61
Views
22
CrossRef citations to date
0
Altmetric
Review

Heat-shock protein 90 inhibitors in antineoplastic therapy: is it all wrapped up?

Pages 569-589 | Published online: 11 Jul 2005

Bibliography

  • PICARD D, KHURSHEED B, GARABEDIAN MJ et at Reduced levels of hsp90 compromise steroid receptor action in vivo. Nature (1990) 348(6297):166–168.
  • BOHEN SP, YAMAMOTO KR: Isolation of Hsp90 mutants by screening for decreased steroid receptor function. Ave. Nati Acad. Sci. USA (1993)90(23):11424–11428.
  • XU Y, LINDQUIST S: Heat-shock protein hsp90 governs the activity of pp60v-src kinase. Proc. Nati Acad. Sci. USA (1993) 90(15):7074–7078.
  • WHITESELL L, MIMNAUGH EG, DECOSTA B, MYERS CE, NECKERS LM: Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc. Natl. Acad. Sci. USA (1994) 91(18):8324–8328.
  • ••Important first paper documenting therelationship between Hsp90 inhibition and impairment of oncogenic signalling.
  • BLAGOSKLONNY MV, TORETSKY J, BOHEN S, NECKERS L: Mutant conformation of p53 translated in vitro or in vivo requires functional HSP90. Proc. Nati Acad. Sci. USA (1996) 93(16):8379–8383.
  • AN WG, SCHULTE TW, NECKERS LM: The heat shock protein 90 antagonist geldanamycin alters chaperone association with p210bcr-abl and v-src proteins before their degradation by the proteasome. Cell Growth Differ. (2000) 11(7):355–360.
  • BONVINI P, GASTALDI T, FALINI B, ROSOLEN A: Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), a novel Hsp90-client tyrosine kinase: down-regulation of NPM-ALK expression and tyrosine phosphorylation in ALM+) CD30(÷) lymphoma cells by the Hsp90 antagonist 17-allylamino,17-demethoxygeldanamycin. Cancer Res. (2002) 62(5):1559–1566.
  • CSERMELY P, SCHNAIDER T, SOTI C, PROHASZKA Z, NARDAI G: The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther. (1998) 79(2):129–168.
  • MALONEY A, WORKMAN P: HSP90 as a new therapeutic target for cancer therapy: the story unfolds. Expert Opin. Biol. Ther. (2002) 2(1):3–24.
  • ISAACS JS, XU W, NECKERS L: Heat shock protein 90 as a molecular target for cancer therapeutics. Cancer Cell (2003) 3(3):213–217.
  • PRODROMOU C, ROE SM, O'BRIEN R et al.: Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell (1997) 90(1):65–75.
  • •Structural confirmation of drug binding to the nucleotide-binding site on Hsp90.
  • MARCU MG, CHADLI A, BOUHOUCHE I, CATELLI M, NECKERS LM: The heat shock protein-90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone. J. Biol. Chem. (2000) 275(47):37181–37186.
  • OBERMANN WM, SONDERMANN H, RUSSO AA, PAVLETICH NP, HARTL FU: In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis. J. Cell Biol. (1998) 143(4):901–910.
  • PRODROMOU C, PANARETOU B, CHOHAN S et al.: The ATPase cycle of Hsp90 drives a molecular 'clamp' via transient dimerization of the N-terminal domains. EMBO. 1 (2000) 19(16):4383–4392.
  • PRODROMOU C, SILIGARDI G, O'BRIEN R et al.: Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones. EMBO. (1999) 18(3):754–762.
  • YOUNG JC, HARTL FU: Polypeptide release by Hsp90 involves ATP hydrolysis and is enhanced by the co-chaperone p23. EMBO. J. (2000) 19(21):5930–5940.
  • PANARETOU B, SILIGARDI G, MEYER P et al.: Activation of the ATPase activity of hsp90 by the stress-regulated cochaperone ahal. Mol. Cell. (2002) 10(6):1307–1318.
  • SILIGARDI G, PANARETOU B, MEYER P et al.: Regulation of Hsp90 ATPase activity by the co-chaperone Cdc37p/p50cdc37. J. Biol. Chem. (2002) 277(23):20151–20159.
  • GRENERT JP, SULLIVAN WP, FADDE P et al.: The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation. Biol. Chem. (1997) 272(38):23843–23850.
  • SULLIVAN W, STENSGARD B, CAUCUTT G et al.: Nucleotides and two functional states of hsp90. .1 Biol. Chem. (1997) 272(12):8007–8012.
  • WHITESELL L, SHIFRIN SD, SCHWAB G, NECKERS LM: Benzoquinonoid ansamycins possess selective tumoricidal activity unrelated to src kinase inhibition. Cancer Res. (1992) 52(7):1721–1728.
  • STEBBINS CE, RUSSO AA, SCHNEIDER C et al: Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell (1997) 89(2):239–250.
  • •Second paper confirming direct drug binding by Hsp90.
  • SCHNEIDER C, SEPP-LORENZINO L, NIMMESGERN E et al.: Pharmacologic shifting of a balance between protein refolding and degradation mediated by Hsp90. Proc. Nati Acad. Sci. USA (1996)93(25):14536–14541.
  • •Identification of global drug-induced degradation of Hsp90 clients
  • HOHFELD J, CYR DM, PATTERSON C: From the cradle to the grave: molecular chaperones that may choose between folding and degradation. EMBO Rep. (2001) 2(10):885–890.
