channels are novel substrates of 13-site amyloid precursor protein-cleaving enzyme (BACE1) and y-secretase. J. Biol. Chem. (2005) 280(24):23009–23017.
  • COWAN JW, WANG X, GUAN R et al: Growth hormone receptor is a target for presenilin-dependent y-secretase cleavage. J. Biol. Chem. (2005) 280(19):19331–19342.
  • MAY P, REDDY YK, HERZ J: Proteolytic processing of low density lipoprotein receptor-related protein mediates regulated release of its intracellular domain.. Biol. Chem. (2002) 277(20:18736–18743.
  • DE STROOPER B, ANNAERT W, CUPERS P et al: A presenilin-l-dependent y-secretase-like protease mediates release of Notch intracellular domain. Nature (1999) 398(6727):518–522.
  • •First report demonstrating that intramembrane cleavage of the Notch, which is critical for its signalling function, depends on PSN/y-secretase.
  • SIX E, NDIAYE D, LAABI Y et al: The Notch ligand El is sequentially cleaved by an ADAM protease and y-secretase. Proc. Natl. Acad. Sri. USA (2003) 100(13):7638–7643.
  • LAVOIE MJ, SELKOE DJ: The Notch ligands, Jagged and E, are sequentially processed by a-secretase and presenilirdy-secretase and release signaling fragments. J. Biol. Chem. (2003) 278(36):34427–34437.
  • KOPAN R, SCHROETER EH, WEINTRAUB H, NYE JS: Signal transduction by activated mNotch: importance of proteolytic processing and its regulation by the extracellular domain. Proc. Nati Acad. Sri. USA (1996) 93(4):1683–1688.
  • SCHROETER EH, KISSLINGER JA, KOPAN R: Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature (1998) 393(6683):382–386.
  • •Both this reference and [128] describe the discovery of ligand-induced proteolytic processing of the Notch receptor as a novel paradigm for signal transduction.
  • MUMM JS, SCHROETER EH, SAXENA MT et al.: A ligand-induced extracellular cleavage regulates y-secretase-like proteolytic activation of Notchl. Mol. Cell (2000) 5(2):197–206.
  • BROU C, LOGEAT F, GUPTA N et al: A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. Mol. Cell (2000) 5(2):207–216.
  • ARTAVANIS-TSAKONAS S, K, FORTINI ME: Notch signaling. Science (1995) 268(5208):225–232.
  • WASHBURN T, SCHWEIGHOFFER E, GRID LEY T et al.: Notch activity influences the al3 versus y8 T cell lineage decision. Cell (1997) 88(6):833–843.
  • FRE S, HUYGHE M, MOURIKIS P et al.: Notch signals control the fate of immature progenitor cells in the intestine. Nature (2005) 435(7044):964–968.
  • HARRISON T, BEHER D: y-Secretase inhibitors-from molecular probes to new therapeutics? Prog. Med. Chem. (2003) 41:99–127.
  • HARRISON T, CHURCHER I, BEHER D: y-Secretase as a target for drug in Alzheimer's disease. Curl: Opin. Drug Discov. Bevel. (2004) 7(5):709–719.
  • HIGAKI J, QUON D, ZHONG Z, CORDELL B: Inhibition of 13-amyloid formation identifies proteolytic precursors and subcellular site of catabolism. Neuron (1995) 14(3):651–659.
  • WOLFE MS, CITRON M, DIEHL TS et al.: A substrate-based difluoro ketone selectively inhibits Alzheimer's y-secretase activity.J Med. Chem. (1998) 41(1):6–9.
  • TEALL M, OAKLEY P, HARRISON T et al.: Aryl sulfones: a new class of y-secretase inhibitors. Bioorg. Med. Chem. Lett. (2005) 15(10):2685–2688.
  • CHURCHER I, WILLIAMS S, S et al: Design and synthesis of highly potent benzodiazepine y-secretase inhibitors: preparation of (25,3A)-3-(3,4-difluoropheny0 2 (4 fluorophenyfl-4-hydroxy-N- (0.9-1-methy1-2-oxo-5-phenyl-2,3-dihydro-1H-benzo [e] [1, 4] - diazepin-3-yObutyramide by use of an asymmetric Ireland-Claisen rearrangement.. Chem. (2003) 46(12):2275–2278.
