69
Views
14
CrossRef citations to date
0
Altmetric
Review

The incretin effect and its potentiation by glucagon-like peptide 1-based therapies: a revolution in diabetes management

, &
Pages 705-727 | Published online: 11 Jul 2005

Bibliography

  • WILD S, ROGLIC G, GREEN A, SICREE R, KING H: Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care (2004) 27(5):1047–1053.
  • MOKDAD AH, FORD ES, BOWMAN BA et al.: Prevalence of obesity, diabetes, and obesity-related health risk factors. IA/VIA (2003) 289(1):76–79.
  • Effect of intensive therapy on residual 13-cell function in patients with Type 1 diabetes in the diabetes control and complications trial. A randomized, controlled trial. The Diabetes Control and Complications Trial Research Group. Ann. Intern. Med. (1998) 128(7):517–523.
  • BALDEWEG SE, YUDKIN JS: Implications of the United Kingdom prospective diabetes study. Prim. Care (1999) 26(4):809–827.
  • ELRICK H, STIMMLER L, HLAD CJ Jr, ARAI Y: Plasma insulin response to oral and intravenous glucose administration. J. Chu. Endocrinol Metab. (1964) 24:1076–1082.
  • McINTYRE N, HOLDSWORTH CD, TURNER DS: Intestinal factors in the control of insulin secretion. .1 Clin. Endocrinol Metab. (1965) 25:1317–1324.
  • PERLEY MJ, KIPNIS DM Plasma insulin responses to oral and intravenous glucose: studies in normal and diabetic subjects. Chu. Invest. (1967) 46(12):1954–62
  • BAYLISS WM, STARLING EH: Mechanism of pancreatic secretion. Physiol (Lond.) (1902) 28:235–334.
  • MOORE B, EDIE ES, ABRAM JH: On the treatment of diabetes mellitus by acid extract of duodenal mucous membrane. Biochern. J. (1906) 1:28–38.
  • LA BARRE J, STILL EU. Studies on the physiology of secretin. Am. Physiol (1930) 91:649–653
  • LOEWER, GREY JS, IVY AC: Is a duodenal hormone involved in carbohydrate metabolism? Am. J. Physiol (1940) 129:659–663.
  • McINTYREN, HOLSWORTH DC, TURNER DS: New interpretation of oral glucose tolerance. Lancet (1964) 2:20–21.
  • DUPREJ, BECK JC: Stimulation of release of insulin by an extract of intestinal mucosa. Diabetes (1966) 15:555–559
  • NAUCK MA, HOMBERGER E, SIEGEL EG et al: Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. ./. Chu. Endocrinol Metab. (1986) 63:492–498
  • BROWN JC, PEDERSON RA: A multiparameter study of the action of preparations containing cholecystokinin-pancreozymin. Scand. Castroentero] 1970;5:537–541
  • BROWN JC: A gastric inhibitory polypeptide. I. The amino acid composition and the tryptic peptides. Can. I Biochem. (1971) 49:255–261.
  • DUPRE J, ROSS SA, WATSON D, BROWN JC: Stimulation of insulin secretion by gastric inhibitory polypeptide in man. J. Chu. Endocrinol Metab. (1973) 37:826–828.
  • BROWN JC, PEDERSON RA: GI hormones and insulin secretion. James VHT (Ed) 5th International Congress on Endocrinology, Excerpta Medica, Hamburg (1976) 2:568–570.
  • ROSS SA, DUPRE J: Effects of ingestion oftriglyceride or galactose on secretion of gastric inhibitory polypeptide and on response to intravenous glucose in normal and diabetic subjects. Diabetes (1978) 27:327–333.
  • ELAHI D, ANDERSEN DK, BROWN JC et al: Pancreatic a- and 13-cell responses to GIP infusion in normal man. Am. J. Physic'. (1979) 237(2):E185–E191.
  • EBERT R, ILLMER K, CREUTZFELDT W: Abolishment of the incretin effect in rats by infusion of gastric inhibitory polypeptide (GIP) antibodies. Scand. Castroenterol (1978) 49:1353.
  • LUND PK, GOODMAN RH, HABENER JF: Intestinal glucagon mRNA identified by hybridization to a cloned islet cDNA encoding a precursor. Biochem. Biophys. Res. Commun. (1981) 100:1659–1666.
  • LUND PK, GOODMAN RH, MONTMINY MR, DEE PC, HABENER JF: Angler fish islet pre-proglucagon II. Nucleotide and corresponding amino acid sequence of the cDNA. I Biol. Chem. (1983) 258:3280–3284.
  • BELL GI, SANCHEZ-PESCADOR R, LAYBOURN PJ, NAJARIAN RC: Exon duplication and divergence in the human preproglucagon gene. Nature (1983) 304:368–371.
  • HOLST JJ, ORSKOV C, VAN NIELSEN 0, SCHWARTZ TW: Truncated glucagon-like peptide I, an35.insulin-releasing hormone from the distal gut. FEBS Lett. (1987) 211:169–173.
  • MOJSOV S, WEIR GC, HABENER JF: Insulinotropin: glucagon-like peptide-I(7-37) co-encoded in the glucagon36.gene is a potent stimulator of insulin release in the perfused rat pancreas. J. Clin. Invest. (1987) 79:616–619.
  • KREYMANN B, GHATEI MA, WILLIAMS G, BLOOM SR: Glucagon- like peptide-1 (7-36): a physiological37.incretin in marl. Lancet (1987)2:1300–1304.
  • DRUCKER DJ, MOJSOV S, HABENER JF: Cell-specific post-translational processing of preproglucagon expressed from a metallothionein-glucagon fusion gene. J. Biol. Chem. (1986) 261(20:9637–9643.
  • ORSKOV C, BERSANI M, JOHNSEN AH, HOJRUP P, HOLST JJ: Complete sequences of glucagon-like peptide-1 from human and pig small intestine. J. Biol. Chem. (1989) 264(22):12826–12829.
  • ORSKOV C, RABENHOJ L, WETTERGREN A, KOFOD H, HOLST JF: Tissue and plasma concentrations of amidated and glycine- extended glucagon-like peptide Tin humans. Diabetes (1994) 43.535–539.
  • HOLST JJ, ORSKOV C: Incretin hormones-an update. Land. Clin. Lab. Invest. (2001) 234:75–85.
  • TINA VILSBOLL T, KRARUP T, MADSBAD S, HOLST JJ: Both GLP-1 and GIP are insulinotropic at basal and postprandial glucose levels and contribute nearly equally to the incretin effect of a meal in healthy subjects. Regul Pep] (2003) 114(2-3):115–121.
  • LEWIS JT, DAYANANDAN B, HABENER JF, KIEFFER TJ: Glucose-dependent insulinotropic polypeptide confers early phase insulin release to oral glucose in rats: demonstration by a receptor antagonist. Endocrinology (2000) 141:3710-3716. TSENG CC, KIEFFER TJ, JARBOE LA, USDIN TB, WOLFE MM: Postprandial stimulation of insulin release by glucose-dependent insulinotropic polypeptide (GIP). Effect of a specific glucose-dependent insulinotropic polypeptide receptor antagonist in the rat. J. Clin. Invest. (1996) 98(10:2440-2445. KOLLIGS F, FEHMANN HC, GOKE R, GOKE B: Reduction of the incretin effect in rats by the glucagon-like peptide 1 receptor antagonist exendin (9–39) amide. Diabetes (1995) 44(1):16–19. EDWARDS CM, TODD JF, MAHMOUDI M et al: Glucagon-like peptide 1 has a physiological role in the control of postprandial glucose in humans: studies with the antagonist exendin 9–39. Diabetes (1999) 48(1):86–93. MIYAWAKI K, YAMADA Y, YANO H et al: Glucose intolerance caused by a defect in the entero-insular axis: a study in gastric inhibitory polypeptide receptor knockout mice. Proc. Nat. Acad. St". USA (1999) 96(26):14843–14847.
  • SCROCCHI LA, BROWN TJ, MacLUSKY N et al: Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide 1 receptor gene. Nat. Med. (1996) 2(10:1254–1258.
  • PERSSON K, GINGERICH RL, NAYAK S, WADA K, WADA E, AHREN B: Reduced GLP-1 and insulin responses and glucose intolerance after gastric glucose in GRP receptor-deleted mice. Am. J. Physiol. Endocrinol. Metab. (2000) 279(5):E956–E962.
  • POLAK JM, BLOOM SR, KUZIO M, BROWN JC, PEARSE AG: Cellular localization of gastric inhibitory polypeptide in the duodenum and jejunum. Gut (1973)14 (4) :284–8.
  • MORTENSEN K, CHRISTENSEN LL, HOLST JJ, ORSKOV C: GLP-1 and GIP are colocalized in a subset of endocrine cells in the small intestine. Regul. Pept. (2003) 114(2-3):189–196.