  • NECKERS L: Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol. Med. (2002) 8(4 Suppl.):555–561.
  • NECKERS L: Heat shock protein 90 inhibition by 17-allylamino-17-demethoxygeldanamycin: a novel therapeutic approach for treating hormone-refractory prostate cancer. Clin. Cancer Res. (2002) 8(5):962–966.
  • KELLAND LR, SHARP SY, ROGERS PM, MYERS TG, WORKMAN P: DT-Diaphorase expression and tumor cell sensitivity to 17-allylamino,17-demethoxygeldanamycin, an inhibitor of heat shock protein 90. J. Nati Cancer Inst. (1999) 91(22):1940–1949.
  • SOLIT DB, ZHENG FF, DROBNJAK M et al: 17-Allylamino-17- demethoxygeldanamycin induces the degradation of androgen receptor and HER-2/neu and inhibits the growth of prostate cancer xenografts. Clin. Cancer Res. (2002) 8(5):986–993.
  • EGORIN MJ, LAGATTUTA TF, HAMBURGER DR et al.: Pharmacokinetics, tissue distribution, and metabolism of 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (NSC 707545) in CD2F1 mice and Fischer 344 rats. Cancer Chemother. Pharmacol (2002) 49(1):7–19.
  • BELIAKOFF J, WHITESELL L: Hsp90: an emerging target for breast cancer therapy. Anticancer Drugs (2004) 15(7):651–662.
  • DYMOCK BW, DRYSDALE MJ, McDONALD E, WORKMAN P: Inhibitors of Hsp90 and other chaperones for the treatment of cancer. Expert Opia Ther. Patents (2004) 14(6):837–847.
  • GORRE ME, ELLWOOD-YEN K, CHIOSIS G, ROSEN N, SAWYERS CL: BCR-ABL point mutants isolated from patients with imatinib mesylate-resistant chronic myeloid leukemia remain sensitive to inhibitors of the BCR-ABL chaperone heat shock protein 90. Blood (2002) 100(8):3041–3044. Expert Op/n. lnvestig. Drugs (2005) 14(6)583
  • •A nice demonstration of the utility of Hsp90 inhibition following the failure of standard targeted therapeutics.
  • ZEGARRA-MORO OL, SCHMIDT LJ, HUANG H, TINDALL DJ: Disruption of androgen receptor function inhibits proliferation of androgen-refractory prostate cancer cells. Cancer Res. (2002) 62(4):1008–1013.
  • SHAH NP, NICOLL JM, NAGAR B et al:Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI-571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell (2002) 2(2):117–125.
  • GEORGE P, BALI P, ANNAVARAPU S et al.: Combination of the histone deacetylase inhibitor LBH589 and the hsp90 inhibitor 17-AAG is highly active against human CML-BC cells and AML cells with activating mutation of FLT-3. Blood (2005) 105(4):1768–1776.
  • SLAMON DJ, CLARK GM, WONG SG et al.: Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science (1987) 235(4785):177–182.
  • ZHONG H, DE MARZO AM, LAUGHNER E et al.: Overexpression of hypoxia-inducible factor 1-a in common human cancers and their metastases. Cancer Res. (1999) 59(22):5830–5835.
  • BACUS SS, ALTOMARE DA, LYASS L et al.: AKT2 is frequently upregulated in HER-2/neu-positive breast cancers and may contribute to tumor aggressiveness by enhancing cell survival. Oncogene (2002) 21(22):3532–3540.
  • SCHINDL M, SCHOPPMANN SF, SAMONIGG H et al: Overexpression of hypoxia-inducible factor 1-a is associated with an unfavorable prognosis in lymph node-positive breast cancer. Clin. Cancer Res. (2002) 8(6):1831–1837.
  • MIMNAUGH EG, CHAVANY C, NECKERS L: Polyubiquitination and proteasomal degradation of the p185c-ErbB-2 receptor protein-tyrosine kinase induced by geldanamycin. I Biol. Chem. (1996) 271(37):22796–22801.
  • BASSO AD, SOLIT DB, CHIOSIS G et al.: Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function. J. Biol. Chem. (2002) 277(42):39858–39866.
  • ISAACS JS, JUNG YJ, MIMNAUGH EG et al.: Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor 1 a degradative pathway. J. Biol. Chem. (2002) 277(33):29936–29944.
  • MABJEESH NJ, POST DE, WILLARD MT et al.: Geldanamycin induces degradation of hypoxia-inducible factor 1-a protein via the proteosome pathway in prostate cancer cells. Cancer Res. (2002) 62(9):2478–2482.
  • •These four papers illustrate the depletion of potent clinically relevant oncogenic proteins by Hsp90 inhibition.
  • HANAHAN D, FOLKMAN J: Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell (1996) 86(3):353–364.
  • FOLKMAN J, KLAGSBRUN M: Angiogenic factors. Science (1987) 235(4787):442–447.
  • FERRARA N, ALITALO K: Clinical applications of angiogenic growth factors and their inhibitors. Nat. Med. (1999) 5(12):1359–1364.
  • FERRARA N, HILLAN KJ, GERBER HP, NOVOTNY W: Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat. Rev Drug Discov. (2004) 3(5):391–400.
  • RINI BI, SMALL EJ: Biology and clinical development of vascular endothelial growth factor-targeted therapy in renal cell carcinoma. J. Clin. Oncol. (2005) 23(5):1028–1043.
  • COOK JA, GIUS D, WINK DA et al: Oxidative stress, redox, and the tumor microenvironment. Semin. Radiat. Oncol (2004) 14(3):259–266.