  • NESS D, BOGGS LN, HEPBURN D et al.: Reduced 13-amyloid burden, increased C-99 concentrations and evaluation of neuropathology in the brains of PDAPP mice given LY450139 dihydrate daily by gavage for 5 months. Neurobiol. Aging (2004) 25\(Suppl. 2):5238.
  • DOVEY HF, JOHN V, ANDERSON JP et al.: Functional y-secretase inhibitors reduce 13-amyloid peptide levels in brain. J. Neurochem. (2001) 76(1):173–181.
  • •First demonstration of in vivo efficacy of a y-secretase inhibitor with respect to reduction of AB production after oral dosing.
  • LANZ TA, HIMES CS, PALLANTE G et al.: The y-secretase inhibitor /V [N-(3,5-difluorophenacetyfl-L-alanyfl-..0 phenylglycine t-butyl ester reduces AB levels in vivo in plasma and cerebrospinal fluid in young (plaque-free) and aged (plaque-bearing) Tg2576 mice.. Exp. Ther. (2003) 305(3):864–871.
  • LEWIS HD, PEREZ REVUELTA BI, NADIN A et al: Catalytic site-directed y-secretase complex inhibitors do not discriminate pharmacologically between Notch S3 and 3-APP cleavages. Biochemistry (2003) 42(24):7580–7586.
  • WONG GT, MANFRA D, POULET FM et al.: Chronic treatment with the y- inhibitor LY-411,575 inhibits AB production and alters lymphopoiesis and intestinal cell differentiation. j Biol. Chem. (2004) 279(13):12876–12882.
  • SEARFOSS GH, JORDAN WH, CALLIGARO DO et al.: Adipsin, a biomarker of gastrointestinal toxicity mediated by a functional y-secretase inhibitor. J. Biol. Chem. (2003) 278(46):46107–46116.
  • SIEMERS E, SKINNER M, DEAN RA et al: Safety, Tolerability, and Changes in Amyloid 13 Concentrations After Administration of a y-Secretase Inhibitor in Volunteers. Clin. Neuropharmacol. (2005) 28(3):126–132.
  • WONG PC, ZHENG H, CHEN H et al: Presenilin 1 is required for Notchl and DII1 expression in the paraxial mesoderm. Nature (1997) 387(6630):288–292.
  • SHEN J, BRONSON RT, CHEN DF et al: Skeletal and CNS defects in presenilin-l-deficient mice. Cell (1997) 89(4):629–639.
  • GELING A, STEINER H, WILLEM M, BALLY-CUIF L, HAASS C: A y-secretase inhibitor blocks Notch signaling in vivo and causes a severe neurogenic phenotype in zebrafish. EMBO Rep. (2002) 3(7):688–694.
  • MICCHELLI CA, ESLER WP, KIMBERLY WT et al.: y-Secretase/ presenilin inhibitors for Alzheimer's disease phenocopy Notch mutations in Drosophila. FASEB J. (2003) 17(1):79–81.
  • RADTKE F, WILSON A, HR: Notch signaling in- and B-cell development. Curr. Opin. Immunol. (2004) 16(2):174–179.
  • RADTKE F, WILSON A, MANCINI SJ, MacDONALD HR: Notch regulation of lymphocyte development and function. Nat. Immunol. (2004) 5(3):247–253.
  • DOERFLER P, SHEARMAN MS, PERLMUTTER RM: Presenilin-dependent y-secretase activity modulates thymocyte development. Proc. Nati Acad. Sci. USA (2001) 98(16):9312–9317.
  • HADLAND BK, MANLEY NR, SU D et al.: y-secretase inhibitors repress thymocyte development. Proc. Nati Acad. Sci. USA (2001) 98(13):7487–7491.
  • MILANO J, McKAY J, DAGENAIS C et al: Modulation of notch processing by y-secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage Toxicol. Sci. (2004) 82(1):341–358.
