113
Views
20
CrossRef citations to date
0
Altmetric
Review

ADAM proteases, ErbB pathways and cancer

, , , , &
Pages 591-606 | Published online: 11 Jul 2005

References

  • BRINCKERHOFF CE, MATRISIAN LM: Matrix metalloproteinases: a tail of a frog that became a prince. Nat. Rev Mol. Cell Biol. (2002) 3(3):207–214.
  • WHITE JM: ADAMs: modulators of cell-cell and cell-matrix interactions. Curr. Opin. Cell Biol. (2003) 15(5):598–606.
  • SEALS DF, COURTNEIDGE SA: The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes Dev. (2003) 17(1):7–30.
  • PORTERS, CLARK IM, KEVORKIAN L, EDWARDS DR: The ADAMTS metalloproteinases. Biochem. J. (2005) 386( 1):15–27.
  • BLOBEL CP, WOLFSBERG TG, TURCK CW et al.: A potential fusion peptide and an integrin ligand domain in a protein active in sperm-egg fusion. Nature (1992) 356(6366):248–252.
  • •Identification of the first ADAM family member.
  • WOLFSBERG TG, PRIMAKOFF P, MYLES DG, WHITE JM: ADAM, a novel family of membrane proteins containing A Disintegrin And Metalloprotease domain: multipotential functions in cell-cell and cell-matrix interactions. J. Cell. Biol. (1995) 131(2):275–278.
  • HOWARD L, LU X, MITCHELL S, GRIFFITHS S, GLYNN P: Molecular cloning of MADM: a catalytically active mammalian disintegrin-metalloprotease expressed in various cell types. Biochem. (1996) 317\(Part 0:45–50.
  • BLACK RA, RAUCH CT, KOZLOSKY CJ et al.: A metalloproteinase disintegrin that releases tumour-necrosis factor-a from cells. Nature (1997) 385(6618):729–733.
  • LOECHEL F, GILPIN BJ, ENGVALL E, ALBRECHTSEN R, WEWER UM: Human ADAM 12 (meltrin-a) is an active metalloprotease. J. Biol. Chem. (1998) 273(27):16993–16997.
  • ROGHANI M, BECHERER JD, MOSS ML et al.: Metalloprotease-disintegrin MDC9: intracellular maturation and catalytic activity. J. Biol. Chem. (1999) 274(6):3531–3540.
  • HOWARD L, ZHENG Y, HORROCKS M, MacIEWICZ RA, BLOBEL C: Catalytic activity of ADAM28. FEBS Lett. (2001) 498(1):82–86.
  • WEI P, ZHAO YG, ZHUANG L, RUBEN S, SANG QX: Expression and enzymatic activity of human disintegrin and metalloproteinase ADAM19/meltrin-f3. Biochem. Biophys. Res. Commun. (2001) 280(3):744–755.
  • SCHLOMANN U, WILDEBOER D, WEBSTER A et al.: The metalloprotease disintegrin ADAM8. Processing by autocatalysis is required for proteolytic activity and cell adhesion. J. Biol. Chem. (2002) 277(50):48210–48219.
  • FOURIE AM, COLES F, MORENO V, KARLSSON L: Catalytic activity of ADAM8, ADAM15, and MDC-L (ADAM28) on synthetic peptide substrates and in ectodomain cleavage of CD23. J. Biol. Chem. (2003) 278(33):30469–30477.
  • ZOU J, ZHU F, LIU J et al.: Catalytic activity of human ADAM33. j Biol. Chem. (2004) 279(10:9818–9830.
  • MASKOS K, FERNANDEZ-CATALAN C, HUBER R et al.: Crystal structure of the catalytic domain of human tumor necrosis factor-a-converting enzyme. Proc. Natl. Acad. Sci. USA (1998) 95(7):3408–3412.
  • STOCKER W, GRAMS F, BAUMANN U et al.: The metzincins--topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Protein Sci. (1995) 4(5):823–840.
  • BLACK RA, DOEDENS JR, MAHIMKAR R et al.: Substrate specificity and inducibility of TACE (tumour necrosis factor-a converting enzyme) revisited: the Ala-Val preference, and induced intrinsic activity. Biochem. Soc. Symp. (2003) (70):39–52.
  • MOHAN MJ, SEATON T, MITCHELL J et al.: The tumor necrosis factor-a converting enzyme (TACE): a unique metalloproteinase with highly defined substrate selectivity. Biochemistry (2002) 41(30):9462–9469.
  • ZHENG Y, SAFTIG P, HARTMANN D, BLOBEL C: Evaluation of the contribution of different ADAMs to tumor necrosis factor-a (TNF-a) shedding and of the function of the TNF-a ectodomain in ensuring selective stimulated shedding by the TNF-a convertase (TACE/ADAM17). J. Biol. Chem. (2004) 279(40:42898–42906.