  • MOELLER BJ, CAO Y, LI CY, DEWHIRST MW: Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell (2004) 5(5):429–441.
  • ••Important report that demonstrates thatHIF-1 is activated by RT and that this is correlated with a radioresistant phenotype.
  • SEMENZA GL: Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer (2003) 3(10)721–732.
  • BIRNER P, SCHINDL M, OBERMAIR A et al.: Overexpression of hypoxia-inducible factor 1-a is a marker for an unfavorable prognosis in early-stage invasive cervical cancer. Cancer Res. (2000) 60(17):4693–4696.
  • TALKS KU, TURLEY H, GATTER KC et al: The expression and distribution of the hypoxia-inducible factors HIF-la and HIF-2-a in normal human tissues, cancers, and tumor-associated macrophages. Am. Patna (2000) 157(2):411–421.
  • IWAI K, YAMANAKA K, KAMURA T et al.: Identification of the von Hippel-lindau tumor-suppressor protein as part of an active E3 ubiquitin ligase complex. Proc. Nati Acad. Sci. USA (1999) 96(22):12436–12441.
  • MAXWELL PH, WIESENER MS, CHANG GW et al: The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature (1999) 399(6733):271–275.
  • OHH M, PARK CW, IVAN M et al: Ubiquitination of hypoxia-inducible factor requires direct binding to the 0-domain of the von Hippel-Lindau protein. Nat. Cell Biol. (2000) 2(7):423–427.
  • BRUICK RK, McKNIGHT SL: A conserved family of prolyl-4-hydroxylases that modify HIF. Science (2001) 294(5545):1337–1340.
  • EPSTEIN AC, GLEADLE JM, McNEILL LA et al.: C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell (2001) 107(1):43–54.
  • IVAN M, KONDO K, YANG H et al: HIF-a targeted for VHL-mediated destruction by proline hydroxylation: implications for 02 sensing. Science (2001) 292(5516):464–468.
  • JAAKKOLA P, MOLE DR, TIAN YM et al.: Targeting of HIF-a to the von Hippel-Lindau ubiquitylation complex by 02-regulated prolyl hydroxylation. Science (2001) 292(5516):468–472.
  • MEKHAIL K, GUNARATNAM L, BONICALZI ME, LEE S: HIF activation by pH-dependent nucleolar sequestration of VHL. Nat Cell Biol (2004) 6(7):642–647.
  • WARBURG 0: On the origin of cancer cells. Science (1956) 123:309–314.
  • LATIF F, TORY K, GNARRA J et al: Identification of the von Hippel-Lindau disease tumor suppressor gene. Science (1993) 260(5112):1317–1320.
  • GNARRA JR, TORY K, WENG Y et al: Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat. Genet. (1994) 7(1):85–90.
  • HERMAN JG, LATIF F, WENG Y et al: Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc. Natl. Acad. Sci. USA (1994) 91(21):9700–9704.
  • WIESENER MS, MUNCHENHAGEN PM, BERGER I et al.: Constitutive activation of hypoxia-inducible genes related to overexpression of hypoxia-inducible factor-la in clear cell renal carcinomas. Cancer Res. (2001) 61(13):5215–5222.
  • ILIOPOULOS 0, KIBEL A, GRAY S, KAELIN WG Jr.: Tumour suppression by the human von Hippel-Lindau gene product. Nat. Med. (1995) 1(8):822–826.
  • ILIOPOULOS 0, LEVY AP, JIANG C, KAELIN WG Jr., GOLDBERG MA: Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc. Natl. Acad. Sci. USA (1996) 93(20):10595–10599.
  • KAELIN WG Jr.: Molecular basis of the VHL hereditary cancer syndrome. Nat. Rev. Cancer (2002) 2(9):673–682.
  • KONDO K, KLCO J, NAKAMURA E, LECHPAMMER M, KAELIN WG Jr.: Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell (2002) 1(3):237–246.
  • MARANCHIE JK, VASSELLI JR, RISS J et al.: The contribution of VHL substrate binding and HIF1-a to the phenotype of VHL loss in renal cell carcinoma. Cancer Cell (2002) 1(3):247–255.
  • GERALD D, BERRA E, FRAPART YM et al.: JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell (2004) 118(6):781–794.
  • SUNDARESAN M, YU ZX, FERRANS VJ, IRANI K, FINKEL T: Requirement for generation of H202 for platelet-derived growth factor signal transduction. Science (1995) 270(5234):296–299.
  • YOON SO, PARK SJ, YOON SY, YUN CH, CHUNG AS: Sustained production of H(2)0(2) activates pro-matrix metalloproteinase-2 through receptor tyrosine kinasesi phosphatidylinositol 3-kinase/NF-KB pathway. J. Biol. Chem. (2002) 277(33):30271–30282.
  • SELAK MA, ARMOUR SM, MacKENZIE ED et al.: Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-a prolyl hydroxylase. Cancer Cell (2005) 7(1):77–85.
  • LAUGHNER E, TAGHAVI P, CHILES K, MAHON PC, SEMENZA GL: HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1a (HIF-1a) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol. Cell. Biol. (2001) 21(12):3995–4004.
  • BLACKWELL KL, DEWHIRST MW, LIOTCHEVA V et al: HER-2 gene amplification correlates with higher levels of angiogenesis and lower levels of hypoxia in primary breast tumors. Chit. Cancer Res. (2004) 10(12 Part 1):4083–4088.