  • PEDERSON RA, SCHUBERT HE, BROWN JC: Gastric inhibitory polypeptide. Its physiologic release and insulinotropic action in the dog. Diabetes (1975) 24(12):1050–1056.
  • PEDERSON RA, SCHUBERT HE, BROWN JC: The insulinotropic action of gastric inhibitory polypeptide. Can. .1 Physiol Pharmacol. (1975) 53(2):217–223.
  • MEIER JJ, GALLWITZ B, SIEPMANN N et al: Gastric inhibitory polypeptide (GIP) dose-dependently stimulates glucagon secretion in healthy human subjects at euglycaemia. Diabetologia (2003) 46(6):798–801.
  • TRUMPER A, TRUMPER K, TRUSHEIM H, ARNOLD R, GOKE B, HORSCH D: Glucose-dependent insulinotropic polypeptide is a growth factor for 0-(INS-1) cells by pleiotropic signaling. Mol. Endocrinol (2001)15(9):1559–1570.
  • MEIER JJ, GOETZE 0, ANSTIPP J etal.: Gastric inhibitory polypeptide does not inhibit gastric emptying in humans. Am. J. Physiol. Endocrinol Metab. (2004) 286(4):E621–E625.
  • ROTHENBERG ME, EILERTSON CD, KLEIN K et al.: Processing of mouse proglucagon by recombinant prohormone convertase 1 and immunopurified prohormone convertase 2 in vitro. J. Biol. Chem. (1995) 270(17):10136–10146.
  • ROUILLE Y, KANTENGWA S, IRMINGER JC, HALBAN PA: Role of the prohormone convertase PC3 in the processing of proglucagon to glucagon-like peptide 1.1 Biol. Chem. (1997) 272(52):32810–32816.
  • UGLEHOLDT R, ZHU X, DEACON CE ORSKOV C, STEINER DF, HOLST JJ: Impaired intestinal proglucagon processing in mice lacking prohormone convertase 1. Endocrinology (2004) 145(3):1349–1355.
  • DEACON CF, JOHNSEN AH, HOLST JJ: Human colon produces fully processed glucagon-like peptide-1 (7-36) amide. FEBS Lett. (1995)372(2-3):269–272.
  • PRINTZ H, REITER S, SAMADI N et al.: GLP-1 release in man after lower large bowel resection or intrarectal glucose administration. Digestion (1998) 59(6):689–695.
  • EISSELE R, GOKE R, WILLEMER S et al: Glucagon-like peptide-1 cells in the gastrointestinal tract and pancreas of rat, pig and man. Eur. Clin. Invest. (1992) 22 (4) :283–291.
  • SUGIYAMA K, MANAKA H, KATO T, YAMATANI K, TOMINAGA M, SASAKI H: Stimulation of truncated glucagon-like peptide-1 release from the isolated perfused canine ileum by glucose absorption. Digestion (1994) 55(1):24–28.
  • AHREN B, LARSSON H, HOLST JJ: Reduced gastric inhibitory polypeptide but normal glucagon-like peptide 1 response to oral glucose in postmenopausal women with impaired glucose tolerance. Eur. Endocrinol (1997) 137(2):127–131.
  • ROBERGE JN, BRUBAKER PL: Secretion of proglucagon-derived peptides in response to intestinal luminal nutrients. Endocrinology (1991) 128(6):3169–3174.
  • BRYNES AE, FROST GS, EDWARDS CM, GHATEI MA, BLOOM SR: Plasma glucagon-like peptide-1 (7-36) amide (GLP-1) response to liquid phase, solid phase, and meals of differing lipid composition. Nutrition (1998) 14(5):433–436.
  • ANINI Y, BRUBAKER PL: Muscarinic receptors control glucagon-like peptide 1 secretion by human endocrine L cells. Endocrinology (2003) 144(7):3244–3250.
  • HERRMANN C, GOKE R, RICHTER G, FEHMANN HC, ARNOLD R, GOKE B: Glucagon-like peptide-1 and glucose-dependent insulin-releasing polypeptide plasma levels in response to nutrients. Digestion (1995) 56(2):117–126.
  • ANINI Y, HANSOTIA T, BRUBAKER PL: Muscarinic receptors control postprandial release of glucagon-like peptide-1: in vivo and in vitro studies in rats. Endocrinology (2002) 143(6)2420–2426.
  • HANSEN L, LAMPERT S, MINEO H, HOLST JJ: Neural regulation of glucagon-like peptide-1 secretion in pigs. Am. J. Physiol Endocrinol Metab. (2004) 287(5):E939–E947.
  • •Thorough study about the neural regulation of GLP-1 secretion.
  • HERRMANN-RINKE C, VOGE A, HESS M, GOKE B: Regulation of glucagon-like peptide-1 secretion from rat ileum by neurotransmitters and peptides. Endocrinol (1995) 147(1):25–31.
  • DAMHOLT AB, BUCHAN AM, KOFOD H: Glucagon-like-peptide-1 secretion from canine L-cells is increased by glucose-dependent-insulinotropic peptide but unaffected by glucose. Endocrinology (1998) 139(4):2085–2091.
  • DEACON CF, WAMBERG S, BIE P, HUGHES TE, HOLST JJ: Preservation of active incretin hormones by inhibition of dipeptidyl peptidase IV suppresses meal-induced incretin secretion in dogs. Endocrinol (2002) 172(2):355–362.
  • ROBERGE JN, GRONAU KA, BRUBAKER PL: Gastrin-releasing peptide is a novel mediator of proximal nutrient-induced proglucagon-derived peptide secretion from the distal gut. Endocrinology (1996) 137(6):2383–2388.
  • AHREN B, HUGHES TE: Inhibition of DPP-4 augments insulin secretion in response to exogenously administered GLP-1, GIP, PACAP and GRP in mice. Endocrinology (2004) 16:
  • HANSEN L, HOLST JJ: The effects of duodenal peptides on glucagon-like peptide-1 secretion from the ileum. A duodeno-ileal loop? Reg& Pept. (2002) 110(1):39–45.
  • BALKS HJ, HOLST JJ, VON ZUR MUHLEN A, BRABANT G: Rapid oscillations in plasma glucagon-like peptide-1 (GLP-1) in humans: cholinergic control of GLP-1 secretion via muscarinic receptors. J Gila Endocrinol Metal). (1997) 82(3):786–790.
  • REIMANN F, GRIBBLE FM: Glucose-sensing in glucagon-like peptide-1-secreting cells. Diabetes (2002) 51:2757–2763.
  • DACHICOURT N, SERRADAS P, BAILBE D, KERGOAT M, DOARE L, PORTHA B: Glucagon-like peptide-1 (7-36)-amide confers glucose sensitivity to previously glucose-incompetent 0-cells in diabetic rats: in vivo and in vitro studies. I Endocrinol (1997) 155(2):369–376.
  • BYRNE MM, GLIEM K, WANK U et al.: Glucagon-like peptide 1 improves the ability of the 0-cell to sense and respond to glucose in subjects with impaired glucose tolerance. Diabetes (1998) 47(8):1259–1265.
  • HELLER RS, KIEFFER TJ, HABENER JF: Insulinotropic glucagon-like peptide I receptor expression in glucagon-producing a-cells of the rat endocrine pancreas. Diabetes (1997) 46(5):785–791.
  • FEHMANN HC, HABENER JF. Functional receptors for the insulinotropic hormone glucagon-like peptide-I (7-37) on a somatostatin secreting cell line. FEBS Lett. (1991) 279(2):335–340.
  • HOLZ GG 4TH, KUHTREIBER WM, HABENER JF: Pancreatic 13-cells are rendered glucose-competent by the insulinotropic hormone glucagon-like peptide-1(7-37). Nature (1993) 361(6410):362–365.
  • KANG G, HOLZ GG: Amplification of exocytosis by Ca2'-induced Ca2' release in INS-1 pancreatic 13 cells. .1 Physiol (2003) 546\(Part 1):175–189.
  • BUTEAU J, RODUIT R, SUSINI S, PRENTKI M: Glucagon-like peptide-1 promotes DNA synthesis, activates phosphatidylinositol 3-kinase and increases transcription factor pancreatic and duodenal homeobox gene 1 (PDX-1) DNA binding activity in 13 (INS-1)-cells. Diabetologia (1999) 42(7):856–864.
  • FEHMANN HC, HABENER JF: Insulinotropic hormone glucagon-like peptide-I(7-37) stimulation of proinsulin gene expression and proinsulin biosynthesis in insulinoma-13 TC-1 cells. Endocrinology (1992) 130(1):159–166.
  • SEUFERT J, KIEFFER TJ, LEECH C et al.: Leptin suppression of insulin secretion and gene expression in human pancreatic islets: implications for the development of adipogenic diabetes mellitus. J. Clin. Endocrinol Metab. (1999) 84(2):670–676.