  • ANDERS A, GILBERT S, GARTEN W, POSTINA R, FAHRENHOLZ F: Regulation of the a-secretase ADAM10 by its prodomain and proprotein convertases. FASEB J. (2001) 15(10):1837–1839.
  • ENDRES K, ANDERS A, KOJRO E et al.: Tumor necrosis factor-a converting enzyme is processed by proprotein-convertases to its mature form which is degraded upon phorbol ester stimulation. Eur. Biochem. (2003) 270(11):2386–2393.
  • LAMMICH S, KOJRO E, POSTINA R et al.: Constitutive and regulated a-secretase cleavage of Alzheimer's amyloid precursor protein by a disintegrin metalloprotease. Proc. Nati Acad. Sci. USA (1999) 96(7):3922–3927.
  • LUM L, REID MS, BLOBEL CP: Intracellular maturation of the mouse metalloprotease disintegrin MD C15. J. Biol. Chem. (1998) 273(40):26236–26247.
  • HOWARD L, MACIEWICZ RA, BLOBEL CP: Cloning and characterization of ADAM28: evidence for autocatalytic pro-domain removal and for cell surface localization of mature ADAM28. Biochem. J. (2000) 348(1):21–27.
  • SCHLONDORFF J, BECHERER JD, BLOBEL CP: Intracellular maturation and localization of the tumour necrosis factor-a convertase (TACE). Biochem. 1 (2000) 347\(Part 1):131–138.
  • HOUGAARD S, LOECHEL F, XU X et al.: Trafficking of human ADAM 12-L: retention in the trans-Golgi network. Biochem. Biophys. Res. Commun. (2000) 275(2):261–267.
  • KADOTA N, SUZUKI A, NAKAGAMI Y, IZUMI T, ENDO T: Endogenous meltrin-a is ubiquitously expressed and associated with the plasma membrane but exogenous meltrin-a is retained in the endoplasmic reticulum. I Biochem. (Tokyo) (2000) 128(6):941–949.
  • MOSS ML, WHITE JM, LAMBERT MH, ANDREWS RC: TACE and other ADAM proteases as targets for drug discovery. Drug Discov. Today (2001) 6(8):417–426.
  • BAX DV, MESSENT AJ, TART J et al.: Integrin a5f31 and ADAM-17 interact in vitro and co-localize in migrating HeLa cells. J. Biol. Chem. (2004) 279(20:22377–22386.
  • IBA K, ALBRECHTSEN R, GILPIN B et al.: The cysteine-rich domain of human ADAM12 supports cell adhesion through
  • •• syndecans and triggers signaling events that lead to 131 integrin-dependent cell spreading. J. Cell Biol. (2000) 149(5):1143–1156.
  • SMITH KM, GAULTIER A, COUSIN H et al.: The cysteine-rich domain regulates ADAM protease function in vivo. J. Cell Biol. (2002) 159(5):893–902.
  • REDDY P, SLACK JL, DAVIS R et al: Functional analysis of the domain structure of tumor necrosis factor-a converting enzyme. J. Biol. Chem. (2000) 275(19):14608–14614.
  • LEE MH, DODDS P, VERMA V et al: Tailoring tissue inhibitor of metalloproteinases-3 to overcome the weakening effects of the cysteine-rich domains of tumour necrosis factor-a converting enzyme. Biochem. J. (2003) 371(Pt 2):369–376.
  • SOLOMON KA, PESTI N, WU G, NEWTON RC: Cutting edge: a dominant negative form of TNF-a converting enzyme inhibits proTNF and TNFRII secretion. Immunol. (1999) 163(8):4105–4108.
  • MASSAGUE J, PANDIELLA A: Membrane-anchored growth factors. Ann. Rev .Biochem. (1993) 62:515–541.
  • ARRIBAS J, MASSAGUE J: Transforming growth factor-a and 13-amyloid precursor protein share a secretory mechanism. J. Cell Biol (1995) 128(3):433–441.
  • PANDIELLA A, MASSAGUE J: Cleavage of the membrane precursor for transforming growth factor a is a regulated process. Proc. Natl. Acad. Sci. USA (1991) 88(5):1726–1730.
  • ARRIBAS J, COODLY L, VOLLMER P et al.: Diverse cell surface protein ectodomains are shed by a system sensitive to metalloprotease inhibitors../. Biol. Chem. (1996) 271(19):11376–11382.
  • BREW K, DINAKARPANDIAN D, NAGASE H: Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim. Biophys. Acta (2000) 1477(1-2):267–283.