  • •First description of differential Notch-related toxicity associated with different types of y-secretase inhibitors.
  • SAITO T, CHIBA S, ICHIKAWA M et al.: Notch2 is preferentially expressed in mature B cells and indispensable for marginal zone B lineage development. Immunity (2003) 18(5):675–685.
  • KURODA K, HAN H, TANI S et al: Regulation of marginal zone B cell development by MINT, a suppressor of Notch/RBP-J signaling pathway. Immunity (2003) 18(2):301–312.
  • TANIGAKI K, HAN H, YAMAMOTO N et al.: Notch-RBP-J signaling is involved in cell fate determination of marginal zone B cells. Nat. Immunol (2002) 3(5):443–450.
  • JENSEN J, PEDERSEN EE, GALANTE P et al.: Control of endodermal endocrine development by Hes-1. Nat. Genet. (2000) 24(1):36–44.
  • VAN ES JH, VAN GUN ME, RICCIO 0 et al.: Notch/y-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature (2005) 435(7044):959–963.
  • ELLISEN LW, BIRD J, WEST DC et al.: TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell (1991) 66(4):649–661.
  • WENG AP, FERRANDO AA, LEE W et al: Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science (2004) 306(5694):269–271.
  • ••Key publication demonstrating a causativerole for aberrant Notch signalling in T-ALL.
  • UYTTENDAELE H, MARAZZI G, WU G et al: Notch4/int-3, a mammary proto-oncogene, is an endothelial cell-specific mammalian Notch gene. Development (1996) 122(7):2251–2259.
  • DAS I, CRAIG C, FUNAHASHI Y et al: Notch oncoproteins depend on y-secretase/ presenilin activity for processing and function. Biol. Chem. (2004) 279(29):30771–30780.
  • PECE S, SERRESI M, SANTOLINI E et al.: Loss of negative regulation by Numb over Notch is relevant to human breast carcinogenesis. Cell Biol. (2004) 167(2):215–221.
  • GUO M, JAN LY, JAN YN: Control of daughter cell fates during asymmetric division: interaction of Numb and Notch. Neuron (1996) 17(1):27–41.
  • RHYU MS, JAN LY, JAN YN: Asymmetric distribution of numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells. Cell (1994) 76(3):477–491.
  • PARIS D, QUADROS A, PATEL N et al: Inhibition of angiogenesis and tumor growth by 13 and y-secretase inhibitors. Eur. Pharmacol (2005) 514(1):1–15.
  • CURRY CL, REED LL, GOLDE TE et al: y-Secretase inhibitor blocks Notch activation and induces apoptosis in Kaposi's sarcoma tumor cells. Oncogene (2005) 24(42):6333–6344.
  • WEIJZEN S, RIZZO P, BRAID M et al.: Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nat. Med. (2002) 8(9):979–986.
  • WEGGEN S, ERIKSEN JL, DAS P et al: A subset of NSAIDs lower amyloidogenic Al342 independently of cyclooxygenase activity. Nature (2001) 414(6860):212–216.
  • ••First demonstration that certain NSAIDscan selectively lower A13(42) production.
  • STEWART WE KAWAS C, M, METTER EJ: Risk of Alzheimer's disease and duration of NSAID. Neurology (1997) 48(3):626–632.
  • ERIKSEN JL, SAGI SA, SMITH TE et al: NSAIDs and enantiomers of flurbiprofen target y-secretase and lower Al3 42 in vivo. Clin. Invest. (2003) 112(3):440–449.
  • MOORE CL, LEATHERWOOD DD, DIEHL TS, SELKOE DJ, WOLFE MS: Difluoro ketone peptidomimetics suggest a large Si pocket for Alzheimer's y-secretase: implications for inhibitor design.. Med. Chem. (2000) 43(18):3434–3442.
  • WEGGEN S, ERIKSEN JL, SAGI SA et al: Evidence that nonsteroidal anti-inflammatory drugs decrease amyloid 13 42 production by direct modulation of y-secretase activity. J. Biol. Chem. (2003) 278(34):31831–31837.