  • BECKERS J, HERRMANN F, RIEGER S et al.: Identification and validation of novel ERBB2 (HER2, NEU) targets including genes involved in angiogenesis. Lk. J. Cancer (2005) 114(4):590–597.
  • BOS R, VAN DIEST PJ, DE JONG JS et al.: Hypoxia-inducible factor-la is associated with angiogenesis, and expression of bFGF, PDGF-BB, and EGFR in invasive breast cancer. Histopathology (2005) 46(1):31–36.
  • GRADIN K, McGUIRE J, WENGER RH et al.: Functional interference between hypoxia and dioxin signal transduction pathways: competition for recruitment of the Arnt transcription factor. Mol. Cell. Biol. (1996) 16(10):5221–5231.
  • KUREBAYASHI J, OTSUKI T, KUROSUMI M et al.: A radicicol derivative, KF58333, inhibits expression of hypoxia-inducible factor-1a and vascular endothelial growth factor, angiogenesis and growth of human breast cancer xenografts. fpn. J. Cancer Res. (2001) 92(12):1342–1351.
  • LEBEAU J, LE CHALONY C, PROSPERI MT, GOUBIN G: Constitutive overexpression of a 89 kDa heat shock protein gene in the HBL100 human mammary cell line converted to a tumorigenic phenotype by the EJ/T24 Harvey-ras oncogene. Oncogene (1991) 6(7):1125–1132.
  • FERRARINI M, HELTAI S, ZOCCHI MR, RUGARLI C: Unusual expression and localization of heat-shock proteins in human tumor cells. Int. J. Cancer (1992) 51(0613–619.
  • NIMMANAPALLI R, O'BRYAN E, BHALLA K: Geldanamycin and its analogue 17-allylamino-17-demethoxygeldanamycin lowers Bcr-Abl levels and induces apoptosis and differentiation of Bcr-Abl-positive human leukemic blasts. Cancer Res. (2001) 61(5):1799–1804.
  • VISAKORPI T, HYYTINEN E, KOIVISTO P et al: LI vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat. Genet. (1995) 9(4):401–406.
  • FANG Y, FLISS AE, ROBINS DM, CAPLAN AJ: Hsp90 regulates androgen receptor hormone binding affinity in vivo. J. Biol. Chem. (1996) 271(45):28697–28702.
  • VANAJA DK, MITCHELL SH, TOFT DO, YOUNG CY: Effect of geldanamycin on androgen receptor function and stability. Cell Stress Chaperones (2002) 7(1):55–64.
  • WEINSTEIN IB: Cancer. Addiction to oncogenes-the Achilles heal of cancer. Science (2002) 297(5578):63–64.
  • NGUYEN DM, DESAI S, CHEN A, WEISER TS, SCHRUMP DS: Modulation of metastasis phenotypes of non-small cell lung cancer cells by 17-allylamino 17-demethoxy geldanamycin. Ann. Thome. Surg. (2000) 70(6):1853–1860.
  • DUDA DG, FUKUMURA D, JAIN RK: Role of eNOS in neovascularization: NO for endothelial progenitor cells. Trends Mol. Med. (2004) 10(4):143–145.
  • SHI Y, BAKER JE, ZHANG C et al: Chronic hypoxia increases endothelial nitric oxide synthase generation of nitric oxide by increasing heat shock protein 90 association and serine phosphorylation. Circ. Res. (2002) 91(0300–306.
  • BROUET A, SONVEAUX P, DESSY C et al: Hsp90 and caveolin are key targets for the proangiogenic nitric oxide-mediated effects of statins. Circ. Res. (2001) 89(10):866–873.
  • FONTANA J, FULTON D, CHEN Y et al: Domain mapping studies reveal that the M domain of hsp90 serves as a molecular scaffold to regulate Akt-dependent phosphorylation of endothelial nitric oxide synthase and NO release. Circ. Res. (2002) 90(8):866–873.
  • •Nice demonstration of the ability of Hsp90 to potentiate signalling by activating eNOS and further recruiting Akt into this complex.
  • DIMMELER S, FLEMING I, FISSLTHALER B et al: Activation of nitric oxide synthase in endothelial cells by Akt- dependent phosphorylation. Nature (1999) 399(6736):601–605.
  • THOMAS DD, ESPEY MG, RIDNOUR LA et al.: Hypoxic inducible factor la, extracellular signal-regulated kinase, and p53 are regulated by distinct threshold concentrations of nitric oxide. Proc. Nati Acad. Sri. USA (2004) 101(208894–8899.
  • TAKAHASHI S, MENDELSOHN ME: Calmodulin-dependent and -independent activation of endothelial nitric-oxide synthase by heat shock protein 90. J. Chem. (2003) 278(11):9339–9344.
  • YEN L, BENLIMAME N, NIE ZR et al:Differential regulation of tumor angiogenesis by distinct ErbB homo- and heterodimers. Mol. Biol. Cell (2002) 13(11):4029–4044.
  • LOUREIRO RM, MAHARAJ AS, DANKORT D, MULLER WJ, D'AMORE PA: ErbB2 overexpression in mammary cells upregulates VEGF through the core promoter. Biochem. Biophys. Res. Commun. (2005) 326(2):455–465.
  • LE BOEUF F, HOULE F, HUOT J: Regulation of vascular endothelial growth factor receptor 2-mediated phosphorylation of focal adhesion kinase by heat shock protein 90 and Src kinase activities. J. Biol. Chem. (2004) 279(37):39175–39185.
