504
Views
172
CrossRef citations to date
0
Altmetric
Review

Histone deacetylase inhibitors in cancer therapy

, &
Pages 659-678 | Published online: 26 Apr 2007

Bibliography

  • JAENISCH R, BIRD A: Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. (2003) 33(Suppl.):245-254.
  • LUND AH, VAN LOHUIZEN M: Epigenetics and cancer. Genes Dev. (2004) 18(19):2315-2335.
  • BAYLIN SB, OHM JE: Epigenetic gene silencing in cancer – a mechanism for early oncogenic pathway addiction? Nat. Rev. Cancer (2006) 6(2):107-116.
  • FRAGA MF, BALLESTAR E, VILLAR-GAREA A et al.: Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat. Genet. (2005) 37(4):391-400.
  • CHO KS, ELIZONDO LI, BOERKOEL CF: Advances in chromatin remodeling and human disease. Curr. Opin. Genet. Dev. (2004) 14(3):308-315.
  • BHALLA KN: Epigenetic and chromatin modifiers as targeted therapy of hematologic malignancies. J. Clin. Oncol. (2005) 23(17):3971-3993.
  • DOKMANOVIC M, MARKS PA: Prospects: histone deacetylase inhibitors. J. Cell. Biochem. (2005) 96(2):293-304.
  • BOLDEN JE, PEART MJ, JOHNSTONE RW: Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov. (2006) 5(9):769-784.
  • PEART MJ, SMYTH G, VAN LAAR R et al.: Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors. Proc. Natl. Acad. Sci. USA (2005) 102(10):3697-3702.
  • MITSIADES CS, MITSIADES NS, MCMULLAN CJ et al.: Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc. Natl. Acad. Sci. USA (2004) 101(2):540-545.
  • NEBBIOSO A, CLARKE N, VOLTZ E et al.: Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells. Nat. Med. (2005) 11(1):77-84.
  • RICHON VM, SANDHOFF TW, RIFKIND RA, MARKS PA: Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc. Natl. Acad. Sci. USA (2000) 97(18):10014-10019.
  • MAEDA T, TOWATARI M, KOSUGI H, SAITO H: Up-regulation of costimulatory/adhesion molecules by histone deacetylase inhibitors in acute myeloid leukemia cells. Blood (2000) 96(12):3847-3856.
  • MAGNER WJ, KAZIM AL, STEWART C et al.: Activation of MHC class I, II, and CD40 gene expression by histone deacetylase inhibitors. J. Immunol. (2000) 165(12):7017-7024.
  • VRANA JA, DECKER RH, JOHNSON CR et al.: Induction of apoptosis in U937 human leukemia cells by suberoylanilide hydroxamic acid (SAHA) proceeds through pathways that are regulated by Bcl-2/Bcl-XL, c-Jun, and p21CIP1, but independent of p53. Oncogene (1999) 18(50):7016-7025.
  • PEART MJ, TAINTON KM, RUEFLI AA et al.: Novel mechanisms of apoptosis induced by histone deacetylase inhibitors. Cancer Res. (2003) 63(15):4460-4471.
  • BURGESS AJ, PAVEY S, WARRENER R et al.: Up-regulation of p21(WAF1/CIP1) by histone deacetylase inhibitors reduces their cytotoxicity. Mol. Pharmacol. (2001) 60(4):828-837.
  • CARDUCCI MA, NELSON JB, CHAN-TACK KM et al.: Phenylbutyrate induces apoptosis in human prostate cancer and is more potent than phenylacetate. Clin. Cancer Res. (1996) 2(2):379-387.
  • MELCHIOR SW, BROWN LG, FIGG WD et al.: Effects of phenylbutyrate on proliferation and apoptosis in human prostate cancer cells in vitro and in vivo. Int. J. Oncol. (1999) 14(3):501-508.