  • MURPHY G, KNAUPER V, LEE MH et al.: Role of TIMPs (tissue inhibitors of metalloproteinases) in pericellular proteolysis: the specificity is in the detail. Biochem. Soc. Symp. (2003) (70):65–80.
  • AMOUR A, KNIGHT CG, ENGLISH WR et al.: The enzymatic activity of ADAM8 and ADAM9 is not regulated by TIMPs. FEBS Lett. (2002) 524(1-3):154–158.
  • MOHAMMED FE SMOOKLER DS, TAYLOR SE et al: Abnormal TNF activity in Timp3 / mice leads to chronic hepatic inflammation and failure of liver regeneration. Nat. Genet. (2004) 36(9):969–977.
  • CHO C, BUNCH DO, FAURE JE et al: Fertilization defects in sperm from mice lacking fertilin 0. Science (1998) 281(53801857-1859.
  • NISHIMURA H, CHO C, BRANCIFORTE DR, MYLES DG, PRIMAKOFF P: Analysis of loss of adhesive function in sperm lacking cyritestin or fertilin 3. Dev. Biol. (2001) 233(0:204–213.
  • WESKAMP G, CAI H, BRODIE TA et al: Mice lacking the metalloprotease-disintegrin MDC9 (ADAM9) have no evident major abnormalities during development or adult life. Mol. Cell Bio. (2002) 22(5):1537–1544.
  • PESCHON JJ, SLACK JL, REDDY P et al: An essential role for ectodomain shedding in mammalian development. Science (1998) 282(5392):1281–1284.
  • ••Knockout studies suggest ADAM17 iscrucial for the activation of EGFR during mouse development.
  • HARTMANN D, DE STROOPER B, SERNEELS L et al: The disintegrin/ metalloprotease ADAM 10 is essential for Notch signalling but not for a-secretase activity in fibroblasts. Hum. Mol Genet. (2002) 11(20:2615–2624.
  • HORIUCHI K, WESKAMP G, LUM L et al: Potential role for ADAM15 in pathological neovascularization in mice. Mol Cell Biol. (2003) 23(16):5614–5624.
  • ROEMER A, SCHWETTMANN L, JUNG M et al.: Increased mRNA expression of ADAMs in renal cell carcinoma and their association with clinical outcome. Oncol Rep. (2004) 11(2):529–536.
  • ISHIKAWA N, DAIGO Y, YASUI W et al: ADAM8 as a novel serological and histochemical marker for lung cancer. Clin. Cancer Res. (2004) 10(24):8363–8370.
  • LENDECKEL U, KOHL J, ARNDT M et al: Increased expression of ADAM family members in human breast cancer and breast cancer cell lines../. Cancer Res. Chi'. Oncol (2005) 131(1):41–48.
  • CARL-McGRATH S, LENDECKEL U, EBERT M, ROESSNER A, ROCKEN C: The disintegrin-metalloproteinases ADAM9, ADAM12, and ADAM15 are upregulated in gastric cancer. Int. Oncol (2005) 26(1):17–24.
  • GRUTZMANN R, LUTTGES J, SIP OS B et al.: ADAM9 expression in pancreatic cancer is associated with tumour type and is a prognostic factor in ductal adenocarcinoma. Br. J. Cancer (2004) 90(5):1053–1058.
  • YAVARI R, ADIDA C, BRAY-WARD P, BRINES M, XU T: Human metalloprotease-disintegrin Kuzbanian regulates sympathoadrenal cell fate in development and neoplasia. Hum. Mol. Genet. (1998) 7(7):1161–1167.
  • YOSHIMURA T, TOMITA T, DIXON MF et al: ADAMs (a disintegrin and metalloproteinase) messenger RNA expression in Helicobacter pylori-infected, normal, and neoplastic gastric mucosa. J. Infect. Dis. (2002) 185(3):332–340.
  • WU E, CROUCHER PI, MCKIE N: Expression of members of the novel membrane linked metalloproteinase family ADAM in cells derived from a range of haematological malignancies. Biochem. Biophys. Res. Commun. (1997) 235(2):437–442.
  • KODAMA T, IKEDA E, OKADA A et al: ADAM12 is selectively overexpressed in human glioblastomas and is associated with glioblastoma cell proliferation and shedding of heparin-binding epidermal growth factor. Am. J. Pathol (2004) 165(5):1743–1753.
  • LE PABIC H, BONNIER D, WEWER UM et al: ADAM12 in human liver cancers: TGF-13-regulated expression in stellate cells is associated with matrix remodeling. Hepatology (2003) 37(5):1056–1066.
  • BORRELL-PAGES M, ROJO F, ALBANELL J, BASELGA J, ARRIBAS J: TACE is required for the activation of the EGFR by TGF-a in tumors. EMBO (2003) 22(5):1114–1124.