  • SAGI SA, WEGGEN S, ERIKSEN J, GOLDE TE, KOO EH: The non-cyclooxygenase targets of non-steroidal anti-inflammatory drugs, lipoxygenases, peroxisome proliferator-activated receptor, inhibitor of x13 kinase, and NF KB, do not reduce amyloid 13 42 production.. Biol. Chem. (2003) 278(34):31825–31830.
  • ZHOU Y, SU Y, LI B et al: Nonsteroidal anti-inflammatory drugs can lower amyloidogenic Al342 by inhibiting Rho. Science (2003) 302(5648):1215–1217.
  • KUKAR T, MURPHY MP, ERIKSEN JL et al.: Diverse compounds mimic Alzheimer's disease-causing mutations by augmenting Al342 production. Nat. Med. (2005) 11(5):545–550.
  • TAKAHASHI Y, HAYASHI I, Y et al.: Sulindac sulfide is a noncompetitive y-secretase inhibitor that preferentially reduces Al3 42 generation. J. Biol. Chem. (2003) 278(20):18664–18670.
  • BEHER D, CLARKE EE, WRIGLEY JD et al.: Selected non-steroidal anti-inflammatory drugs and their derivatives target y-secretase at a novel site. Evidence for an allosteric mechanism. J. Biol. Chem. (2004) 279(42):43419–43426.
  • FRAERING PC, YEW, STRUB JM et al.: Purification and characterization of the human y-secretase complex. Biochemistry (2004) 43(30):9774–9789.
  • LLE0 A, BEREZOVSKA 0, HERL L et al: Nonsteroidal anti-inflammatory drugs lower Al342 and change presenilin 1 conformation. Nat. Med. (2004) 10(10):1065–1066.
  • •Provides together with [181] direct evidence that certain NSAIDs introduce allosteric changes into PSNsty-secretase.
  • WAGNER SL, KOUNNAS MZ, TYREE CM et al.: Modulators of y-secretase activity that lower Al3-42 levels without affecting Notch proteolytic processing. 7th International Conference AD/PD, Sorrento, Italy (2005):11.
  • SINHA S, ANDERSON JP, BARBOUR R et al.: Purification and cloning of amyloid precursor protein 0-secretase from human brain. Nature (1999) 402(6761):537–540.
  • HUSSAIN I, POWELL D, DR et al.: Identification of a novel aspartic protease (Asp 2) as 13-secretase. Mol. Cell Neurosci. (1999) 14(6):419–427.
  • LIN X, KOELSCH G, WU S et al: Human aspartic protease memapsin 2 cleaves the 0-secretase site of 0-amyloid precursor protein. Proc. Nati Acad. Sci. USA (2000) 97(4):1456–1460.
  • SAUNDERS AJ, KIM T-W, TANZI RE: BACE maps to chromosome 11 and a homolog, BACE2, reside in the obligate Down's syndrome region of chromosome 21. Science (1998) 286:1255a.
  • YAN R, BIENKOWSKI MJ, SHUCK ME et al: Membrane-anchored aspartyl protease with Alzheimer's disease P-secretase activity. Nature (1999) 402(6761):533–537.
  • ••This publication together with [191-194]describes independent efforts that led to the successful cloning of BACE1 and 2 enzymes after this first report by [34].
  • FARZAN M, SCHNITZLER CE, VASILIEVA N, LEUNG D, CHOE H: BACE2, a P-secretase homolog, cleaves at the 13 site and within the amyloid-13 region of the amyloid-13 precursor protein. Proc. Nati Acad. Sci. USA (2000) 97(17):9712–9717.
  • JOHN V, BECK JP, BIENKOWSKI MJ, SINHA S, HEINRIKSON RL: Human 13-secretase (BACE) and BACE inhibitors. J. Med. Chem. (2003) 46(22):4625–4630.
  • CITRON M: b-Secretase inhibition for the treatment of Alzheimer's disease - promise and challenge. Trends Pharmacol2004) 25(2):92–97.
  • HOLSINGER R, McLEAN C, BEYREUTHER K, MASTERS C, G: Increased expression of the amyloid precursor P-secretase in Alzheimer's disease. Ann. Neurol (2002) 51(6):783–786.