  • GORE SD, SAMID D, WENG LJ: Impact of the putative differentiating agents sodium phenylbutyrate and sodium phenylacetate on proliferation, differentiation, and apoptosis of primary neoplastic myeloid cells. Clin. Cancer Res. (1997) 3(10):1755-1762.
  • DYER ES, PAULSEN MT, MARKWART SM et al.: Phenylbutyrate inhibits the invasive properties of prostate and breast cancer cell lines in the sea urchin embryo basement membrane invasion assay. Int. J. Cancer (2002) 101(5):496-499.
  • SVECHNIKOVA I, GRAY SG, KUNDROTIENE J et al.: Apoptosis and tumor remission in liver tumor xenografts by 4-phenylbutyrate. Int. J. Oncol. (2003) 22(3):579-588.
  • WARRELL RP Jr, HE LZ, RICHON V, CALLEJA E, PANDOLFI PP: Therapeutic targeting of transcription in acute promyelocytic leukemia by use of an inhibitor of histone deacetylase. J. Natl. Cancer Inst. (1998) 90(21):1621-1625.
  • CARDUCCI MA, GILBERT J, BOWLING MK et al.: A Phase I clinical and pharmacological evaluation of sodium phenylbutyrate on an 120-h infusion schedule. Clin. Cancer Res. (2001) 7(10):3047-3055.
  • GILBERT J, BAKER SD, BOWLING MK et al.: A Phase I dose escalation and bioavailability study of oral sodium phenylbutyrate in patients with refractory solid tumor malignancies. Clin. Cancer Res. (2001) 7(8):2292-2300.
  • PHUPHANICH S, BAKER SD, GROSSMAN SA et al.: Oral sodium phenylbutyrate in patients with recurrent malignant gliomas: a dose escalation and pharmacologic study. Neuro-oncol. (2005) 7(2):177-182.
  • GORE SD, WENG LJ, ZHAI S et al.: Impact of the putative differentiating agent sodium phenylbutyrate on myelodysplastic syndromes and acute myeloid leukemia. Clin. Cancer Res. (2001) 7(8):2330-2339.
  • GORE SD, WENG LJ, FIGG WD et al.: Impact of prolonged infusions of the putative differentiating agent sodium phenylbutyrate on myelodysplastic syndromes and acute myeloid leukemia. Clin. Cancer Res. (2002) 8(4):963-970.
  • PHIEL CJ, ZHANG F, HUANG EY et al.: Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J. Biol. Chem. (2001) 276(39):36734-36741.
  • GOTTLICHER M, MINUCCI S, ZHU P et al.: Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J. (2001) 20(24):6969-6978.
  • BLAHETA RA, CINATL J Jr: Anti-tumor mechanisms of valproate: a novel role for an old drug. Med. Res. Rev. (2002) 22(5):492-511.
  • CINATL J Jr, CINATL J, DRIEVER PH et al.: Sodium valproate inhibits in vivo growth of human neuroblastoma cells. Anticancer Drugs (1997) 8(10):958-963.
  • XIA Q, SUNG J, CHOWDHURY W et al.: Chronic administration of valproic acid inhibits prostate cancer cell growth in vitro and in vivo. Cancer Res. (2006) 66(14):7237-7244.
  • ACHACHI A, FLORINS A, GILLET N et al.: Valproate activates bovine leukemia virus gene expression, triggers apoptosis, and induces leukemia/lymphoma regression in vivo. Proc. Natl. Acad. Sci. USA (2005) 102(29):10309-10314.
  • KUENDGEN A, STRUPP C, AIVADO M et al.: Treatment of myelodysplastic syndromes with valproic acid alone or in combination with all-trans retinoic acid. Blood (2004) 104(5):1266-1269.
  • KUENDGEN A, SCHMID M, SCHLENK R et al.: The histone deacetylase (HDAC) inhibitor valproic acid as monotherapy or in combination with all-trans retinoic acid in patients with acute myeloid leukemia. Cancer (2006) 106(1):112-119.