  • SUSINI S, ROCHE E, PRENTKI M, SCHLEGEL W: Glucose and glucoincretin peptides synergize to induce c-fos, cjun, junB, zif-268, and nur-77gene expression in pancreatic 13(INS-1) cells. FASEB (1998) 12(12):1173–1182.
  • BRAHAM EJ, LEECH CA, LIN JC, ZULEWSKI H, HABENER JF: Insulinotropic hormone glucagon-like peptide-1 differentiation of human pancreatic islet-derived progenitor cells into insulin-producing cells. Endocrinology (2002) 143(8):3152–3161.
  • BULOTTA A, HUT H, ANASTASI E et al.: Cultured pancreatic ductal cells undergo cell cycle re-distribution and 0-cell-like differentiation in response to glucagon-like peptide-1.j. Mol Endocrinol (2002) 29(3):347–360.
  • LI Y, HANSOTIA T, YUSTA B, RIS F, HALBAN PA, DRUCKER DJ: Glucagon- like peptide-1 receptor signaling modulates 13 cell apoptosis. J. Biol. Chem. (2003) 278(1):471–478.
  • HUT H, NOURPARVAR A, ZHAO X, PERFETTI R: Glucagon-like peptide-1 inhibits apoptosis of insulin-secreting cells via a cyclic 5'-adenosine monophosphate-dependent protein kinase A- and a phosphatidylinositol 3-kinase-dependent pathway. Endocrinology (2003) 144(4):1444–1455.
  • FARILLA L, BULOTTA A, HIRSHBERG B et al: Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets. Endocrinology (2003) 144(12):5149–5158.
  • ORSKOV C, HOLST JJ, NIELSEN OV: Effect of truncated glucagon-like peptide-1 [proglucagon-(78-107) amide] on endocrine secretion from pig pancreas, antrum, and nonantral stomach. Endocrinology (1988) 123(4):2009–2013.
  • GUTNIAK M, ORSKOV C, HOLST JJ, AHREN B, EFENDIC S: Antidiabetogenic effect of glucagon-like peptide-1 (7-36)amide in normal subjects and patients with diabetes mellitus. N Engl. J. Med. (1992) 326(20):1316–1322.
  • •First study that showed the insulinotropic effects of GLP-1 in Type 2 diabetes.
  • MATSUYAMA T, KOMATSU R, NAMBA M, WATANABE N, ITOH H, TARUI S: Glucagon-like peptide-1 (7-36 amide): a potent glucagonostatic and insulinotropic hormone. Diabetes Res. Clia Pract. (1988) 5(4):281–284.
  • CREUTZFELDT WO, KLEINE N, WILLMS B, ORSKOV C, HOLST JJ, NAUCK MA: Glucagonostatic actions and reduction of fasting hyperglycemia by exogenous glucagon-like peptide 1(7-36) amide in Type I diabetic patients. Diabetes Care (1996) 19(6):580–586.
  • STARK A, MENTLEIN R: Somatostatin inhibits glucagon-like peptide-1-induced insulin secretion and proliferation of RINm5F insulinoma cells. Regul Pept. (2002) 108(2-3):97–102.
  • NAUCK MA, HEIMESAAT MM, BEHLE K et al.: Effects of glucagon-like peptide 1 on counterregulatory hormone responses, cognitive functions, and insulin secretion during hyperinsulinemic, stepped hypoglycemic clamp experiments in healthy volunteers. J. Clin. Endocrinol Metab. (2002) 87(3):1239–1246.
  • SPIELER RC, TROTMAN IF, ADRIAN TE, BLOOM SR, MISIEWICZ JJ, SILK DB: Further characterisation of the 'ileal brake' reflex in man-effect of ileal infusion of partial digests of fat, protein, and starch on jejunal motility and release of neurotensin, enteroglucagon, and peptide YY. Gut (1988) 29(8):1042–1051.
  • MILLER LJ, MALAGELADA JR, TAYLOR WF, GO VL: Intestinal control of human postprandial gastric function: the role of components of jejunoileal chyme in regulating gastric secretion and gastric emptying. Gastroenterology (1981) 80(4):763–769.
  • WETTERGREN A, SCHJOLDAGER B, MORTENSEN PE, MYHRE J, CHRISTIANSEN J, HOLST JJ: Truncated GLP-1 (proglucagon 78-107-amide) inhibits gastric and pancreatic functions in man. Dig. Dis. Sri. (1993) 38(4):665–673.
  • SCHIRRA J, KUWERT P, WANK U et al: Differential effects of subcutaneous GLP-1 on gastric emptying, antroduodenal motility, and pancreatic function in men. Proc. Assoc. Am. Physicians. (1997) 109(1):84–97.
  • SCHIRRA J, LEICHT P, HILDEBRAND P et al: Mechanisms of the antidiabetic action of subcutaneous glucagon-like peptide-1(7-36)amide in non-insulin dependent diabetes mellitus. Endocrinol. (1998) 156(1):177–186.
  • O'DONOVAN DG, DORAN S, FEINLE-BISSET C et al: Effect of variations in small intestinal glucose delivery on plasma glucose, insulin, and incretin hormones in healthy subjects and type 2 diabetes. J. Clin. Endocrinol Metab. (2004) 89(7):3431–3435.
  • NAUCK MA, NIEDEREICHHOLZ U, ETTLER R etal.: Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. Am. J. Physiol (1997) 273(5 Part 1):E981–E988.
  • WETTERGREN A, WOJDEMANN M, HOLST JJ: Glucagon-like peptide-1 inhibits gastropancreatic function by inhibiting central parasympathetic outflow. Am. J. Physic] (1998) 275(5 Part 1):G984–G992.
  • DELGADO-AROS S, KIM DY, BURTON D etal.: Effect of GLP-1 on gastric volume, emptying, maximum volume ingested, and postprandial symptoms in humans. Am. I Physic] Gastrointest Liver Physiol (2002) 282(3):G424–G431.
  • FLINT A, RABEN A, ASTRUP A, HOLST JJ: Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J. Clip. Invest. (1998) 101(3):515–520.
  • •First study showing the effects of GLP-1 on food intake.
  • NASLUND E, KING N, MANSTEN S et al: Prandial subcutaneous injections of glucagon-like peptide-1 cause weight loss in obese human subjects. BE J. Nutr. (2004) 91(3):439–446.
  • GUTZWILLER JP, DREWE J, GOKE B et al.: Glucagon-like peptide-1 promotes satiety and reduces food intake in patients with diabetes mellitus type 2. Am. J. Physic] (1999) 276(5 Part 2):R1541–R1544.
  • TANG-CHRISTENSEN M, LARSEN PJ, GOKE R et al: Central administration of GLP-1-(7–36) amide inhibits food and water intake in rats. Am .1 Physiol (1996) 271(4 Part 2):R848–R856.
  • TURTON MD, O'SHEA D, GUNN I et al: A role for glucagon-like peptide-1 in the central regulation of feeding. Nature (1996) 379(6560):69–72.
  • SHUGHRUE PJ, LANE MV, MERCHENTHALER I: Glucagon-like peptide-1 receptor (GLP1-R) mRNA in the rat hypothalamus. Endocrinology (1996) 137(11):5159–5162.
  • UTTENTHAL LO, TOLEDANO A, BLAZQUEZ E: Autoradiographic localization of receptors for glucagon-like peptide-1 (7-36) amide in rat brain. Neuropeptides (1992) 21(3):143–146.
  • VRANG N, PHIFER CB, CORKERN MM, BERTHOUD HR: Gastric distension induces c-fas in medullary GLP-1/2-containing neurons. Am. I Physic] Regul Integr. Comp. Physiol (2003) 285(2):R470–R478.
  • LARSEN PJ, TANG-CHRISTENSEN M, HOLST JJ, ORSKOV C: Distribution of glucagon-like peptide-1 and other preproglucagon-derived peptides in the rat hypothalamus and brainstem. Neuroscience (1997) 77(1):257–270.
  • ORSKOV C, POULSEN SS, MOLLER M, HOLST JJ: Glucagon-like peptide I receptors in the subfornical organ and the area postrema are accessible to circulating glucagon-like peptide I. Diabetes (1996) 45(6):832–835.
  • VILLANUEVA-PENACARRILLO ML, ALCANTARA Al, CLEMENTE F, DELGADO E, VALVERDE I: Potent glycogenic effect of GLP-1(7-36)amide in rat skeletal muscle. Diabetologia (1994) 37(11):1163–1166.
  • MORALES M, LOPEZ-DELGADO MI, ALCANTARA A et al: Preserved GLP-I effects on glycogen synthase a activity and glucose metabolism in isolated hepatocytes and skeletal muscle from diabetic rats. Diabetes (1997) 46(8):1264–1269.