  • FUKUMOTO H, ROSENE DL, MOSS MB et al.: b-secretase activity increases with aging in human, monkey, and mouse brain. Anti: Pathol (2004) 164(2):719–725.
  • LI R, LINDHOLM K, YANG L-B et al: Amyloid 13 peptide load is correlated with increased b-secretase activity in sporadic Alzheimer's disease patients. Proc. Nati Acad. Sci. USA (2004) 101(10):3632–3637.
  • TYLER SJ, DAWBARN D, GK, ALLEN SJ: a- and 13-secretase: profound changes in Alzheimer's disease. Biochem. Biophys. Res. Commun. (2002) 299(3):373–376.
  • YANG L, LINDHOLM K, YAN R et al: Elevated P-secretase expression and enzymatic activity detected in sporadic Alzheimer's disease. Nat. Med. (2003) 9(1):3–4.
  • HOLSINGER R, McLEAN C, COLLINS S, MASTERS C, EVIN G: Increased P-Secretase activity in cerebrospinal fluid of Alzheimer's disease subjects. Ann. Neurol (2004) 55(6):898–899.
  • TAMAGNO E, PAROLA M, BARDINI P et al.: 13-Site APP cleaving enzyme up-regulation induced by 4-hydroxynonenal is mediated by stress-activated protein kinases pathways. I Neurochem. (2005) 92(3):628–636.
  • LEUBA G, WERNLI G, VERNEY A et al: Neuronal and nonneuronal quantitative BACE immunocytochemical expression in the entorhinohippocampal and frontal regions in Alzheimer's disease. Dement. Ceriatr. Cogn. Disord. (2005) 19(0171–183.
  • ROSSNER S, LANGE DOHNA C, ZEITSCHEL U, PEREZ POLO JR: Alzheimer's disease P-secretase BACE1 is not a neuron-specific enzyme. J. Neurochem. (2005) 92(2):226–234.
  • CAI H, WANG Y, McCARTHY D et al: BACE1 is the major P-secretase for generation of A6 peptides by neurons. Nat. Neurasci. (2001) 4(3):233–234.
  • LUO Y, BOLON B, KAHN S et al: Mice deficient in BACE1, the Alzheimer's P-secretase, have normal phenotype and abolished 13-amyloid generation.. Neurasci. (2001) 4(3):231–232.
  • •Together with [208] this report unequivocally demonstrates that BACE1 is the key enzyme for A6 generation in the brain.
  • HARRISON SM, HARPER AJ, HAWKINS J et al: BACE1 (13-secretase) transgenic and knockout mice: identification of neurochemical deficits and behavioral changes. Mol. Cell. Neurosci. (2003) 24(3):646–655.. OHNO M, SAMETSKY E, YOUNKIN L eta].: BACE1 Deficiency rescues memory deficits and cholinergic dysfunction in a mouse model of Alzheimer's disease. Neuron (2004) 41(1):27–33.
  • •Highlights the functional benefits associated with BACE1 inactivation in a mouse model for AD.. KAMENETZ F, TOMITA T, HSIEH H eta].: APP processing and synaptic function. Neuron (2003) 37(6):925–937.
  • DOMINGUEZ D, TOURNOY J, HARTMANN D et al: Phenotypical and biochemical analysis of BACE1 and BACE2 deficient mice. J. Biol. Chem. (2005) 280(35):30797–30806.
  • •This paper and [210] indicate the phenotypic changes associated with genetic inactivation of BACE1.. CHIOCCO MJ, KULNANE LS, L et al.: Altered amyloid-13 and deposition in genomic-based P-secretase transgenic mice.. Biol. Chem. (2004) 279(50):52535–52542.
  • MOHAJERI MH, SAINI KD, NITSCH RM: Transgenic BACE expression in mouse neurons accelerates amyloid plaque pathology. I Neural. Trans. (2004) 111(3):413–425.
  • BODENDORF U, DANNER S, FISCHER F et al: Expression of human P-secretase in the mouse brain increases the steady-state level of 13-amyloid.. (2002) 80(5):799–806.