  • RICHON VM, WEBB Y, MERGER R et al.: Second generation hybrid polar compounds are potent inducers of transformed cell differentiation. Proc. Natl. Acad. Sci. USA (1996) 93(12):5705-5708.
  • ROSATO RR, GRANT S: Histone deacetylase inhibitors in clinical development. Expert Opin. Investig. Drugs (2004) 13(1):21-38.
  • KELLY WK, MARKS PA: Drug insight: histone deacetylase inhibitors-development of the new targeted anticancer agent suberoylanilide hydroxamic acid. Nat. Clin. Pract. Oncol. (2005) 2(3):150-157.
  • SAKAJIRI S, KUMAGAI T, KAWAMATA N et al.: Histone deacetylase inhibitors profoundly decrease proliferation of human lymphoid cancer cell lines. Exp. Hematol. (2005) 33(1):53-61.
  • HE LZ, TOLENTINO T, GRAYSON P et al.: Histone deacetylase inhibitors induce remission in transgenic models of therapy-resistant acute promyelocytic leukemia. J. Clin. Invest. (2001) 108(9):1321-1330.
  • COHEN LA, MARKS PA, RIFKIND RA et al.: Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, suppresses the growth of carcinogen-induced mammary tumors. Anticancer Res. (2002) 22(3):1497-1504.
  • REDDY P, MAEDA Y, HOTARY K et al.: Histone deacetylase inhibitor suberoylanilide hydroxamic acid reduces acute graft-versus-host disease and preserves graft-versus-leukemia effect. Proc. Natl. Acad. Sci. USA (2004) 101(11):3921-3926.
  • BUTLER LM, AGUS DB, SCHER HI et al.: Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo. Cancer Res. (2000) 60(18):5165-5170.
  • COHEN LA, AMIN S, MARKS PA et al.: Chemoprevention of carcinogen-induced mammary tumorigenesis by the hybrid polar cytodifferentiation agent, suberanilohydroxamic acid (SAHA). Anticancer Res. (1999) 19(6B):4999-5005.
  • DESAI D, DAS A, COHEN L, EL-BAYOUMY K, AMIN S: Chemopreventive efficacy of suberoylanilide hydroxamic acid (SAHA) against 4-(methylnitrosamino)-1-(3-pyridyl)-1- butanone (NNK)-induced lung tumorigenesis in female A/J mice. Anticancer Res. (2003) 23(1A):499-503.
  • KELLY WK, RICHON VM, O’CONNOR O et al.: Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously. Clin. Cancer Res. (2003) 9(10 Part 1):3578-3588.
  • KELLY WK, O’CONNOR OA, KRUG LM et al.: Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. J. Clin. Oncol. (2005) 23(17):3923-3931.
  • O’CONNOR OA, HEANEY ML, SCHWARTZ L et al.: Clinical experience with intravenous and oral formulations of the novel histone deacetylase inhibitor suberoylanilide hydroxamic acid in patients with advanced hematologic malignancies. J. Clin. Oncol. (2006) 24(1):166-173.
  • OLSEN E, KIM YH, KUZEL T et al.: Vorinostat (suberoylanilide hydroxamic acid, SAHA) is clinically active in advanced cutaneous T-cell lymphoma (CTCL): results of a Phase IIb trial. J. Clin. Oncol. (Meeting Abstracts) (2006) 24(Suppl. 18):7500.
  • DUVIC M, TALPUR R, NI X et al.: Phase II trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood (2007) 109(1):31-39.
  • GARCIA-MANERO G, YANG H, SANCHEZ-GONZALEZ B et al.: Final results of a Phase I study of the histone deacetylase inhibitor vorinostat (suberoyanilide hydroxamic acid, SAHA), in patients with leukemia and myelodysplastic syndrome. ASH Annual Meeting Abstracts (2005) 106(11):2801 (Abstract).