  • •Juxtacrine activation of the EGFR by TGF-a requires ligand cleavage and ADAM activity.
  • DING X, YANG LY, HUANG GW, WANG W, LU WQ: ADAM17 mRNA expression and pathological features of hepatocellular carcinoma. World J. Castroenterol (2004) 10(18):2735–2739.
  • KANG GH, SHIM YH, JUNG HY et al: CpG island methylation in premalignant stages of gastric carcinoma. Cancer Res. (2001) 61(7):2847–2851.
  • WILD A, RAMASWAMY A, LANGER P et al.: Frequent methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene in pancreatic endocrine tumors. J. Clin. Endocrinol Metab. (2003) 88(3):1367–1373.
  • DULAIMI E, IBANEZ DE CACERES I, UZZO RG et al.: Promoter hypermethylation profile of kidney cancer. Clin. Cancer Res. (2004) 10(12 Part 1):3972–3979.
  • ANDREU T, BECKERS T, THOENES E, HILGARD P, VON MELCHNER H: Gene trapping identifies inhibitors of oncogenic transformation. The tissue inhibitor of metalloproteinases-3 (TIMP3) and collagen type I a-2 (COL1A2) are epidermal growth factor-regulated growth repressors. J. Biol. Chem. (1998) 273(22):13848–13854.
  • BLOBEL CP: ADAMs: key components in EGFR signalling and development. Nat. Rev Mol. Cell Biol. (2005) 6(1):32–43.
  • •Comprehensive review of the role of ADAMs in EGFR signalling.
  • YARDEN Y, SLIWKOWSKI MX: Untangling the ErbB signalling network. Nat. Rev Mol. Cell Biol. (2001) 2(2):127–137.
  • HARRIS RC, CHUNG E, COFFEY RJ: EGF receptor ligands. Exp. Cell Res. (2003) 284(1):2–13.
  • GRAUS-PORTA D, BEERLI RR, DALY JM, HYNES NE: ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J. (1997) 16(7):1647–1655.
  • MOSESSON Y, YARDEN Y: Oncogenic growth factor receptors: implications for signal transduction therapy. Semi]. Cancer Biol. (2004) 14(4):262–270.
  • HOLBRO T, BEERLI RR, MAURER F et al.: The ErbB2/ErbB3 heterodimer functions as an oncogenic unit: ErbB2 requires ErbB3 to drive breast tumor cell proliferation. Proc. Natl. Acad. Sci. USA (2003) 100(15):8933–8938.
  • ALIMANDI M, ROMANO A, CURIA MC et al.: Cooperative signaling of ErbB3 and ErbB2 in neoplastic transformation and human mammary carcinomas. Oncogene (1995) 10(9):1813–1821.
  • NORMANNO N, BIANCO C, DE LUCA A, SALOMON DS: The role of EGF-related peptides in tumor growth. Front Biosci. (2001) 6:D685–707.
  • SAHIN U, WESKAMP G, KELLY K et al:Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. ./. Cell. Biol. (2004) 164(5):769–779.
  • •Systematic analysis of ADAMs on EGFR ligand shedding using different ADAM-deficient cells.
  • GEE JM, KNOWLDEN JM: ADAM metalloproteases and EGFR signalling. Breast Cancer Res. (2003) 5(5):223–224.
  • MERLOS-SUAREZ A, RUIZ-PAZ S, BASELGA J, ARRIBAS J: Metalloprotease-dependent protransforming growth factor-a ectodomain shedding in the absence of tumor necrosis factor-a-converting enzyme. ./. Biol. Chem. (2001) 276(50:48510–48517.
  • SUNNARBORG SW, HINKLE CL, STEVENSON M et al.: Tumor necrosis factor-a converting enzyme (TACE) regulates epidermal growth factor receptor ligand availability. J. Biol. Chem. (2002) 277(15):12838–12845.
  • ZHAO J, CHEN H, PESCHON JJ et al: Pulmonary hypoplasia in mice lacking tumor necrosis factor-a converting enzyme indicates an indispensable role for cell surface protein shedding during embryonic lung branching morphogenesis. Dev. Biol. (2001) 232(1):204–218.
  • JACKSON LF, QIU TH, SUNNARBORG SW et al.: Defective valvulogenesis in HB-EGF and TACE-null mice is associated with aberrant BMP signaling. EMBO J. (2003) 22(10:2704–2716.
  • IWAMOTO R, YAMAZAKI S, ASAKURA M et al.: Heparin-binding EGF-like growth factor and ErbB signaling is essential for heart function. Proc. Natl. Acad. Sci. USA (2003) 100(6):3221–3226.