  • KAUR G, BELOTTI D, BURGER AM et al.: Antiangiogenic properties of 17-(dimethylaminoethylamino)-1 7 - demethoxygeldanamycin: an orally bioavailable heat shock protein 90 modulator. Clin. Cancer Res. (2004) 10(14):4813–4821.
  • •Demonstration that Hsp90 inhibition with 17-DMAG potently inhibits angiogenesis mediated by several pathways.
  • OCHEL HJ, SCHULTE TW, NGUYEN P, TREPEL J, NECKERS L: The benzoquinone ansamycin geldanamycin stimulates proteolytic degradation of focal adhesion kinase. Mol. Genet. Metab. (1999) 66(1):24–30.
  • ROUSSEAU S, HOULE F, KOTANIDES H et al: Vascular endothelial growth factor (VEGF)-driven actin-based motility is mediated by VEGFR2 and requires concerted activation of stress-activated protein kinase 2 (SAPK2/p38) and geldanamycin-sensitive phosphorylation of focal adhesion kinase. Biol. Chem. (2000) 275(14):10661–10672.
  • WEBB CP, HOSE CD, KOOCHEKPOUR S et al.: The geldanamycins are potent inhibitors of the hepatocyte growth factor/scatter factor-met-urokinase plasminogen activator-plasmin proteolytic network. Cancer Res. (2000) 60(2):342–349.
  • KAMAL A, THAO L, SENSINTAFFAR J et al: A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature (2003) 425(6956):407–410.
  • ••Important demonstration that Hsp90from tumour cells is hyperactivated with a significantly higher affmity for Hsp90-targeted agents.
  • CHIOSIS G, HUEZO H, ROSEN N et al.: 17AAG: low target binding affinity and potent cell activity-finding an explanation. Mol. Cancer Ther. (2003) 2(2):123–129.
  • VILENCHIK M, SOLIT D, BASSO A et al: Targeting wide-range oncogenic transformation via PU24FC1, a specific inhibitor of tumor Hsp90. Chem. Biol. (2004) 11(6):787–797.
  • •Demonstration that new small-molecule Hsp90 inhibitors also possess selective affinity for tumour Hsp90.
  • BECKER B, MULTHOFF G, FARKAS B et al: Induction of Hsp90 protein expression in malignant melanomas and melanoma metastases. Exp. Dermatol (2004) 13(1):27–32.
  • EUSTACE BK, SAKURAI T, STEWART JK et al.: Functional proteomic screens reveal an essential extracellular role for hsp90a in cancer cell invasiveness. Nat. Cell Biol. (2004) 6(6):507–514.
  • ••Demonstration of the tumour-specific rolefor Hsp90 at the cell surface.
  • EUSTACE BK, JAY DG: Extracellular roles for the molecular chaperone, hsp90. Cell Cycle (2004) 3(9):1098–1100.
  • SIDERA K, SAMIOTAKI M, YFANTI E, PANAYOTOU G, PATSAVOUDI E: Involvement of cell surface HSP90 in cell migration reveals a novel role in the developing nervous system. Biol. Chem. (2004) 279(44):45379–45388.
  • KENDEROV A, MINKOVA V, MIHAILOVA D et al.: Lupus-specific kidney deposits of HSP90 are associated with altered IgG idiotypic interactions of anti-HSP90 autoantibodies. Clin. Exp. Immunol (2002) 129(1):169–176.
  • VIDAL CI, MINTZ PJ, LU K et al: An HSP90-mimic peptide revealed by fingerprinting the pool of antibodies from ovarian cancer patients. Oncogene (2004) 23(55):8859–8867.
  • ••Demonstration of the involvement of cell-surface Hsp90 in mediating a humoural response in advanced cancer.
  • BINDER RJ, BLACHERE NE, SRIVASTAVA PK: Heat shock protein-chaperoned peptides but not free peptides introduced into the cytosol are presented efficiently by major histocompatibility complex I molecules. J. Biol. Chem. (2001) 276(20):17163–17171.
  • LEES-MILLER SP, ANDERSON CW: The human double-stranded DNA-activated protein kinase phosphorylates the 90-kDa heat-shock protein, hsp90a at two NH2-terminal threonine residues. J. Biol. Chem. (1989) 264(29):17275–17280.
  • MIMNAUGH EG, WORLAND PJ, WHITESELL L, NECKERS LM: Possible role for serine/threonine phosphorylation in the regulation of the heteroprotein complex between the hsp90 stress protein and the pp60v-src tyrosine kinase. J. Biol. Chem. (1995) 270(48):28654–28659.
  • MIYATA Y, YAHARA I: Interaction between casein kinase II and the 90-kDa stress protein, HSP90. Biochemistry (1995) 34(25):8123–8129.
  • ZHAO YG, GILMORE R, LEONE G et al.: Hsp90 phosphorylation is linked to its chaperoning function. Assembly of the reovirus cell attachment protein. J. Biol. Chem. (2001) 276(35):32822–32827.
  • OGISO H, KAGI N, MATSUMOTO E et al.: Phosphorylation analysis of 90 kDa heat shock protein within the cytosolic arylhydrocarbon receptor complex. Biochemistry (2004) 43(49):15510–15519.
  • NAKAJIMA H, KIM YB, TERANO H, YOSHIDA M, HORINOUCHI S: FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. Exp. Cell Res. (1998) 241(1):126–133.