  • UEDA H, NAKAJIMA H, HORI Y et al.: FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum no. 968. I. Taxonomy, fermentation, isolation, physico-chemical and biological properties, and antitumor activity. J. Antibiot. (Tokyo) (1994) 47(3):301-310.
  • NAKAJIMA H, KIM YB, TERANO H, YOSHIDA M, HORINOUCHI S: FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. Exp. Cell Res. (1998) 241(1):126-133.
  • BYRD JC, SHINN C, RAVI R et al.: Depsipeptide (FR901228): a novel therapeutic agent with selective, in vitro activity against human B-cell chronic lymphocytic leukemia cells. Blood (1999) 94(4):1401-1408.
  • SASAKAWA Y, NAOE Y, INOUE T et al.: Effects of FK228, a novel histone deacetylase inhibitor, on human lymphoma U-937 cells in vitro and in vivo. Biochem. Pharmacol. (2002) 64(7):1079-1090.
  • ARON JL, PARTHUN MR, MARCUCCI G et al.: Depsipeptide (FR901228) induces histone acetylation and inhibition of histone deacetylase in chronic lymphocytic leukemia cells concurrent with activation of caspase 8-mediated apoptosis and down-regulation of c-FLIP protein. Blood (2003) 102(2):652-658.
  • KLISOVIC DD, KATZ SE, EFFRON D et al.: Depsipeptide (FR901228) inhibits proliferation and induces apoptosis in primary and metastatic human uveal melanoma cell lines. Invest. Ophthalmol. Vis. Sci. (2003) 44(6):2390-2398.
  • PIEKARZ RL, ROBEY RW, ZHAN Z et al.: T-cell lymphoma as a model for the use of histone deacetylase inhibitors in cancer therapy: impact of depsipeptide on molecular markers, therapeutic targets, and mechanisms of resistance. Blood (2004) 103(12):4636-4643.
  • SAWA H, MURAKAMI H, KUMAGAI M et al.: Histone deacetylase inhibitor, FK228, induces apoptosis and suppresses cell proliferation of human glioblastoma cells in vitro and in vivo. Acta Neuropathol. (Berl.) (2004) 107(6):523-531.
  • HIROKAWA Y, ARNOLD M, NAKAJIMA H, ZALCBERG J, MARUTA H: Signal therapy of breast cancers by the HDAC inhibitor FK228 that blocks the activation of PAK1 and abrogates the tamoxifen-resistance. Cancer Biol. Ther. (2005) 4(9):956-960.
  • SASAKAWA Y, NAOE Y, INOUE T et al.: Effects of FK228, a novel histone deacetylase inhibitor, on tumor growth and expression of p21 and c-myc genes in vivo. Cancer Lett. (2003) 195(2):161-168.
  • SAKIMURA R, TANAKA K, NAKATANI F et al.: Antitumor effects of histone deacetylase inhibitor on Ewing’s family tumors. Int. J. Cancer (2005) 116(5):784-792.
  • ITO T, OUCHIDA M, MORIMOTO Y et al.: Significant growth suppression of synovial sarcomas by the histone deacetylase inhibitor FK228 in vitro and in vivo. Cancer Lett. (2005) 224(2):311-319.
  • HIROKAWA Y, NAKAJIMA H, HANEMANN CO et al.: Signal therapy of NF1-deficient tumor xenograft in mice by the anti-PAK1 drug FK228. Cancer Biol. Ther. (2005) 4(4):379-381.
  • ROYCHOWDHURY S, BAIOCCHI RA, VOURGANTI S et al.: Selective efficacy of depsipeptide in a xenograft model of Epstein–Barr virus-positive lymphoproliferative disorder. J. Natl. Cancer Inst. (2004) 96(19):1447-1457.
  • SANDOR V, BAKKE S, ROBEY RW et al.: Phase I trial of the histone deacetylase inhibitor, depsipeptide (FR901228, NSC 630176), in patients with refractory neoplasms. Clin. Cancer Res. (2002) 8(3):718-728.