  • SHI W, CHEN H, SUN J et al: TACE is required for fetal murine cardiac development and modeling. Dev. Biol. (2003) 261(2):371–380.
  • LUETTEKE NC, QIU TH, FENTON SE et al.: Targeted inactivation of the EGF and amphiregulin genes reveals distinct roles for EGF receptor ligands in mouse mammary gland development. Development (1999) 126(12):2739–2750.
  • IZUMI Y, HIRATA M, HASUWA H et al: A metalloprotease-disintegrin, MDC9/ meltrin-y/ADAM9 and PKC-8 are involved in TPA-induced ectodomain shedding of membrane-anchored heparin-binding EGF-like growth factor. EMBO J. (1998) 17(24):7260–7272.
  • ASAKURA M, KITAKAZE M, TAKASHIMA S et al: Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: metalloproteinase inhibitors as a new therapy. Nat. Med. (2002) 8(1):35–40.
  • KURISAKI T, MASUDA A, SUDO K et al: Phenotypic analysis of Meltrin-a (ADAM12)-deficient mice: involvement of Meltrin-a in adipogenesis and myogenesis. Mol. Cell Biol. (2003) 23(1):55–61.
  • LEMJABBAR H, BASBAUM C: Platelet-activating factor receptor and ADAM10 mediate responses to Staphylococcus aureus in epithelial cells. Nat. Med. (2002) 8(1):41–46.
  • YAN Y, SHIRAKABE K, WERB Z: The metalloprotease Kuzbanian (ADAM10) mediates the transactivation of EGF receptor by G protein-coupled receptors. J. Cell Biol. (2002) 158(2):221–226.
  • BRACHMANN R, LINDQUIST PB, NAGASHIMA M et al.: Transmembrane TGF-a precursors activate EGF/TGF-a receptors. Cell (1989) 56(4):691–700.
  • WONG ST, WINCHELL LF, MCCUNE BK et al: The TGF-a precursor expressed on the cell surface binds to the EGF receptor on adjacent cells, leading to signal transduction. Cell (1989) 56(3):495–506.
  • GSCHWIND A, FISCHER OM, ULLRICH A: The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat. Rev Cancer. (2004) 4(5):361–370.
  • CHRISTIANSON TA, DOHERTY JK, LIN YJ et al: NH2-terminally truncated HER-2/neu protein: relationship with shedding of the extracellular domain and with prognostic factors in breast cancer. Cancer Res. (1998) 58(22):5123–5129.
  • BASELGA J: Is circulating HER-2 more than just a tumor marker? Clin. Cancer Res. (2001a) 7(9):2605–2607.
  • UMEKITA Y, OHI Y, SAGARA Y, YOSHIDA H: Co-expression of epidermal growth factor receptor and transforming growth factor-a predicts worse prognosis in breast-cancer patients. Int. Cancer (2000) 89(6):484–487.
  • SALOMON DS, BRANDT R, CIARDIELLO F, NORMANNO N: Epidermal growth factor-related peptides and their receptors in human malignancies. Crit. Rev Oncol Hematol (1995) 19(3):183–232.
  • FONTANINI G, DE LAURENTIIS M, VIGNATI S et al.: Evaluation of epidermal growth factor-related growth factors and receptors and of neoangiogenesis in completely resected stage I-IIIA non-small-cell lung cancer: amphiregulin and microvessel count are independent prognostic indicators of survival. Clin. Cancer Res. (1998) 4(1):241–249.
  • PRENZEL N, ZWICK E, DAUB H et a/.: EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature (1999) 402(6764):884–888.
  • GSCHWIND A, HARTS, FISCHER OM, ULLRICH A: TACE cleavage of proamphiregulin regulates GPCR-induced proliferation and motility of cancer cells. EMBO J. (2003) 22(10):2411–2421.
  • PAT R, SOREGHAN B, SZABO IL et al: Prostaglandin E2 transactivates EGF receptor: a novel mechanism for promoting colon cancer growth and gastrointestinal hypertrophy. Nat. Med. (2002) 8(3):289–293.
  • ROUDABUSH FL, PIERCE KL, MAUDSLEY S, KHAN KD, LUTTRELL LM: Transactivation of the EGF receptor mediates IGF-1-stimulated shc phosphorylation and ERK1/2 activation in COS-7 cells. J. Biol. Chem. (2000) 275(29):22583–22589.
  • BASELGA J, ALBANELL J, MOLINA MA, ARRIBAS J: Mechanism of action of trastuzumab and scientific update. Semin Oncol (2001) 28(5 Suppl. 16):4–11.