  • HANIU M, DENIS P, YOUNG Y et al: Characterization of Alzheimer's P-secretase protein BACE. A pepsin family member with unusual properties. j. Biol. Chem. (2000) 275(28):21099–21106.
  • BENNETT BD, DENIS P, HANIU M et al: A furin-like convertase mediates propeptide cleavage of BACE, the Alzheimer's 13 -secretase. J. Biol. Chem. (2000) 275(48):37712–37717.
  • SHI XP, CHEN E, YIN KC et al: The pro domain of P-secretase does not confer strict zymogen-like properties but does assist proper folding of the protease domain. J. Biol. Chem. (2001) 276(13):10366–10373.
  • BENJANNET S, ELAGOZ A, WICKHAM L et al: Post-translational processing of 13-secretase (13-amyloid-converting enzyme) and its ectodomain shedding. The pro- and transmembrane/ cytosolic domains affect its cellular activity and amyloid-13 production. I Biol. Chem. (2001) 276(14):10879–10887.
  • HUANG X-P, CHANG W-P, G eta].: Internalization of exogenously added memapsin 2 (13-secretase) ectodomain by cells Is mediated by amyloid precursor protein. J. Biol. Chem. (2004) 279(36):37886–37894.
  • HUSE JT, BYANT D, YANG Y et al: Endoproteolysis of P-secretase (3-site amyloid precursor protein-cleaving enzyme) within its catalytic domain. Biol. Chem. (2003) 278(19):17141–17149.
  • BENJANNET S, CROMLISH J, DIALLO K, CHRETIEN M, SEIDAH N: The metabolism of 13-amyloid converting enzyme and 13-amyloid precursor protein processing. Biochem. Biophys. Res. Commun. (2004) 325(1):235–242.
  • COLCIAGHI F, MARCELLO E, BORRONI B et al: Platelet APP, 10 and BACE alterations in the early stages of Alzheimer's disease. Neurology2004) 62(3):498–501.
  • GRUNINGER-LEITCH F, D, KUNG E, NELBOCK P, DOBELI H: Substrate and inhibitor profile of BACE (13-secretase) and comparison with other mammalian aspartic proteases. J. Biol. Chem. (2002) 277(7):4687–4693.
  • TOMASSELLI AG, QAHWASH I, EMMONS TL et al: Employing a superior BACE1 cleavage sequence to probe cellular APP processing. J. Neurochem. (2003) 84(5):1006–1017.
  • SHI X, TUGUSHEVA K, BRUCE J et al: Novel mutations introduced at the 13-site of amyloid 13 protein precursor enhance the production of amyloid 13 peptide by BACE1 in vitro and in cells. j Alzheimer. Dis. (2005) 7(2):139–48.
  • TOULOKHONOVA L, METZLER WJ, WITMER MR, COPELAND RA, MARCINKEVICIENE J: Kinetic studies on 13-site amyloid precursor protein-cleaving enzyme (BACE). Confirmation of an iso mechanism. J. Biol. Chem. (2003) 278(7):4582–4589.
  • NORTHROP DB: Follow the protons: a low-barrier hydrogen bond unifies the mechanisms of the aspartic proteases. Acc. Chem. Res. (2001) 34(10):790–797.
  • PATEL S, VUILLARD L, CLEASBY A, MURRAY CW, YON J: Apo and Inhibitor Complex Structures of BACE (13-secretase). Mo/. Biol. (2004) 343(2):407–416.
  • HONG L, HEX, HUANG X, W, TANG J: Structural features of human memapsin 2 (13-secretase) and their biological and pathological implications. Acta Biochim. Biophys. Sin. (2004) 36(12):787–792.
  • KOPCHO LM, MA J, MARCINKEVICIENE J et al.: Comparative studies of active site-ligand interactions among various recombinant constructs of human 13-amyloid precursor protein cleaving enzyme.. Biochem. Biophys. (2003) 410(2):307–316.