  • MARSHALL JL, RIZVI N, KAUH J et al.: A Phase I trial of depsipeptide (FR901228) in patients with advanced cancer. J. Exp. Ther. Oncol. (2002) 2(6):325-332.
  • BYRD JC, MARCUCCI G, PARTHUN MR et al.: A Phase I and pharmacodynamic study of depsipeptide (FK228) in chronic lymphocytic leukemia and acute myeloid leukemia. Blood (2005) 105(3):959-967.
  • FOULADI M, FURMAN WL, CHIN T et al.: Phase I study of depsipeptide in pediatric patients with refractory solid tumors: a children’s oncology group report. J. Clin. Oncol. (2006) 24(22):3678-3685.
  • PIEKARZ RL, FRYE R, TURNER M et al.: Completion of the first cohort of patients with cutaneous T-cell lymphoma enrolled on a Phase II trial of depsipeptide. ASH Annual Meeting Abstracts (2005) 106(11):231 (Abstract).
  • NIESVIZKY R, ELY S, DILIBERTO M et al.: Multicenter Phase II trial of the histone deacetylase inhibitor depsipeptide (FK228) for the treatment of relapsed or refractory multiple myeloma (MM). ASH Annual Meeting Abstracts (2005) 106(11):2574 (Abstract).
  • WHITEHEAD RP, MCCOY S, WOLLNER IS et al.: Phase II trial of depsipeptide (NSC-630176) in colorectal cancer patients who have received either one or two prior chemotherapy regimens for metastatic or locally advanced, unresectable disease: a Southwest Oncology Group study. J. Clin. Oncol. (Meeting Abstracts) (2006) 24(Suppl. 18):3598.
  • SU YB, TUTTLE RM, FURY M et al.: A Phase II study of single agent depsipeptide (DEP) in patients (pts) with radioactive iodine (RAI)-refractory, metastatic, thyroid carcinoma: preliminary toxicity and efficacy experience. J. Clin. Oncol. (Meeting Abstracts) (2006) 24(Suppl. 18):5554.
  • MOLIFE R, PATTERSON S, RIGGS C et al.: Phase II study of FK228 in patients with hormone refractory prostate cancer (HRPC). J. Clin. Oncol. (Meeting Abstracts) (2006) 24(Suppl. 18):14554.
  • WHITTAKER S, MCCULLOCH W, ROBAK T, BARAN E, PRENTICE A AND ALL INVESTIGATORS: International multicenter Phase II study of the HDAC inhibitor (HDACi) depsipeptide (FK228) in cutaneous T-cell lymphoma (CTCL): Interim report. J. Clin. Oncol. (Meeting Abstracts) (2006) 24(Suppl. 18):3063.
  • PIEKARZ RL, FRYE AR, WRIGHT JJ et al.: Cardiac studies in patients treated with depsipeptide, FK228, in a Phase II trial for T-cell lymphoma. Clin. Cancer Res. (2006) 12(12):3762-3773.
  • GEORGE P, BALI P, ANNAVARAPU S et al.: Combination of the histone deacetylase inhibitor LBH589 and the hsp90 inhibitor 17-AAG is highly active against human CML-BC cells and AML cells with activating mutation of FLT-3. Blood (2005) 105(4):1768-1776.
  • CATLEY L, WEISBERG E, TAI YT et al.: NVP-LAQ824 is a potent novel histone deacetylase inhibitor with significant activity against multiple myeloma. Blood (2003) 102(7):2615-2622.
  • GUO F, SIGUA C, TAO J et al.: Cotreatment with histone deacetylase inhibitor LAQ824 enhances Apo-2L/tumor necrosis factor-related apoptosis inducing ligand-induced death inducing signaling complex activity and apoptosis of human acute leukemia cells. Cancer Res. (2004) 64(7):2580-2589.