  • MARKS PA, RICHON VM, RIFKIND RA: Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J. Nati Cancer Inst. (2000) 92(15):1210–1216.
  • YU X, GUO ZS, MARCU MG et al: Modulation of p53, ErbB1, ErbB2, and Raf-1 expression in lung cancer cells by depsipeptide FR901228. J. Nati Cancer Inst. (2002) 94(7):504–513.
  • ATADJA P, HSU M, KWON P et al: Molecular and cellular basis for the anti-proliferative effects of the HDAC inhibitor LAQ824. Novartis Found Symp (2004) 259:249-266 (Discussion 266–248 and 285–248).
  • FUJIWARA H, YAMAKUNI T, UENO M et al: IC101 induces apoptosis by Akt dephosphorylation via an inhibition of heat shock protein 90-ATP binding activity accompanied by preventing the interaction with Akt in L1210 cells../. Pharmacol Exp. Ther. (2004) 310(3):1288–1295.
  • •These three papers demonstrate the ability of HDAC inhibitors to modulate Hsp90 function and promote client depletion.
  • LI M, BROOKS CL, WU-BAER F et al: Mono- versus polyubiquitination: differential control of p53 fate by Mdm2. Science (2003) 302(5652):1972–1975.
  • JASON LJ, FINN RM, LINDSEY G, AUSIO J: Histone H2A ubiquitination does not preclude histone H1 binding, but it facilitates its association with the nucleosome. J. Biol. Chem. (2005) 280(6):4975–4982.
  • BLANK M, MANDEL M, KEISARI Y, MERUELO D, LAVIE G: Enhanced ubiquitinylation of heat shock protein 90 as a potential mechanism for mitotic cell death in cancer cells induced with hypericin. Cancer Res. (2003) 63(23):8241–8247.
  • SHAO J, PRINCE T, HARTSON SD, MATTS RL: Phosphorylation of serine 13 is required for the proper function of the Hsp90 co-chaperone, Cdc37../. Biol. Chem. (2003) 278(40):38117–38120.
  • MIYATA Y, NISHIDA E: CK2 controls multiple protein kinases by phosphorylating a kinase-targeting molecular chaperone, Cdc37. Mol. Cell. Biol. (2004) 24(9)4065–4074.
  • XU X, LANDESMAN-BOLLAG E, CHANNAVAJHALA PL, SELDIN DC: Murine protein kinase CK2: gene and oncogene. Mol. Cell. Biochem. (1999) 191(1-2):65–74.
  • PIEKARZ RL, ROBEY R, SAND OR V et al.: Inhibitor of histone deacetylation, depsipeptide (FR901228), in the treatment of peripheral and cutaneous T-cell lymphoma: a case report. Blood (2001) 98(9):2865–2868.
  • SANDOR V, BAKKE S, ROBEY RW et al: Phase I trial of the histone deacetylase inhibitor, depsipeptide (FR901228, NSC 630176), in patients with refractory neoplasms. Clin. Cancer Res. (2002) 8(3):718–728.
  • KELLY WK, RICHON VM, O'CONNOR 0 et al: Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously. Clin. Cancer Res. (2003) 9(10 Part 1):3578–3588.
  • WEISER TS, OHNMACHT GA, GUO ZS et al.: Induction of MAGE-3 expression in lung and esophageal cancer cells. Ann. Thorac Surg. (2001) 71(1):295–301 (Discussion 301–292).
  • RAHMANI M, YU C, DAI Y et al: Coadministration of the heat shock protein 90 antagonist 17-allylamino-17-demethoxygeldanamycin with suberoylanilide hydroxamic acid or sodium butyrate synergistically induces apoptosis in human leukemia cells. Cancer Res. (2003) 63(23)8420–8427.
  • ADAMS J: The development of proteasome inhibitors as anticancer drugs. Cancer Cell (2004) 5(5):417–421.
  • PAPANDREOU CN, LOGOTHETIS CJ: Bortezomib as a potential treatment for prostate cancer. Cancer Res. (2004) 64(15):5036–5043.
  • ORLOWSKI RZ, STINCHCOMBE TE, MITCHELL BS et al.: Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. Oncol (2002) 20(22):4420–4427.
  • MIMNAUGH EG, XU W, VOS M et al: Simultaneous inhibition of hsp 90 and the proteasome promotes protein ubiquitination, causes endoplasmic reticulum-derived cytosolic vacuolization, and enhances antitumor activity. Mol. Cancer Ther. (2004) 3(5):551–566.
  • HENNESSY BT, GARCIA-MANERO G, KANTARJIAN HM, GILES FJ: DNA methylation in haematological malignancies: the role of decitabine. Expert Opin. Investig. Drugs (2003) 12(12):1985–1993.
  • MOMPARLER RL, ONETTO N, MOMPARLER LF et al: Drug sensitivity test for patients with acute leukemia on high-dose ara-C therapy. Semi]. Oncol (1985) 12(2 Suppl. 3):31–33.
  • ALLEMAN WG, TABIOS RL, CHANDRAMOULI GV et al: The in vitro and in vivo effects of re-expressing methylated von Hippel-Lindau tumor suppressor gene in clear cell renal carcinoma with 5-aza-2'-deoxycytidine. Clin. Cancer Res. (2004) 10(20):7011–7021.
  • HAMAMOTO R, FURUKAWA Y, MORITA M et al.: SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat. Cell Biol. (2004) 6(8):731–740.