  • SIDERA C, LIU C, AUSTEN B: Pro-domain removal in ASP-2 and the cleavage of the amyloid precursor are influenced by pH. BMC Biochemistry (2002) 3(1):25.
  • SCHMECHEL A, STRAUSS M, SCHLICKSUPP A et al: Human BACE Forms Dimers and Colocalizes with APP. J. Biol. Chem. (2004) 279(38):39710–39717.
  • WESTMEYER GG, WILLEM M, LICHTENTHALER SF et al: Dimerization of 13-site 13-amyloid precursor protein-cleaving enzyme. J. Biol. Chem. (2004) 279(50:53205–53212.
  • MARLOW L, CAIN M, PAPPOLLA MA, SAMBAMURTI K: P-Secretase processing of the Alzheimer's amyloid protein precursor (APP). Mol Neurosci. (2003) 20(3):233–239.
  • CUMMING JN, ISELOH U, ME: Design and development of BACE-1 inhibitors. Curr. Opin. Drug Discov. Dem.]. (2004) 7(4):536–556.
  • LARNER AJ: Secretases as therapeutic targets in Alzheimer's disease: patents 2000-2004. Expert Opin. Ther. Patents (2004) 14(10):1403–1420.
  • HUSSAIN I: The Potential for BACE1 inhibitors in the treatment of Alzheimer's disease. 'Drugs (2004) 7(7):653–658.
  • CHANG W-P, KOELSCH G, WONG S et al: In vivo inhibition of Ab production by memapsin 2 (b-secretase) inhibitors. Neurochem. (2004) 89(6):1409–1416.
  • •First published proof-of-concept of in vivo inhibition of BACE1 by an BACE1 Inhibitor.
  • GHOSH AK, DEVASAMUDRAM T, HONG L et al.: Structure-based design of cycloamide-urethane-derived novel inhibitors of human brain memapsin 2 (13-secretase). Bioorg. Med. Chem. Lett. (2005) 15(0:3576–3585.
  • TURNER RT, HONG L, KOELSCH G, GHOSH AK, TANG J: Structural locations and functional roles of new subsites S-5, S-6, and S-7 in memapsin 2 (13-secretase). Biochemistry (2005) 44(1):105–112
  • HONG L, TURNER RT, KOELSCH G et al: Crystal structure of memapsin 2 (13-secretase) in complex with an inhibitor 0M00-3. Biochemistry (2002) 41(36):10963–10967.
  • RIZZI L, ROMEO S: Inhibition of BACE-1 by hydroxyethylsulfide, hydroxyethylamine and hydroxyethylurea isosteric replacements. Lett. Drug Design Discov. (2005) 2(2):109–112.
  • HUB, FAN KY, BRIDGES K et al: Synthesis and SAR of bis-statine based as BACE 1 inhibitors. Bioorg. Med.. Lett. (2004) 14(13):3457–3460.
  • KIMURA T, SHUTO D, HAMADA Y et al.: Design and synthesis of highly active Alzheimer's (3)-secretase (BACE1) inhibitors, KMI-420 and KMI-429, with enhanced chemical stability. Bioorg. Med. Chem. Lett. (2005) 15(1):211–215.
  • COBURN CA, STACHEL SJ, LI YM al.: Identification of a small molecule nonpeptide active site (13)-secretase inhibitor that displays a nontraditional binding mode for aspartyl proteases. Med. Chem. (2004) 47(25): 6117–6119.
  • STACHEL SJ, COBURN CA, TG et al.: Structure-based design of potent and selective cell-permeable inhibitors of human (13)-secretase (BACE-1). I Med. Chem. (2004) 47(26):6447–6450
  • SCHOLEFIELD Z, YATES EA, G et al: Heparan sulfate regulates amyloid precursor protein processing by BACE1, the Alzheimer's b-secretase. Cell Biol. (2003) 163(1):97–107.
  • DE MEYER GRY, DE CLEEN DMM, COOPERS et al: Platelet phagocytosis and processing of b-amyloid precursor protein as a mechanism of macrophage activation in atherosclerosis. Circ. Res. (2002) 90(11):1197–1204.