  • NIMMANAPALLI R, FUINO L, BALI P et al.: Histone deacetylase inhibitor LAQ824 both lowers expression and promotes proteasomal degradation of Bcr-Abl and induces apoptosis of imatinib mesylate-sensitive or -refractory chronic myelogenous leukemia-blast crisis cells. Cancer Res. (2003) 63(16):5126-5135.
  • MAISO P, CARVAJAL-VERGARA X, OCIO EM et al.: The histone deacetylase inhibitor LBH589 is a potent antimyeloma agent that overcomes drug resistance. Cancer Res. (2006) 66(11):5781-5789.
  • QIAN DZ, KATO Y, SHABBEER S et al.: Targeting tumor angiogenesis with histone deacetylase inhibitors: the hydroxamic acid derivative LBH589. Clin. Cancer Res. (2006) 12(2):634-642.
  • BECK J, FISCHER T, ROWINSKY E et al.: Phase I pharmacokinetic (PK) and pharmacodynamic (PD) study of LBH589: a novel histone deacetylase inhibitor. J. Clin. Oncol. (Meeting Abstracts) (2004) 22(Suppl. 14):3025.
  • PRINCE HM, GEORGE DJ, JOHNSTONE R et al.: LBH589, a novel histone deacetylase inhibitor (HDACi), treatment of patients with cutaneous T-cell lymphoma (CTCL). Changes in skin gene expression profiles related to clinical response following therapy. J. Clin. Oncol. (Meeting Abstracts) (2006) 24(Suppl. 18):7501.
  • GILES F, FISCHER T, CORTES J et al.: A Phase I study of intravenous LBH589, a novel cinnamic hydroxamic acid analogue histone deacetylase inhibitor, in patients with refractory hematologic malignancies. Clin. Cancer Res. (2006) 12(15):4628-4635.
  • SAITO A, YAMASHITA T, MARIKO Y et al.: A synthetic inhibitor of histone deacetylase, MS-27-275, with marked in vivo antitumor activity against human tumors. Proc. Natl. Acad. Sci. USA (1999) 96(8):4592-4597.
  • SAUSVILLE EA, ALLEY MC, PACULA-COX CM: Pharmacologic evaluations of MS-275 (NSC706995), a novel benzamide structure with a unique spectrum of antitumour activity. Proc. Am. Assoc. Cancer Res. (2001) 4976(42):927 (Abstract).
  • JABOIN J, WILD J, HAMIDI H et al.: MS-27-275, an inhibitor of histone deacetylase, has marked in vitro and in vivo antitumor activity against pediatric solid tumors. Cancer Res. (2002) 62(21):6108-6115.
  • ROSATO RR, ALMENARA JA, GRANT S: The histone deacetylase inhibitor MS-275 promotes differentiation or apoptosis in human leukemia cells through a process regulated by generation of reactive oxygen species and induction of p21CIP1/WAF1 1. Cancer Res. (2003) 63(13):3637-3645.
  • EYUPOGLU IY, HAHNEN E, TRANKLE C et al.: Experimental therapy of malignant gliomas using the inhibitor of histone deacetylase MS-275. Mol. Cancer Ther. (2006) 5(5):1248-1255.
  • GOJO I, GORE SD, JIEMJIT A et al.: Phase I study of histone deacetylase inhibitor (HDI) MS-275 in adults with refractory or relapsed hematologic malignancies. Blood (2003) 102(11):1408 (Abstract).
  • GORE L, HOLDEN SN, BASCHE M et al.: Updated results from a Phase I trial of histone deacetylase (HDAC) inhibitor MS-275 in patients with refractory solid tumours. J. Clin. Oncol. (Meeting Abstracts) (2004) 22(Suppl. 14):3026.