  • MERIDA E, DELGADO E, MOLINA LM, VILLANUEVA-PENACARRILLO ML, VALVERDE I: Presence of glucagon and glucagon-like peptide-147-36)amide receptors in solubilized membranes of human adipose tissue. J. Chit. Endocrinol. Metab. (1993) 77(6):1654–1657.
  • FURNSINN C, EBNER K, WALDHAUSL W: Failure of GLP-1(7-36)amide to affect glycogenesis in rat skeletal muscle. Diabetologia (1995) 38(7):864–867.
  • BULLOCK BP, HELLER RS, HABENER JF: Tissue distribution of messenger ribonucleic acid encoding the rat glucagon-like peptide-1 receptor. Endocrinology (1996) 137(7):2968–2978.
  • IONUT V, HUCKING K, LIBERTY I, BERGMAN R: Portal GLP-1 reduces peripheral glycemia independent of insulin. Program and abstracts of the 64th Scientific Session of the American Diabetes Association. Florida, USA (June 2004) (Abstract 1412–P).
  • LARSSON H, HOLST JJ, AHREN B: Glucagon-like peptide-1 reduces hepatic glucose production indirectly through insulin and glucagon in humans. Acta Physiol. Scand. (1997) 160(4):413–422.
  • DARDEVET D, MOORE MC, NEAL D, DICOSTANZO CA, SNEAD W, CHERRINGTON AD: Insulin-independent effects of GLP-1 on canine liver glucose metabolism: duration of infusion and involvement of hepatoportal region. Am. I Physiol. Endocrinol Metab. (2004) 287(1):E75–E81.
  • WEI Y, MOJSOV S: Tissue-specific expression of the human receptor for glucagon-like peptide-I: brain, heart and pancreatic forms have the same deduced amino acid sequences. FEBS Lett. (1995) 358(3):219–224.
  • BARRAGAN JM, RODRIGUEZ RE, BLAZQUEZ E: Changes in arterial blood pressure and heart rate induced by glucagon-like peptide 1 (7 36) amide in rats. Am. Physic] (1994) 266(3 Part 1):E459–E466.
  • GROS R, YOU X, BAGGIO LL et al.: Cardiac function in mice lacking the glucagon-like peptide-1 receptor. Endocrinology (2003) 144(6):2242–2252.
  • KANSE SM, KREYMANN B, GHATEI MA, BLOOM SR: Identification and characterization of glucagon-like peptide-1 7-36 amide-binding sites in the rat brain and lung. FEBS Lett. (1988) 241(1-2):209–212.
  • RICHTER G, GOKE R, GOKE B, SCHMIDT H, ARNOLD R: Characterization of glucagon-like peptide-I(7-36)amide receptors of rat lung membranes by covalent cross-linking. FEBS Lett. (1991) 280(2):247–250.
  • DEACON CF, NAUCK MA, MEIER J, HUCKING K, HOLST JJ: Degradation of endogenous and exogenous gastric inhibitory polypeptide in healthy and in type 2 diabetic subjects as revealed using a new assay for the intact peptide. .1 Chit. Endocrinol. Metab. (2000) 85(10):3575–3581.
  • VILSBOLL T, AGERSO H, KRARUP T, HOLST JJ: Similar elimination rates of glucagon-like peptide-1 in obese type 2 diabetic patients and healthy subjects. Clin. Endocrinol. Metab. (2003) 88(1):220–224.
  • KIEFFER TJ, McINTOSH CH, PEDERSON RA: Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology (1995) 136(8):3585–3596.
  • DEACON CE JOHNSEN AH, HOLST JJ: Degradation of glucagon-like peptide-1 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo. J Gila Endocrinol. Metab. (1995) 80(3):952–957.
  • MENTLEIN R, GALLWITZ B, SCHMIDT WE: Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1 (7-36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur. Biochem. (1993) 214(3):829–835.
  • HUPE-SODMANN K, GOKE R, GOKE B et al: Endoproteolysis of glucagon-like peptide (GLP)-1 (7-36) amide by ectopeptidases in RINm5F cells. Peptides (1997) 18(5):625–632.
  • GAULT VA, PARKER JC, HARRIOTT P, FLATT PR, OHARTE FP: Evidence that the major degradation product of glucose-dependent insulinotropic polypeptide, GIP(3-42), is a GIP receptor antagonist in vivo. J. Endocrinol. (2002) 175(2):525–533.
  • KNUDSEN LB, PRIDAL L: Glucagon-like peptide-146-36) amide is a major metabolite of glucagon-like peptide-1-(7-36) amide after in vivo administration to dogs, and it acts as an antagonist on the pancreatic receptor. Eur. Pharmaco] (1996) 318(2-3):429–435.
  • ROLIN B, DEACON CF, CARR RD, AHREN B: The major glucagon-like peptide-1 metabolite, GLP 1 (9-36) amide, does not affect glucose or insulin levels in mice. Eur. Pharmacol. (2004) 494(2-3):283–288.
  • VAHL TP, PATY BW, FULLER BD, PRIGEON RL, D'ALESSIO DA: Effects of GLP 1 (7 36)NH2, GLP 1 (7 37), and GLP-1- (9-36)NH2 on intravenous glucose tolerance and glucose-induced insulin secretion in healthy humans. J Chit. Endocrinol. Metab. (2003) 88(4):1772–1779.
  • RUIZ-GRANDE C, PINTADO J, ALARCON C, CASTILLA C, VALVERDE I, LOPEZ-NOVOA JM: Renal catabolism of human glucagon-like peptides 1 and 2. Can. J. Physiol. Pharmaco] (1990) 68(12):1568–1573.
  • MEIER JJ, NAUCK MA, KRANZ D et al: Secretion, degradation, and elimination of glucagon-like peptide 1 and gastric inhibitory polypeptide in patients with chronic renal insufficiency and healthy control subjects. Diabetes (2004) 53(3):654–662.
  • MARGUET D, BAGGIO L, KOBAYASHI T et a]: Enhanced insulin secretion and improved glucose tolerance in mice lacking CD26. Proc. Nat. Acad. ScL USA (2000) 97(12):6874–6879.
  • CONARELLO SL, LI Z, RONAN J et al: Mice lacking dipeptidyl peptidase IV are protected against obesity and insulin resistance. Proc. Nat. Acad. Sci. USA (2003) 100(11):6825–6830.
  • NAGAKURA T, YASUDA N, YAMAZAKI K et al.: Improved glucose tolerance via enhanced glucose-dependent insulin secretion in dipeptidyl peptidase IV-deficient Fischer rats. Biochem. Biophys. Res. Commun. (2001) 284(2):501–506.
  • ULMER AJ, MATTERN T, FELLER AC, HEYMANN E, FLAD HD: CD26 antigen is a surface dipeptidyl peptidase IV (DPP-IV) as characterized by monoclonal antibodies clone TII-19-4-7 and 4EL1 C7. Scand. Immunol (1990) 31(0429–45.
  • FUKASAWA KM, FUKASAWA K, HIRAOKA BY, HARADA M. Comparison of dipeptidyl peptidase IV prepared from pig liver and kidney. Biochim. Biophys. Acta (1981) 657(1):179–189.
  • DEACON CF, PRIDAL L, KLARSKOV L, OLESEN M, HOLST JJ: Glucagon-like peptide 1 undergoes differential tissue-specific metabolism in the anesthetized pig. Am. J. Physiol (1996) 271(3 Part 1):E458–E464.
  • HANSEN L, DEACON CF, ORSKOV C, HOLST JJ: Glucagon-like peptide-1-(7-36)amide is transformed to glucagon-like peptide-1-(9-36)amide by dipeptidyl peptidase IV in the capillaries supplying the L cells of the porcine intestine. Endocrinology (1999) 140(11):5356–5363.
  • •Excellent study of GLP-1 degradation by local DPP-IV.
  • DUKE-COHAN JS, MORIMOTO C, ROCKER JA, SCHLOSSMAN SF: A novel form of dipeptidylpeptidase IV found in human serum. Isolation, characterization, and comparison with T lymphocyte membrane dipeptidylpeptidase IV (CD26). ". Biol. Chem. (1995) 270(23):14107–14114.
  • PAULY RP, ROSCHE F, WERMANN M, McINTOSH CH, PEDERSON RA, DEMUTH HU: Investigation of glucose-dependent insulinotropic polypeptide-(1-42) and glucagon-like peptide 1 -(7-36) degradation in vitro by dipeptidyl peptidase IV using matrix-assisted laser desorption/ ionization-time of flight mass spectrometry. A novel kinetic approach. J. Biol. Chem. (1996) 271(38):23222–23229.