  • GREGORC V, CERESOLI GL, FLORIANI I et al.: Effects of gefitinib on serum epidermal growth factor receptor and HER2 in patients with advanced non-small cell lung cancer. Chi'. Cancer Res. (2004) 10(18 Part 1):6006–6012.
  • VECCHI M, CARPENTER G: Constitutive proteolysis of the ErbB-4 receptor tyrosine kinase by a unique, sequential mechanism. J. Cell Biol. (1997) 139(4):995–1003.
  • RIO C, BUXBAUM JD, PESCHON JJ, CORFAS G: Tumor necrosis factor-a-converting enzyme is required for cleavage of erbB4/HER4../. Biol. Chem. (2000) 275(14):10379–10387.
  • CODONY-SERVAT J, ALBANELL J, LOPEZ-TALAVERA JC, ARRIBAS J, BASELGA J: Cleavage of the HER2 ectodomain is a pervanadate-activable process that is inhibited by the tissue inhibitor of metalloproteases-1 in breast cancer cells. Cancer Res. (1999) 59(6):1196–1201.
  • LIPTON A, ALI SM, LEITZEL K et al: Elevated serum Her-2/neu level predicts decreased response to hormone therapy in metastatic breast cancer. J. Clin. Oncol (2002) 20(6):1467–1472.
  • BETHUNE-VOLTERS A, LABROQUERE M, GUEPRATTE S et al: Longitudinal changes in serum HER-2/neu oncoprotein levels in trastuzumab-treated metastatic breast cancer patients. Anticancer Res. (2004) 24(2C):1083–1089.
  • MOLINA MA, CODONY-SERVAT J, ALBANELL J et al.: Trastuzumab (herceptin), a humanized anti-Her2 receptor monoclonal antibody, inhibits basal and activated Her2 ectodomain cleavage in breast cancer cells. Cancer Res. (2001) 61(12):4744–4749.
  • ALLENSPACH EJ, MAILLARD I, ASTER JC, PEAR WS: Notch signaling in cancer. Cancer Biol. Ther. (2002) 1(5):466–476.
  • MIYAMOTO Y, MAITRA A, GHOSH B et al: Notch mediates TGF a-induced changes in epithelial differentiation during pancreatic tumorigenesis. Cancer Cell (2003) 3(6):565–576.
  • FITZGERALD K, HARRINGTON A, LEDER P: Ras pathway signals are required for notch-mediated oncogenesis. Oncogene (2000) 19(37):4191–4198.
  • ZAGOURAS P, STIFANI S, BLAUMUELLER CM, CARCANGIU ML, ARTAVANIS-TSAKONAS S: Alterations in Notch signaling in neoplastic lesions of the human cervix. Proc. Natl. Acad. Sci. USA (1995) 92(14):6414–6418.
  • RAE FK, STEPHENSON SA, NICOL DL, CLEMENTS JA: Novel association of a diverse range of genes with renal cell carcinoma as identified by differential display. Int. J. Cancer (2000) 88(5):726–732.
  • ROOKE J, PAN D, XU T, RUBIN GM: KUZ, a conserved metalloprotease-disintegrin protein with two roles in Drosophila neurogenesis. Science (1996) 273(5279):1227–1231.
  • WEN C, METZSTEIN MM, GREENWALD I: SUP-17, a Caenorhabditis elegans ADAM protein related to Drosophila KUZBANIAN, and its role in LIN-12/NOTCH signalling. Development (1997) 124(23):4759–4767.
  • MUMM JS, SCHROETER EH, SAXENA MT et al.: A ligand-induced extracellular cleavage regulates y-secretase-like proteolytic activation of Notch1. Mol. Cell (2000) 5(2):197–206.
  • BROU C, LOGEAT F, GUPTA N et al.: A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. Mol. Cell (2000) 5(2):207–216.
  • MARSHMAN E, STREULI CH: Insulin-like growth factors and insulin-like growth factor binding proteins in mammary gland function. Breast Cancer Res. (2002) 4(6):231–239.
  • MOHAN S, THOMPSON GR, AMAARYG et al: ADAM-9 is an insulin-like growth factor binding protein-5 protease produced and secreted by human osteoblasts. Biochemistry (2002) 41(51):15394–15403.
  • SHI Z, XU W, LOECHEL F, WEWER UM, MURPHY LJ: ADAM 12, a disintegrin metalloprotease, interacts with insulin-like growth factor-binding protein-3. J. Biol. Chem. (2000) 275(24):18574–18580.
  • MOCHIZUKI S, SHIMODA M, SHIOMI T, FUJII Y, OKADA Y: ADAM28 is activated by MMP-7 (matrilysin-1) and cleaves insulin-like growth factor binding protein-3. Biochem. Biophys. Res. Commun. (2004) 315(1):79–84.