  • VATTEMI G, ENGEL WK, McFERRIN J et al: BACE1 and BACE2 in pathologic and normal human muscle. Exp. Neurol (2003) 179(2):150–158.
  • PASTORINO L, IKIN AF, LAMPRIANOU S et al: BACE (13-secretase) modulates the processing of APLP2 in vivo. Mol Cell. Neurosci. (2004) 25(4):642–649.
  • LI Q, SUEDHOF TC: Cleavage of amyloid-13 precursor protein and amyloid-13 precursor-like protein by BACE 1. Biol. Chem. (2004) 279(11):10542–10550.
  • VON ARNIM CAF, KINOSHITA A, PELTAN ID et al.: The LDL-receptor related protein (LRP) is a novel 13 -secretase (BACE 1) substrate. I Biol. Chem. (2005) 280(18):17777–17785
  • YOON I-S, PIETRZIK CU, KANG DE, KOO EH: Sequences from the LRP cytoplasmic domain enhances amyloid 0-protein production via the 0-secretase pathway without altering APP/LRP nuclear signaling. I Biol. Chem. (2005) 280(20):20140–20147
  • LICHTENTHALER S, D, WESTMEYER G et al.: The cell adhesion protein P-selectin glycoprotein ligand-1 is a substrate for the aspartyl protease BACE1. I Biol. Chem. (2003) 278(49):48713–48719.
  • KITAZUME S, TACHIDA Y, OKA R et al: Alzheimer's 0-secretase, 0-site amyloid precursor protein-cleaving enzyme, is responsible for cleavage secretion of a Golgi-resident sialyltransferase. Proc. Natl. Acad. Sci. USA (2001) 98(24):13554–13559.
  • KITAZUME S, TACHIDA Y, OKA R et al.: Characterization of a2,6sialyltransferase cleavage by Alzheimer's 0-secretase (BACE1). J. Biol. Chem. (2003) 278(17):14865–14871.
  • KITAZUME S, NAKAGAWA K, OKA R et al: hi vivo cleavage of a 2,6-sialyltransferase by Alzheimer 0-secretase. J. Biol. Chem. (2005) 280(9):8589–8595.
  • WEIHOFEN A, LEMBERG MK, FRIEDMANN E et al: Targeting presenilin-type aspartic protease signal peptide peptidase with y-secretase inhibitors. J. Biol. Chem. (2003) 278(19):16528–16533.
  • LAMMICH S, KOJRO E, POSTINA R et al: Constitutive and regulated a-secretase cleavage of Alzheimer's amyloid precursor protein by a disintegrin metalloprotease. Proc. Nati Acad. Sci. USA (1999) 96(7):3922–3927.
  • GHISO J, SHAYO M, CALERO M et al: Systemic catabolism of Alzheimer's A1340 and A1342. J. Biol. Chem. (2004) 279(44):45897–45908.
  • DOAN A, THINAKARAN G, DR et al: Protein topology of presenilin 1. Neuron (1996) 17(5):1023–1030.
  • FORTNA RR, CRYSTAL AS, VA et al.: Membrane topology and nicastrin-enhanced endoproteolysis of APH-1, a component of the y-secretase complex. ./. Biol. Chem. (2004) 279(5):3685–3693.
  • CRYSTAL AS, MORAIS VA, TC et al.: Membrane topology of y-secretase component PEN-2.. Chem. (2003) 278(22):20117–20123.
  • THINAKARAN G, BORCHELT DR, LEE MK et al.: Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo. Neuron (1996) 17(1):181–190.
  • DUNN BM: Structure and mechanism of the pepsin-like family of aspartic peptidases. Chem. Rev. (2002) 102(12):4431–4458.
  • TYNDALL JD, NALL T, FAIRLIE DP: Proteases universally recognize 13 strands in their active sites. Chem. Rev. (2005) 105(3):973–999.
  • LI M, PHYLIP LH, LEES WE et al: The aspartic proteinase from cerevisiae folds its own into a helix. Nat. Struct. Biol.2000) 7(2):113–117.

Websites

  • http://www.myriad.com/alzheimers/ phase2_ad.php Genetics, Inc. website.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.