  • LUDWIGA, SCHIEMANN F, MENTLEIN R, LINDNER B, BRANDT E: Dipeptidyl peptidase IV (CD26) on T cells cleaves the CXC chemokine CXCL11 (I-TAC) and abolishes the stimulating but not the desensitizing potential of the chemokine. Leukoc. Biol. (2002) 72(1):183–191.
  • MENTLEIN R, DAHMS P, GRANDT D, KRUGER R: Proteolytic processing of neuropeptide Y and peptide YY by dipeptidyl peptidase IV. Regul Pept. (1993) 49(2):133–144.
  • ZHU L, TAMVAKOPOULOS C, XIE D et al.: The role of dipeptidyl peptidase IV in the cleavage of glucagon family peptides: in vivo metabolism of pituitary adenylate cyclase activating polypeptide- (1-38). J. Biol. Chem. (2003) 278(25):22418–22423.
  • BEDNARCZYK JL, CARROLL SM, MARIN C, McINTYRE BW: Triggering of the proteinase dipeptidyl peptidase IV (CD26) amplifies human T lymphocyte proliferation.Biochem. (1991)46(3):206–218.
  • GORRELL MD, WICKSON J, McCAUGHAN GW: Expression of the rat CD26 antigen (dipeptidyl peptidase IV) on subpopulations of rat lymphocytes. Cell. Immunol (1991) 134(1):205–215.
  • SCHARPE S, DE MEESTER I: Purified and cell-bound CD26: enzymatic inhibition, antibody binding profile, and expression on T cells in relation to other surface markers. Verh. K. Acad. Ceneeskd Belg. (1994) 56(6):537–559.
  • MORIMOTO C, SCHLOSSMAN SF: The structure and function of CD26 in the T-cell immune response. Immunol Rev (1998) 161:55–70.
  • NAUCK M, STOCKMANN F, EBERT R, CREUTZFELDT W: Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia (1986) 29:46–52.
  • •Quantified incretin contribution to C-peptide response in Type 2 diabetes.
  • VILSBOLL T, KRARUP T, DEACON CF, MADSBAD S, HOLST JJ: Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes (2001) 50(3):609–613.
  • •Shows that in Type 2 diabetes, GIP secretion in response to a meal is preserved whereas GLP-1 secretion is not.
  • ALAM MJ, KERR JI, CORMICAN K, BUCHANAN KD: Gastric inhibitory polypeptide (GIP) response in diabetes using a highly specific antiserum. Diabet. Med. (1992) 9(6):542–545.
  • ALMIND K, AMBYE L, URHAMMER SA et al.: Discovery of amino acid variants in the human glucose-dependent insulinotropic polypeptide (GIP) receptor: the impact on the pancreatic 13 cell responses and functional expression studies in Chinese hamster fibroblast cells. Diabetologia (1998) 41(101194–1198.
  • KUBOTA A, YAMADA Y, HAYAMI T et al: Identification of two missense mutations in the GIP receptor gene: a functional study and association analysis with NIDDM: no evidence of association with Japanese NIDDM subjects. Diabetes (1996) 45(12):1701–1705.
  • MEIER JJ, GALLWITZ B, KASK B et al: Stimulation of insulin secretion by intravenous bolus injection and continuous infusion of gastric inhibitory polypeptide in patients with Type 2 diabetes and healthy control subjects. Diabetes (2004) 53\(Suppl. 3):S220–S224.
  • NAUCK MA, HEIMESAAT MM, ORSKOV C, HOLST JJ, EBERT R, CREUTZFELDT W: Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J. Clin. Invest. (1993) 91(1):301–307.
  • ELAHI D, McALOON-DYKE M, FUKAGAWA NK et al.: The insulinotropic actions of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (7-37) in normal and diabetic subjects. Reg& Pept. (1994) 51(1):63–74.
  • VILSBOLL T, KNOP FK, KRARUP T et al.: The pathophysiology of diabetes involves a defective amplification of the late-phase insulin response to glucose by glucose-dependent insulinotropic polypeptide-regardless of etiology and phenotype. J. Clin. Endocrinol Metab. (2003) 88(10):4897–4903.
  • LUGARI R, DEI CAS A, UGOLOTTI D et al: Evidence for early impairment of glucagon-like peptide 1-induced insulin secretion in human type 2 (non insulin-dependent) diabetes. Horm. Metab. Res. (2002) 34(3):150–154.
  • TOFT-NIELSEN MB, DAMHOLT MB, MADSBAD S et al: Determinants of the impaired secretion of glucagon-like peptide-1 in type 2 diabetic patients. Clin. Endocrinol Metab. (2001) 86(8):3717–3723.
  • NYHOLM B, WALKER M, GRAVHOLT CH et al: Twenty-four-hour insulin secretion rates, circulating concentrations of fuel substrates and gut incretin hormones in healthy offspring of Type II (non-insulin-dependent) diabetic parents: evidence of several aberrations. Diabetologia (1999) 42(11):1314–1323.
  • VAAG AA, HOLST JJ, VOLUND A, BECK-NIELSEN HB: Gut incretin hormones in identical twins discordant for non-insulin-dependent diabetes mellitus (NIDDM)-evidence for decreased glucagon-like peptide 1 secretion during oral glucose ingestion in NIDDM twins. Eur. Endocrinol (1996) 135(4):425–432.
  • MEIER JJ, HUCKING K, HOLST JJ, DEACON CF, SCHMIEGEL WH, NAUCK MA: Reduced insulinotropic effect of gastric inhibitory polypeptide in first-degree relatives of patients with type 2 diabetes. Diabetes (2001) 50(11):2497–2504.
  • NAUCK MA, EL-OUAGHLIDI A, GABRYS B et al.: Secretion of incretin hormones (GIP and GLP-1) and incretin effect after oral glucose in first-degree relatives of patients with Type 2 diabetes. Reg& Pept. (2004) 122(3):209–217.
  • LEGAKIS IN, TZIORAS C, PHENEKOS C: Decreased glucagon-like peptide 1 fasting levels in type 2 diabetes. Diabetes Care (2003) 26(1):252.
  • SHEN HQ, ROTH MD, PETERSON RG: The effect of glucose and glucagon-like peptide-1 stimulation on insulin release in the perfused pancreas in a non-insulin-dependent diabetes mellitus animal model. Metabolism (1998) 47(9):1042–1047.
  • JIA X, ELLIOTT R, KWOK YN, PEDERSON RA, McINTOSH CH: Altered glucose dependence of glucagon-like peptide I(7-36)-induced insulin secretion from the Zucker (fa/fa) rat pancreas. Diabetes (1995) 44(5):495–500.
  • KJEMS LL, HOLST JJ, VOLUND A, MADSBAD S: The influence of GLP-1 on glucose-stimulated insulin secretion: effects on 13-cell sensitivity in type 2 and nondiabetic subjects. Diabetes (2003) 52(2):380–386.
  • MEIER JJ, GALLWITZ B, SALMEN S, GOETZE 0, HOLST JJ, SCHMIDT WE, NAUCK MA: Normalization of glucose concentrations and deceleration of gastric emptying after solid meals during intravenous glucagon-like peptide 1 in patients with Type 2 diabetes. J Clin. Endocrinol Metab. (2003) 88(6):2719–2725.
  • RACHMAN J, BARROW BA, LEVY JC, TURNER RC: Near-normalisation of diurnal glucose concentrations by continuous administration of glucagon-like peptide-1 (GLP-1) in subjects with NIDDM. Diabetologia (1997) 40(2):205–211.
  • DEACON CF, NAUCK MA, TOFT-NIELSEN M, PRIDAL L, WILLMS B, HOLST JJ: Both subcutaneously and intravenously administered glucagon-like peptide I are rapidly degraded from the NH2-terminus in type II diabetic patients and in healthy subjects. Diabetes (1995) 44(9):1126–1131.
  • NAUCK MA, WOLLSCHLAGER D, WERNER J et al: Effects of subcutaneous glucagon-like peptide 1 (GLP-1[7-36 amide]) in patients with NIDDM. Diabetologia (1996) 39(12):1546–1553.
  • TODD JF, WILDING JP, EDWARDS CM, KHAN FA, GHATEI MA, BLOOM SR: Glucagon-like peptide-1 (GLP-1): a trial of treatment in non-insulin-dependent diabetes mellitus. Eur. Clin. Invest. (1997) 27(6):533–536.
  • TOFT-NIELSEN MB, MADSBAD S, HOLST JJ. Continuous subcutaneous infusion of glucagon-like peptide 1 lowers plasma glucose and reduces appetite in Type 2 diabetic patients. Diabetes Care (1999) 22(7):1137–1143.
  • ZANDER M, MADSBAD S, MADSEN JL, HOLST JJ: Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and 13-cell function in Type 2 diabetes: a parallel-group study. Lancet (2002) 359(9309):824=h830.
  • •Shows the antidiabetogenic effects of continuous GLP-1 infusion over 6 weeks.