  • LOECHEL F, FOX JW, MURPHY G, ALBRECHTSEN R, WEWER UM: ADAM 12-S cleaves IGFBP-3 and IGFBP-5 and is inhibited by TIMP-3. Biochem. Biophys. Res. Commun. (2000) 278(3):511–515.
  • HANKINSON SE, WILLETT WC, COLDITZ GA et al.: Circulating concentrations of insulin-like growth factor-land risk of breast cancer. Lancet (1998) 351(9113):1393–1396.
  • BRUNING PF, VAN DOORN J, BONFRER JM et al.: Insulin-like growth-factor-binding protein 3 is decreased in early-stage operable pre-menopausal breast cancer. Int. J. Cancer (1995) 62(3):266–270.
  • KREBS LT, XUE Y, NORTON CR et al.: Notch signaling is essential for vascular morphogenesis in mice. Genes Dev. (2000) 14(11):1343–1352.
  • HALL H, DJONOV V, EHRBAR M, HOECHLI M, HUBBELL JA: Heterophilic interactions between cell adhesion molecule Li and avf33-integrin induce HUVEC process extension in vitro and angiogenesis in vivo. Angiogenesis (2004) 7(3):213–223.
  • MECHTERSHEIMER S, GUTWEIN P, AGMON-LEVIN N et al.: Ectodomain shedding of Li adhesion molecule promotes cell migration by autocrine binding to integrins. J. Cell Biol. (2001) 155(4):661–673.
  • BEERS, OLESZEWSKI M, GUTWEIN P, GEIGER C, ALTEVOGT P: Metalloproteinase-mediated release of the ectodomain of Li adhesion molecule. ./. Cell Sci. (1999) 112 (Pt 10:2667–2675.
  • GUTWEIN P, OLESZEWSKI M, MECHTERSHEIMER S et al.: Role of Src kinases in the ADAM-mediated release of Li adhesion molecule from human tumor cells. J. Biol. Chem (2000) 275(20):15490–15497.
  • FOGEL M, GUTWEIN P, MECHTERSHEIMER S et al.: Li expression as a predictor of progression and survival in patients with uterine and ovarian carcinomas. Lancet (2003) 362(9387):869–875.
  • TEDDER TF, STEEBER DA, CHEN A, ENGEL P: The selectins: vascular adhesion molecules. FASEB J. (1995) 9(10):866–873.
  • NAKAMURA H, SUENAGA N, TANIWAKI K et al.: Constitutive and induced CD44 shedding by ADAM-like proteases and membrane-type 1 matrix metalloproteinase. Cancer Res. (2004) 64(3):876–882.
  • NAGANO 0, MURAKAMI D, HARTMANN D et al.: Cell-matrix interaction via CD44 is independently regulated by different metalloproteinases activated in response to extracellular Ca(2+) influx and PKC activation. J. Cell Biol. (2004) 165(6):893–902.
  • NATH D, WILLIAMSON NJ, JARVIS R, MURPHY G: Shedding of c-Met is regulated by crosstalk between a G-protein coupled receptor and the EGF receptor and is mediated by a TIMP-3 sensitive metalloproteinase. J. Cell Sri. (2001) 114\(Part 6):1213–1220.
  • MILLICHIP MI, DALLAS DJ, WU E, DALE S, McKIE N: The metallo-disintegrin ADAM10 (MADM) from bovine kidney has type IV collagenase activity in vitro. Biochem. Biophys. Res. Commun. (1998) 245(2):594–598.
  • MARTIN J, EYNSTONE LV, DAVIES M, WILLIAMS JD, STEADMAN R: The role of ADAM 15 in glomerular mesangial cell migration. J. Biol. Chem. (2002) 277(37):33683–33689.
  • BASELGA J: Clinical trials of Herceptin (trastuzumab). Eur. J. Cancer (2001b) 37\(Suppl. 1):518–24.
  • GRAHAM J, MUHSIN M, KIRKPATRICK P: Cetuximab. Nat. Rev Drug Discov. (2004) 3(7):549–550.
  • HERBST RS, FUKUOKA M, BASELGA J: Gefitinib-a novel targeted approach to treating cancer. Nat. Rev Cancer (2004) 4(12):956–965.
  • PAEZ JG, JANNE PA, LEE JC et al.: EGFR Mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science (2004)
  • LYNCH TJ, BELL DW, SORDELLA R et al.: Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to Gefitinib. N Engl. J. Med. (2004)
  • PAO W, MILLER V, ZAKOWSKI M et al.: EGF receptor gene mutations are common in lung cancers from "never smokers'' and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl. Acad Sci. USA (2004) 101(36):13306–13311.