  • BULL EE, DOTE H, BRADY KJ et al: Enhanced tumor cell radiosensitivity and abrogation of G2 and S phase arrest by the Hsp90 inhibitor 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin. Clin. Cancer Res. (2004) 10(23):8077–8084.
  • BISHT KS, BRADBURY CM, MATTSON D et al: Geldanamycin and 17-allylamino-17-demethoxygeldanamycin potentiate the in vitro and in vivo radiation response of cervical tumor cells via the heat shock protein 90-mediated intracellular signaling and cytotoxicity. Cancer Res. (2003) 63(24):8984–8995.
  • ENMON R, YANG WH, BALLANGRUD AM et al: Combination treatment with 17-N-allylamino-17-demethoxy geldanamycin and acute irradiation produces supra-additive growth suppression in human prostate carcinoma spheroids. Cancer Res. (2003) 63(23):8393–8399.
  • MACHIDA H, MATSUMOTO Y, SHIRAI M, KUBOTA N: Geldanamycin, an inhibitor of Hsp90, sensitizes human tumour cells to radiation. Int. J. Radiat. Biol. (2003) 79(12):973–980.
  • RUSSELL JS, BURGAN W, OSWALD KA, CAMPHAUSEN K, TOFILON PJ: Enhanced cell killing induced by the combination of radiation and the heat shock protein 90 inhibitor 17-allylamino-17- demethoxygeldanamycin: a multitarget approach to radiosensitization. Clin. Cancer Res. (2003)9(10 Part 1):3749–3755.
  • •These five papers illustrate the ability of Hsp90 inhibitors to sensitise cancer cells and/or tumours to RT.
  • BARTEK J, LUKAS J: Chkl and Chk2 kinases in checkpoint control and cancer. Cancer Cell (2003) 3(5) :421–429.
  • SORENSEN CS, HANSEN LT, DZIEGIELEWSKI J et al: The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair. Nat. Cell Biol. (2005) 7(2):195–201.
  • ARLANDER SJ, EAPEN AK, VROMAN BT et al: Hsp90 inhibition depletes Chk1 and sensitizes tumor cells to replication stress. J. Biol. Chem. (2003) 278(52):52572–52577.587
  • •Nice work providing a rationale to use Hsp90 inhibition with certain classes of chemotherapeutic agents.
  • ALTIERI DC: Coupling apoptosis resistance to the cellular stress response: the IAP-Hsp90 connection in cancer. Cell Cycle (2004) 3(3):255–256.
  • BURROWS F, ZHANG H, KAMAL A: Hsp90 activation and cell cycle regulation. Cell Cycle (2004) 3(12):1530–1536.
  • BLAGOSKLONNY MV, FOJO T, BHALLA KN et al.: The Hsp90 inhibitor geldanamycin selectively sensitizes Bcr-Abl-expressing leukemia cells to cytotoxic chemotherapy. Leukemia (2001) 15(10):1537–1543.
  • BAGATELL R, WHITESELL L: Altered Hsp90 function in cancer: a unique therapeutic opportunity. Mol. Cancer Ther. (2004) 3(8):1021–1030.
  • MUNSTER PN, BASSO A, SOLIT D, NORTON L, ROSEN N: Modulation of Hsp90 function by ansamycins sensitizes breast cancer cells to chemotherapy-induced apoptosis in an RB- and schedule-dependent manner. Clin. Cancer Res. (2001) 7(8):2228–2236.
  • •Well-documented report demonstrating the importance of the schedule-dependent effects of 17-AAG administration and identification of specific proteins that attenuate drug efficacy.
  • DONG J, GRUNSTEIN J, TEJADA M et al.: VEGF-null cells require PDGFR-a signaling-mediated stromal fibroblast recruitment for tumorigenesis. EMBO (2004) 23(14):2800–2810.
  • RELF M, LEJEUNE S, SCOTT PA et al.: Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor 13-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res. (1997) 57(5):963–969.
  • SAKAGAMI M, MORRISON P, WELCH WJ: Benzoquinoid ansamycins (herbimycin A and geldanamycin) interfere with the maturation of growth factor receptor tyrosine kinases. Cell Stress Chaperones (1999) 4(1):19–28.
  • DE CANDIA P, SOLIT DB, GIRI D et al: Angiogenesis impairment in Id-deficient mice cooperates with an Hsp90 inhibitor to completely suppress HER2/neu-dependent breast tumors. Proc. Nati Acad. Sci. USA (2003) 100(21):12337–12342.
  • CHAE SS, PAIK JH, FURNEAUX H, HLA T: Requirement for sphingosine 1-phosphate receptor-1 in tumor angiogenesis demonstrated by in vivo RNA interference. Clin. Invest. (2004) 114(8):1082–1089.
  • DUXBURY MS, MATROS E, ITO H et al.: Systemic siRNA-mediated gene silencing: a new approach to targeted therapy of cancer. Ann. Surg. (2004) 240(4):667–674 (Discussion 675–666).
  • CHUNG YL, TROY H, BANERJI U et al: Magnetic resonance spectroscopic pharmacodynamic markers of the heat shock protein 90 inhibitor 17-allylamino,17-demethoxygeldanamycin (17AAG) in human colon cancer models. J. Nati Cancer Inst. (2003) 95(20:1624–1633.
  • SMITH-JONES PM, SOLIT DB, AKHURST T et al.: Imaging the pharmacodynamics of HER2 degradation in response to Hsp90 inhibitors. Nat. Biotechnol. (2004) 22(6):701–706.
  • WILLETT CG, BOUCHER Y, DI TOMASO E et al.: Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med (2004) 10(2):145–147.