  • JUNTTI-BERGGREN L, PIGON J, KARPE F et al: The antidiabetogenic effect of GLP-1 is maintained during a 7-day treatment period and improves diabetic dyslipoproteinemia in NIDDM patients. Diabetes Care (1996) 19(11):1200–1206.
  • LARSEN J, HYLLEBERG B, NG K, DAMSBO P: Glucagon-like peptide-1 infusion must be maintained for 24 h/day to obtain acceptable glycemia in type 2 diabetic patients who are poorly controlled on sulphonylurea treatment. Diabetes Care (2001) 24(8):1416–1421.
  • MENEILLY GS, GREIG N, TILDESLEY H, HABENER JF, EGAN JM, ELAHI D: Effects of 3 months of continuous subcutaneous administration of glucagon-like peptide 1 in elderly patients with Type 2 diabetes. Diabetes Care (2003) 26(10):2835–2841.
  • ZANDER M, CHRISTIANSEN A, MADSBAD S, HOLST JJ: Additive effects of glucagon-like peptide 1 and pioglitazone in patients with Type 2 diabetes. Diabetes Care (2004) 27(8):1910–1914.
  • DEACON CF, KNUDSEN LB, MADSEN K, WIBERG FC, JACOBSEN 0, HOLST JJ: Dipeptidyl peptidase IV resistant analogues of glucagon-like peptide-1 which have extended metabolic stability and improved biological activity. Diabetologia (1998) 41(3):271–278.
  • ENG J, KLEINMAN WA, SINGH L, SINGH G, RAUFMAN JP: Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas. J. Biol. Chem. (1992) 267(11):7402–7405.
  • •First report of exenatide isolation from Heloderma suspectum venom.
  • THORENS B, PORRET A, BUHLER L, DENG SP, MOREL P, WIDMANN C. Cloning and functional expression of the human islet GLP-1 receptor. Demonstration that exendin-4 is an agonist and exendin-(9–39) an antagonist of the receptor. Diabetes (1993) 42(10:1678–1682.
  • SCHEPP W, SCHMIDTLER J, RIEDEL T et al: Exendin-4 and exendin-(9-39)NH2: agonist and antagonist, respectively, at the rat parietal cell receptor for glucagon-like peptide 1 (7 36)NH2. Eur. Pharmacol (1994) 269(2):183–191.
  • GOKE R, FEHMANN HC, LINN T et al.: Exendin-4 is a high potency agonist and truncated exendin-(9–39)-amide an antagonist at the glucagon-like peptide 1-(7–36)-amide receptor of insulin-secreting 3-cells. .1 Biol. Chem. (1993) 268(26):19650–19655.
  • EDWARDS CM, STANLEY SA, DAVIS R et al.: Exendin-4 reduces fasting and postprandial glucose and decreases energy intake in healthy volunteers. Am. Physiol Endocrinol Metab. (2001) 281(1):E155–E161.
  • THUM A, HUPE-SODMANN K, GOKE R, VOIGT K, GOKE B, McGREGOR GP: Endoproteolysis by isolated membrane peptidases reveal metabolic stability of glucagon-like apeptide-1 analogs, exendins-3 and -4. Exp Clic'. Endocrinol Diabetes (2002) 110(3):113–118.
  • HUPE-SODMANN K, McGREGOR GP, BRIDENBAUGH R et al: Characterisation of the processing by human neutral endopeptidase 24.11 of GLP-1(7–36) amide and comparison of the substrate specificity of the enzyme for other glucagon-like peptides. Regul Pept. (1995) 58(3):149–156.
  • PARKES D, JODKA C, SMITH PAM et al.: Pharmacokinetic actions of exendin-4 in the rat: Comparison with glucagon-like peptide-1. Drug Dedve. Res. (2001) 53:260–267.
  • GREIG NH, HOLLOWAY HW, DE ORE KA et al: Once daily injection of exendin-4 to diabetic mice achieves long-term beneficial effects on blood glucose concentrations. Diabetologia (1999) 42(1):45–50.
  • PARKES DG, PITTNER R, JODKA C, SMITH P, YOUNG A: Insulinotropic actions of exendin-4 and glucagon-like peptide-1 in vivo and in vitro. Metabolism (2001) 50(5):583–589.
  • XU G, STOFFERS DA, HABENER JF, BONNER-WEIR S: Exendin-4 stimulates both 0-cell replication and neogenesis, resulting in increased 0-cell mass and improved glucose tolerance in diabetic rats. Diabetes (1999) 48(12):2270–2276.
  • HILES R, CARPENTER T, SEROTA D et al.: Exenatide does not cause pancreatic tumors or malignancies in rats and mice following a 2 year period of exposure. 64th Scientific Session of the American Diabetes Association. Florida, USA (2004) (Abstract 1585–P).
  • SILVESTRE RA, RODRIGUEZ-GALLARDO J, EGIDO EM, MARCO J: Interrelationship among insulin, glucagon and somatostatin secretory responses to exendin-4 in the perfused rat pancreas. Eur. Pharmacol (2003) 469(1-3):195–200.
  • SZAYNA M, DOYLE ME, BETKEY JA et al.: Exendin-4 decelerates food intake, weight gain, and fat deposition in Zucker rats. Endocrinology (2000) 141(6):1936–1941.
  • GEDULIN B, LAWLER R, JODKA C, YOUNG A: Amylin inhibits pentagastrin-stimulated gastric acid secretion: comparison with glucagon-like peptide-1 and exendin-4. Diabetes 46(1997) (Suppl. 1):188A.
  • BAGGIO LL, KIM JG, DRUCKER DJ: Chronic exposure to GLP-1R agonists promotes homologous GLP-1 receptor desensitization in vitro but does not attenuate GLP-1R-dependent glucose homeostasis in vivo. Diabetes (2004) 53\(Suppl. 3):5205–5214.
  • KOLTERMAN OG, BUSE JB, FINEMAN MS et al.: Synthetic exendin-4 (exenatide) significantly reduces postprandial and fasting plasma glucose in subjects with type 2 diabetes. J Endocrinol Metab. (2003) 88(7):3082–3089.
  • DEGN KB, BROCK B, JUHL CB et al: Effect of intravenous infusion of exenatide (synthetic exendin-4) on glucose-dependent insulin secretion and counterregulation during hypoglycemia. Diabetes (2004) 53(9):2397–2403.
  • FEHSE FC, TRAUTMANN ME, HOLST JJ et al.: Effects of Exenatide on First and Second Phase Insulin Secretion in Response to Intravenous Glucose in Subjects with Type 2 Diabetes. Program and abstracts of the 64th Scientific Session of the American Diabetes Association. Florida, USA (June 2004) (Abstract 351-0R).
  • CALARA F, TAYLOR K, HAN J et al.: Effect of Injection Site on Relative Bioavailability of Exenatide (Synthetic Exendin-4). Program and abstracts of the 64th Scientific Session of the American Diabetes Association. Florida, USA (June 2004) (Abstract 508–P).
  • POON T, TAYLOR K, NIELSEN L et al.: Exenatide (synthetic exendin-4) continuously improves glucose control over three months in patients with type 2 diabetes. Program and abstracts of the 63rd Scientific Session of the American Diabetes Association. Louisiana, USA (June 2003) (Abstract 560–P).
  • FINEMAN MS, BICSAK TA, SHEN LZ et al: Effect on glycemic control of exenatide (synthetic exendin-4) additive to existing metformin anclior sulfonylurea treatment in patients with Type 2 diabetes. Diabetes Care (2003) 26(8):2370–2377.
  • FINEMAN MS, SHEN LZ, TAYLOR K, KIM DD, BARON AD: Effectiveness of progressive dose-escalation of exenatide (exendin-4) in reducing dose-limiting side effects in subjects with type 2 diabetes. Diabetes Metab. Res Rev (2004) 20(5):411–417.
  • POON T, NELSON P, LOVE K et al: Twenty-eight day dose-response study with Exenatide (Synthetic Exendin-4)in subjects with type 2 diabetes treated with metformin or with diet and exercise. Program and abstracts of the 64th Scientific Session of the American Diabetes Association. Florida, USA (June 2004) (Abstract 598–P).
  • BUSE JB, HENRY RR, HAN J, KIM DD, FINEMAN MS, BARON AD: Exenatide-113 Clinical Study Group. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in sulfonylurea-treated patients with Type 2 diabetes. Diabetes Care (2004) 27(11):2628–2635.
  • ••AMIGO II.
  • DE FRONZO R, RATNER R, HAN J, KIM D, FINEMAN M, BARON A: Effects of exenatide (synthetic exendin-4) on glycemic Control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Program and abstracts of the 64th Scientific Session of the American Diabetes Association. Florida, USA (June 2004) (Abstract 6-LB). AMIGO I.