  • MATAR P, ROJO F, CASSIA R et al.: Combined epidermal growth factor receptor targeting with the tyrosine kinase inhibitor gefitinib (ZD-1839) and the monoclonal antibody cetuximab (IMC-C225): superiority over single-agent receptor targeting. Clia Cancer Res. (2004) 10(19):6487–6501.
  • HUANG S, ARMSTRONG EA, BENAVENTE S, CHINNAIYAN P, HARARI PM: Dual-agent molecular targeting of the epidermal growth factor receptor (EGFR): combining anti-EGFR antibody with tyrosine kinase inhibitor. Cancer Res. (2004) 64(15):5355–5362.
  • NORMANNO N, CAMPIGLIO M, DE LA et al.: Cooperative inhibitory effect of ZD1839 (Iressa) in combination with trastuzumab (Herceptin) on human breast cancer cell growth. Ann. Oncol. (2002) 13(1):65–72.
  • MOTOYAMA AB, HYNES NE, LANE HA: The efficacy of ErbB receptor-targeted anticancer therapeutics is influenced by the availability of epidermal growth factor-related peptides. Cancer Res. (2002) 62(11):3151–3158.
  • KAKIUCHI S, DAIGO Y, ISHIKAWA N et al.: Prediction of sensitivity of advanced non-small cell lung cancers to gefitinib (Iressa, ZD1839). Hum. Moi Genet. (2004) 13(24)3029–3043.
  • LU Y, ZI X, ZHAO Y, MASCARENHAS D, POLLAK M: Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J. Nati Cancer Inst. (2001) 93(24):1852–1857.
  • LU Y, ZI X, POLLAK M: Molecular mechanisms underlying IGF-I-induced attenuation of the growth-inhibitory activity of trastuzumab (Herceptin) on SKBR3 breast cancer cells. Int. Cancer (2004) 108(3):334–341.
  • AHONEN M, POUKKULA M, BAKER AH et al.: Tissue inhibitor of metalloproteinases-3 induces apoptosis in melanoma cells by stabilization of death receptors. Oncogene (2003) 22(14):2121–2134.
  • BAKER AH, ZALTSMAN AB, GEORGE SJ, NEWBY AC: Divergent effects of tissue inhibitor of metalloproteinase- 1, -2, or -3 overexpression on rat vascular smooth muscle cell invasion, proliferation, and death in vitro. TIMP-3 promotes apoptosis. Clia Invest. (1998) 101(6):1478–1487.
  • BIAN J, WANG Y, SMITH MR et al.: Suppression of in vivo tumor growth and induction of suspension cell death by tissue inhibitor of metalloproteinases (TIMP)-3. Carcinogenesis (1996) 17(9):1805–1811.
  • QI JH, EBRAHEM Q, MOORE N et al.: A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nat. Med. (2003) 9(4):407–415.
  • VAN DER LAAN WH, QUAX PH, SEEMAYER CA et al.: Cartilage degradation and invasion by rheumatoid synovial fibroblasts is inhibited by gene transfer of TIMP-1 and TIMP-3. Gene Ther. (2003) 10(3):234–242.
  • DONG J, OPRESKO LK, DEMPSEY PJ et al.: Metalloprotease-mediated ligand release regulates autocrine signaling through the epidermal growth factor receptor. Proc. Natl. Acad. Sci. USA (1999)96(1 1) :6235–6240.
  • OCHAROENRAT P, RHYS-EVANS PH, MODJTAHEDI H, ECCLES SA: The role of c-erbB receptors and ligands in head and neck squamous cell carcinoma. Oral Omni (2002) 38(7):627–640.
  • COUSSENS LM, FINGLETON B, MATRISIAN LM: Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science (2002) 295(5564):2387–2392.
  • HOLMBECK K, BIANCO P, CATERINA J et al: MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell (1999) 99(0:81–92.
  • BARLAAM B, BIRD TG, LAMBERT-VAN DER BREMPT C et al: New a-substituted succinate-based hydroxamic acids as TNF-a convertase inhibitors. J. Med. Chem. (1999) 42(23):4890–4908.
  • WOJTOWICZ-PRAGA S, TORRI J, JOHNSON M et al: Phase I trial of Marimastat, a novel matrix metalloproteinase inhibitor, administered orally to patients with advanced lung cancer. Omni (1998) 16(6):2150–2156.
  • HANDE KR, COLLIER M, PARADISO L et al: Phase I and pharmacokinetic study of prinomastat, a matrix metalloprotease inhibitor. Clin. Cancer Res. (2004) 10(3):909–915.

Websites

  • http://www.people.virginia.edub-jw7g/ Table_of the_ADAMs.html Table of ADAMs.
  • www.iddb3.com IDdb drug database.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.