  • SHAKED Y, BERTOLINI F, MAN S et al.: Genetic heterogeneity of the vasculogenic phenotype parallels angiogenesis; implications for cellular surrogate marker analysis of antiangiogenesis. Cancer Cell (2005) 7(1):101–111.
  • •These two papers identify circulating biomarkers for monitoring angiogenesis.
  • MILLER JC, PIEN HH, SAHANI D, SORENSEN AG, THRALL JH: Imaging angiogenesis: applications and potential for drug development. J. Natl. Cancer Inst. (2005) 97(3):172–187.
  • REHMAN S, JAYSON GC: Molecular imaging of antiangiogenic agents. Oncologist (2005) 10(2):92–103.
  • THOMPSON JE, THOMPSON CB: Putting the rap on Akt. j Clin. arca (2004) 22(20):4217–4226.
  • SEAGROVES TN, RYAN HE, LU H et al.: Transcription factor HIF-1 is a necessary mediator of the pasteur effect in mammalian cells. Mol. Cell. Biol. (2001) 21(10):3436–3444.
  • MANKOFF DA, DEHDASHTI F, SHIELDS AF: Characterizing tumors using metabolic imaging: PET imaging of cellular proliferation and steroid receptors. Neoplasia (2000) 2 (1-2) :71–88.
  • CALABRESE C, FRANK A, MacLEAN K, GILBERTSON R: Medulloblastoma sensitivity to 17-allylamino-17-demethoxygeldanamycin requires MEK/ ERKM. J. Biol. Chem. (2003) 278(27):24951–24959.
  • MUNSTER PN, MARCHION DC, BASSO AD, ROSEN N: Degradation of HER2 by ansamycins induces growth arrest and apoptosis in cells with HER2 overexpression via a HER3, phosphatidylinositol 3'-kinase-AKT-dependent pathway. Cancer Res. (2002) 62(11):3132–3137.
  • VASILEVSKAYA IA, RAKITINA TV, O'DWYER PJ: Quantitative effects on c-Jun N-terminal protein kinase signaling determine synergistic interaction of cisplatin and 17-allylamino-17-demethoxygeldanamycin in colon cancer cell lines. Mol. Pharmacol. (2004) 65(1):235–243.
  • BELIAKOFF J, BAGATELL R, PAINE-MURRIETA G et al.: Hormone-refractory breast cancer remains sensitive to the antitumor activity of heat shock protein 90 inhibitors. Clin. Cancer Res. (2003) 9(13):4961–4971.
  • •Another nice documentation of the clinical utility of Hsp90 inhibition following treatment failure.
  • ISAACS JS, JUNG YJ, NECKERS L: Aryl hydrocarbon nuclear translocator (ARNT) promotes oxygen-independent stabilization of hypoxia-inducible factor-1a by modulating an Hsp90-dependent regulatory pathway. J. Biol. Chem. (2004) 279(16):16128–16135.
  • DE CARCER G: Heat shock protein 90 regulates the metaphase-anaphase transition in a polo-like kinase-dependent manner. Cancer Res. (2004) 64(15):5106–5112.
  • WINKLER F, KOZIN SV, TONG RT et al.: Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell (2004) 6(6):553–563.
  • BANERJI U, JUDSON I, WORKMAN P: The clinical applications of heat shock protein inhibitors in cancer - present and future. Curl: Cancer Drug Targets (2003) 3(5)385–390.
  • MEARES GP, ZMIJEWSKA AA, JOPE RS: Heat shock protein-90 dampens and directs signaling stimulated by insulin-588 Expert Op/n. lnvestig. Drugs (2005) 14(6) like growth factor-1 and insulin. FEBS Lett. (2004) 574(1–3):181–186.
  • CITRI A, GAN J, MOSESSON Y et al.: Hsp90 restrains ErbB-2/HER2 signalling by limiting heterodimer formation. EMBO Rep. (2004) 5(12):1165–1170.
  • •Two reports documenting the inhibitory regulatory functions of Hsp90.
  • KATSCHINSKI DM, LE L, HEINRICH D et al: Heat induction of the unphosphorylated form of hypoxia-inducible factor-1a is dependent on heat shock protein-90 activity. .1 Biol. Chem. (2002) 277(11):9262–9267.
  • NECKERS L, IVY SP: Heat shock protein 90. Curr. Opin. Once]. (2003) 15(6):419–424.
  • BRANNON-PEPPAS L, BLANCHETTE JO: Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deify. Rev (2004) 56(11):1649–1659.
  • KUNG AL, ZABLUDOFF SD, FRANCE DS et al: Small molecule blockade of transcriptional coactivation of the hypoxia-inducible factor pathway. Cancer Cell (2004) 6(1):33–43.
  • HOOD L, HEATH JR, PHELPS ME, UN B: Systems biology and new technologies enable predictive and preventative medicine. Science (2004) 306(5696):640–643.
  • KOHN KW, RISS J, APRELIKOVA 0 et al.: Properties of switch-like bioregulatory networks studied by simulation of the hypoxia response control system. Mo/. Cell (2004) 15(7):3042–3052.

Websites

  • http://www.Picard.ch/DP/downloads/ Hsp90interactors.pdf National Cancer Institue website.
  • hdp://www.cancengoy/clinicaltrials/ developments/anti-angio-table National Cancer Institue website.
  • http://www.angio.org/common/ druglist_trial.html List of antiangiogenic drugs in clinical trial for cancer.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.