  • KENDALL DM, RIDDLE MC, ZHUANG D, KIM DD, FINEMAN MS, BARON AD: Effects of exenatide (synthetic exendin-4) on glycemicc and weight over 30 weeks in patients with type 2 diabetes treated with metformin and a sulfonylurea. Program and abstracts of the 64th Scientific Session of the American Diabetes Association. Florida, USA (June 2004) (Abstract 10-LB).
  • ••AMIGO III. These three studies areknown as AMIGO I - III. They show exenatide efficacy in patients taking metformin, SFU or the combination of both, over a 30-week period.
  • ELBROND B, JAKOBSEN G, LARSEN S et al.: Pharmacokinetics, pharmacodynamics, safety, and tolerability of a single-dose of NN-2211, a long-acting glucagon-like peptide 1 derivative, in healthy male subjects. Diabetes Care (2002) 25(8):1398–1404.
  • AGERSO H, JENSEN LB, ELBROND B, ROLAN P, ZDRAVKOVIC M: The pharmacokinetics, pharmacodynamics, safety and tolerability of NN-2211, a new long-acting GLP-1 derivative, in healthy men. Diabetologia (2002) 45(2):195–202.
  • RIBEL U, LARSEN MO, ROLIN B et al.: NN-2211: a long-acting glucagon-like peptide-1 derivative with anti-diabetic effects in glucose-intolerant pigs. Eur. Pharmacol (2002) 451(2):217–225.
  • STURIS J, GOTFREDSEN CF, ROMER J et al: GLP-1 derivative liraglutide in rats 724 Expert Op/n. Investig. Drugs (2005) 14(6) with 0-cell deficiencies: influence of metabolic state on 0-cell mass dynamics. BE Pharmacol (2003) 140(1):123–132.
  • ROLIN B, LARSEN MO, GOTFREDSEN CF et al: The long-acting GLP-1 derivative NN-2211 ameliorates glycemia and increases 0-cell mass in diabetic mice. Am. Physiol Endocrinol Metab. (2002) 283(4):E745–E752.
  • LARSEN PJ, FLEDELIUS C, KNUDSEN LB, TANG-CHRISTENSEN M: Systemic administration of the long-acting GLP-1 derivative NN-2211 induces lasting and reversible weight loss in both normal and obese rats. Diabetes (2001) 50(11):2530–2539.
  • JUHL CB, HOLLINGDAL M, STURIS J et al.: Bedtime administration of NN-2211, a long-acting GLP-1 derivative, substantially reduces fasting and postprandial glycemia in type 2 diabetes. Diabetes (2002) 51(2):424–429.
  • CHANG AM, JAKOBSEN G, STURIS J et al: The GLP-1 derivative NN-2211 restores 3-cell sensitivity to glucose in type 2 diabetic patients after a single dose. Diabetes. (2003) 52(7):1786–1791.
  • NAUCK M, EL-OUAGHLIDI A, HOMPESH M, JACOBSON J, ELBROEND J: No impairment of hypoglycemia counterregulation via glucagon with NN2211, a GLP-1 derivative, in subjects with type 2-diabetes. Program and abstracts of the 63rd Scientific Session of the American Diabetes Association. Louisiana, USA (June 2003) (Abstract 550–P).
  • DEGN KB, JUHL CB, STURIS J et al.: One week's treatment with the long-acting glucagon-like peptide 1 derivative liraglutide (NN-2211) markedly improves 24-h glycemia and a- and 0-cell function and reduces endogenous glucose release in patients with type 2 diabetes. Diabetes (2004) 53(5):1187–1194.
  • MADSBAD S, SCHMITZ 0, RANSTAM J, JAKOBSEN G, MATTHEWS DR: NN-2211-1310 INTERNATIONAL STUDY GROUP Improved glycemic control with no weight increase in patients with type 2 diabetes after once-daily treatment with the long-acting glucagon-like peptide 1 analog liraglutide (NN-2211): a 12-week, double-blind, randomized, controlled trial. Diabetes Care (2004) 27(6):1335–1342.
  • HARDER H, NIELSEN L, TU DT, ASTRUP A: The effect of liraglutide, a long-acting glucagon-like peptide 1 derivative, on glycemic control, body composition, and 24-h energy expenditure in patients with type 2 diabetes. Diabetes Care (2004) 27(8):1915–1921.
  • NAUCK M, HOMPESCH M, FILIPCZAK R et al: Liraglutide significantly improves glycemic control and reduces body weight compared with glimepiride as add-on to metformin in type 2 diabetes. Program and abstracts of the 64th Scientific Session of the American Diabetes Association. Florida, USA (June 2004) (Abstract 356-0R).
  • GIANNOUKAKIS N: CJC-1131. ConjuChem. Curc Opin. Investig. Drugs (2003) 4(10):1245–1249.
  • KIM JG, BAGGIO LL, BRIDON DP et al.: Development and characterization of a glucagon-like peptide 1-albumin conjugate: the ability to activate the glucagon-like peptide 1 receptor in vivo. Diabetes (2003) 52(3):751–759.
  • LAWRENCE B, DREYFUS J, WEN S, GUIVARC'H P, DRUCKER D, CASTAIGNE JP: CJC-1131, a Long Acting GLP-1 Derivative, Exhibits an Extended Pharmacokinetic Profile in Healthy Human Volunteers. Program and abstracts of the 63rd. Scientific Session of the American Diabetes Association. Louisiana,USA (June 2003) (Abstract 534–P).
  • WEN S, CHATENOUD L, LAWRENCE B, FRANCO P, CASTAIGNE JP, BACH JF: Lack of Immunogenicity of CJC-1131, a Long Acting GLP-1 Analog for the Treatment of Type 2 Diabetes. Program and abstracts of the 64th Scientific Session of the American Diabetes Association. Florida, USA (June 2004) (Abstract 634–P).
  • GUIVARCH PH, CASTAIGNE JP, PESLHERBE GL, DREYFUS JH, DRUCKER DJ: CJC-1131, along acting GLP-1 analog safely normalizes post-prandial glucose excursion and fasting glycemia in type 2 diabetes mellitus. Program and abstracts of the 64th Scientific Session of the American Diabetes Association. Florida, USA (June 2004) (Abstract 535–P).
  • BAGGIO LL, HUANG Q, BROWN TJ, DRUCKER DJ: A recombinant human glucagon-like peptide (GLP)-1-albumin protein (albugon) mimics peptidergic activation of GLP-1 receptor-dependent pathways coupled with satiety, gastrointestinal motility, and glucose homeostasis. Diabetes (2004) 53(9):2492–2500.
  • THORKILDSEN C, NEVE S, LARSEN BD, MEIER E, PETERSEN JS: Glucagon-like peptide 1 receptor agonist ZP10A increases insulin mRNA expression and prevents diabetic progression in db/db Pharmacol Exp. Ther. (2003) 307(2):490–496.
  • TRAUTMANN M, CHEN CE CHAPPELL J et al.: THE GFFH STUDY GROUP: LY-307161 SR, a Long-Acting GLP-1 Analog, Improved Glycemic Control in Patients with Type 2 Diabetes. Program and abstracts of the 63rd. Scientific Session of the American Diabetes Association. Louisiana,USA (June 2003) (Abstract 582–P).
  • HANSOTIA T, BAGGIO LL, DELMEIRE D et al.: Double incretin receptor knockout (DIRKO) mice reveal an essential role for the enteroinsular axis in transducing the glucoregulatory actions of DPP-IV inhibitors. Diabetes (2004) 53(5):1326–1335.
  • MIKA A, ADLER A, FARB T et al: 7 Day (AM or PM) Inhibition of DPPIV (Dipeptidyl Peptidase IV) Show No Additional Benefit on Glucose Lowering or Insulin Sensitization over Acute Dosing. Program and abstracts of the 64th Scientific Session of the American Diabetes Association. Florida, USA (June 2004) (Abstract 2382-P 0) .
  • POSPISILIK JA, STAFFORD SG, DEMUTH HU, MCINTOSH CH, PEDERSON RA: Long-term treatment with dipeptidyl peptidase IV inhibitor improves hepatic and peripheral insulin sensitivity in the VDF Zucker rat: a euglycemic-hyperinsulinemic clamp study. Diabetes (2002) 51(9):2677–83.
  • REIMER MK, HOLST JJ, AHREN B: Long-term inhibition of dipeptidyl peptidase IV improves glucose tolerance and preserves islet function in mice. Eur. Endocrinol (2002) 146(5):717–727.
  • PETROV A, IPPOLITO D, McCANN P et al: Female ZDF Rat Model of Diabetes: Effect of Therapeutic Administration of DP-IV inhibitor (25,35)-Isoleucyl Thiazolidide. Program and abstracts of the 64th Scientific Session of the American Diabetes Association. Florida, USA (June 2004) (Abstract 1415–P).
  • GREISEN H, CARR R, SVENDSEN 0, BODVARSDOTTIR T: Dipeptidyl 725 Expert Op/n. lnvestig. Drugs (2005) 14(6) Peptidase IV Inhibition Improves Glucose Tolerance without a Concomitant Rise in Plasma Insulin in the GK Rat. Program and abstracts of the 63rd. Scientific Session of the American Diabetes Association. Louisiana,USA (June 2003) (Abstract 1397–P).
  • LETTING B, NICHOLS E, BIFTU T et al.: Inhibition of dipeptidyl peptidase IV does not attenuate T cell activation in vitro. Program and abstracts of the 64th Scientific Session of the American Diabetes Association. Florida, USA (June 2004) (Abstract 6-0R).
  • LANKAS G, LETTING B, SINHA ROY R et al.: Inhibition of DPP8/9 results in toxicity in preclinical species: potential importance of selective dipeptidyl peptidase IV inhibition for the treatment of type 2 DM. Program and abstracts of the 64th Scientific Session of the American Diabetes Association. Florida, USA (June 2004) (Abstract 7-0R).
  • DEACON CE HUGHES TE, HOLST JJ: Dipeptidyl peptidase IV inhibition potentiates the insulinotropic effect of glucagon-like peptide 1 in the anesthetized pig. Diabetes (1998) 47(5):764–769.
  • POSPISILIK JA, STAFFORD SG, DEMUTH HU etal.: Long-term treatment with the dipeptidyl peptidase IV inhibitor P32/98 causes sustained improvements in glucose tolerance, insulin sensitivity, hyperinsulinemia, and 13-cell glucose responsiveness in VDF (fa/fa) Zucker rats. Diabetes (2002) 51(4):943–950.
  • BALKAN B, KWASNIK L, MISERENDINO R, HOLST JJ, LI X: Inhibition of dipeptidyl peptidase IV with NVP-DPP728 increases plasma GLP-1 (7-36 amide) concentrations and improves oral glucose tolerance in obese Zucker rats. Diabetologia (1999) 42(11):1324–1331.
  • VILLHAUER EB, BRINKMAN JA, NADERI GB et al.:1- [[(3-hydroxy-1-adamantyl)amino]acety11-2-cyano- (5)-pyrrolidine: a potent, selective, and orally bioavailable dipeptidyl peptidase IV inhibitor with antihyperglycemic properties. Med. Chem. (2003) 46(13):2774–2789.
  • AHREN B, SIMONSSON E, LARSSON H et al: Inhibition of dipeptidyl peptidase IV improves metabolic control over a 4-week study period in Type 2 diabetes. Diabetes Care (2002) 25(5):869–875.
  • DARDICK B, SCHWARZTKOPF C, STEVENS D et al: The Dipeptidyl Peptidase IV Inhibitor NVP-LAF237 Improves Metabolic Control in Diabetic and Nondiabetic Cynomolgus Monkeys. Program and abstracts of the 63rd. Scientific Session of the American Diabetes Association. Louisiana,USA (June 2003) (Abstract 1391–P).
  • DARDICK B, VALENTIN M, SCHWARZTKOPF C etal.: NVP-LAF-237, a dipeptidyl peptidase IV inhibitor, improves glucose tolerance and delays gastric emptying in obese insulin resistant cynomolgus monkeys. Program and abstracts of the 63rd. Scientific Session of the American Diabetes Association. Louisiana,USA (June 2003) (Abstract 1392–P).
  • WINZELL MS, AHREN B. The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and Type 2 diabetes. Diabetes (2004) 53\(Suppl. 3):5215–5219.
  • AHREN B, LANDIN-OLSSON M, JANSSON PA, SVENSSON M, HOLMES D, SCHWEIZER A: Inhibition of dipeptidyl peptidase-4 reduces glycemia, sustains insulin levels, and reduces glucagon levels in Type 2 diabetes. I Clin. Endocrinol Metab. (2004) 89(5):2078–2084.
  • PRATLEY R, GALBREATH E. Twelve-week monotherapy with the DPP-4 inhibitor, LAF-237 improves glycemic control in patients with Type 2 diabetes (T2DM). Program and abstracts of the 64th Scientific Session of the American Diabetes Association. Florida, USA (June 2004) (Abstract 355-0R).
  • AHREN B, GOMIS R, STANDL E, MILLS D, SCHWEIZER A: Twelve- and 52-week efficacy of the dipeptidyl peptidase IV inhibitor LAF237 in metformin-treated patients with Type 2 diabetes. Diabetes Care (2004) 27(12):2874–2880.
  • •Important study testing long-term efficacy and tolerability of yildagliptin.
  • ROLIN B, NYGAARD H, WILKEN M, KANSTRUP AB, CARR RD: The Novel, Xanthine-Based, DPPIV Inhibitor NN7201 and LAF237 Improve Glucose Tolerance, but do Not Prevent Progression of Diabetes in Zucker Diabetic Fatty Rats. Program and abstracts of the 64th Scientific Session of the American Diabetes Association. Florida, USA (June 2004) (Abstract 1417–P).
  • WEBER AE, DOOSEOP K, BECONI M et al: MK-0431 Is a potent, selective, dipeptidyl peptidase IV inhibitor for the treatment of Type 2 diabetes. Program and abstracts of the 64th Scientific Session of the American Diabetes Association. Florida, USA (June 2004) (Abstract 633–P).
  • HERMAN GA, ZHAO PL, DIETRICH B et al.: The DP-IV inhibitor MK-0431 enhances active GLP-1 and reduces glucose Following an OGTT in Type 2 diabetes. Program and abstracts of the 64th Scientific Session of the American Diabetes Association. Florida, USA (June 2004) (Abstract 353–P).
  • HEINS J, GLUND K, HOFFMANN T et al: The DPP-IV-inhibitor P93/01 improves glucose tolerance in humans with HbA lc greater than 6.0. Program and abstracts of the 64th Scientific Session of the American Diabetes Association. Florida, USA (June 2004) (Abstract 539–P).
  • JOSHI HV, NARAYANAN S, SHAH DM, BALASUBRAMANIAM G, VAKKALANKA KV: An orally active, highly specific dipeptidyl peptidase IV inhibitor exhibits potent activity in a murine OGTT model. Program and abstracts of the 64th Scientific Session of the American Diabetes Association. Florida, USA (June 2004) (Abstract 2379–P0).
  • McNAMARA P, CARNEY D, HOLLIS C et al: PHX1004: A potent, orally efficacious dipeptidyl peptidase IV Inhibitor with antihyperglycemic properties. Program and abstracts of the 64th Scientific Session of the American Diabetes Association. Florida, USA (June 2004) (Abstract 2381–P0).
  • TAKASAKI K, IWASE M, NAKAJIMA T et al: K579, a slow-binding inhibitor of dipeptidyl peptidase IV, is a long-acting hypoglycemic agent. Eur. Pharmacol (2004) 486(3):335–342.
  • TAKASAKI K, NAKAJIMA T, UENO K, NOMOTO Y, HIGO K: Effects of combination treatment with dipeptidyl peptidase IV inhibitor and sulfonylurea on glucose levels in rats. ./. Pharmacol Sci. (2004) 95(2):291–293.
  • TAKASAKI K, TAKADA H, NAKAJIMA T, UENO K, USHIKI J, HIGO K: Involvement of the active metabolites in the inhibitory activity of K579 on rat plasma dipeptidyl peptidase IV Eur..I. Pharmacol. (2004) 505(1–3):237–241.
  • PLAMBOECK A, HOLST JJ, CARR RD, DEACON CF: Improvement of Glucose Tolerance by Neutral Endopeptidase Inhibition in Pigs. Program and abstracts of the 64th Scientific Session of the American 726 Expert Op/n. Investig. Drugs (2005) 14(6) Diabetes Association. Florida, USA (June 2004) (Abstract 2384–P0).
  • TREBBIEN R, KLARSKOV L, OLESEN M, HOLST JJ, CARR RD, DEACON CF: Neutral endopeptidase 24.11 is important for the degradation of both endogenous and exogenous glucagon in anesthetized pigs. Am. J. Physic]. Endocrine]. Metab. (2004) 287(3):E431–E438.
  • ARBIN V, CLAPERON N, FOURNIE-ZALUSKI MC, ROQUES BP, PEYROUX J: Effects of dual angiotensin-converting enzyme and neutral endopeptidase 24-11 chronic inhibition by mixanpril on insulin sensitivity in lean and obese Zucker rats. Cardiovasc. Pharmacy]. (2003) 41(2):254–264.
  • HENNEKENS CH, BURING JE: Epidemiology in Medicine. SL Mayrent (Ed.), Little, Brown, Boston, USA (1987) 1:186–189.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.