  • RYAN QC, HEADLEE D, ACHARYA M et al.: Phase I and pharmacokinetic study of MS-275, a histone deacetylase inhibitor, in patients with advanced and refractory solid tumors or lymphoma. J. Clin. Oncol. (2005) 23(17):3912-3922.
  • DONOVAN EA, SPARREBOOM A, FIGG W et al.: Phase I trial of the oral histone deacetylase inhibitor MS-275 administered with food. J. Clin. Oncol. (Meeting Abstracts) (2006) 24(Suppl. 18):13036.
  • HAUSCHILD A, TREFZER U, GARBE C et al.: A Phase II multicenter study on the histone deacetylase (HDAC) inhibitor MS-275, comparing two dosage schedules in metastatic melanoma. J. Clin. Oncol. (Meeting Abstracts) (2006) 24(Suppl. 18):8044.
  • RYAN Q, HEADLEE D, ELSAYED Y et al.: A first in human trial of an oral histone deacetylase inhibitor, MS-275, in advanced solid tumor and lymphoma patients. AACR Meeting Abstracts (2004) 2004(1):567.
  • ACHARYA MR, SPARREBOOM A, SAUSVILLE EA et al.: Interspecies differences in plasma protein binding of MS-275, a novel histone deacetylase inhibitor. Cancer Chemother. Pharmacol. (2006) 57(3):275-281.
  • LORUSSO PM, DEMCHIK L, FOSTER B et al.: Preclinical antitumor activity of CI-994. Invest. New Drugs (1996) 14(4):349-356.
  • EL-BELTAGI HM, MARTENS AC, LELIEVELD P, HAROUN EA, HAGENBEEK A: Acetyldinaline: a new oral cytostatic drug with impressive differential activity against leukemic cells and normal stem cells-preclinical studies in a relevant rat model for human acute myelocytic leukemia. Cancer Res. (1993) 53(13):3008-3014.
  • FOSTER BJ, JONES L, WIEGAND R, LORUSSO PM, CORBETT TH: Preclinical pharmacokinetic, antitumor and toxicity studies with CI-994 (correction of CL-994) (N-acetyldinaline). Invest. New Drugs (1997) 15(3):187-194.
  • GRAZIANO MJ, PILCHER GD, WALSH KM, KASALI OB, RADULOVIC L: Preclinical toxicity of a new oral anticancer drug, CI-994 (acetyldinaline), in rats and dogs. Invest. New Drugs (1997) 15(4):295-310.
  • PRAKASH S, FOSTER BJ, MEYER M et al.: Chronic oral administration of CI-994: a Phase I study. Invest. New Drugs (2001) 19(1):1-11.
  • WOZNIAK A, O’SHAUGHNESSY J, FIORICA J, GROVE W: Phase II trial of CI-994 in patients (pts) with advanced nonsmall cell lung cancer (NSCLC) (Meeting Abtract). J. Clin. Oncol. (Meeting Abstracts) (1999):1878 (Abstract).
  • O’SHAUGHNESSY J, FLAHERTY L, FIORICA J, GROVE W: Phase II trial in patients (pts) with metastatic renal cell carcinoma (RCC). J. Clin. Oncol. (Meeting Abstracts) (1999):1346 (Abstract).
  • ZALUPSKI M, O’SHAUGHNESSY J, VUKELJA S et al.: Phase II trial of CI-994 in patients (pts) with advanced pancreatic cancer (APC). J. Clin. Oncol. (Meeting Abstracts) (2000):1115 (Abstract).
  • PLUMB JA, FINN PW, WILLIAMS RJ et al.: Pharmacodynamic response and inhibition of growth of human tumor xenografts by the novel histone deacetylase inhibitor PXD101. Mol. Cancer Ther. (2003) 2(8):721-728.
  • GIMSING P, WU F, QIAN X et al.: Activity of the histone deacetylase (HDAC) inhibitor PXD101 in preclinical studies and in a Phase I study in patients with advanced haematological tumors. ASH Annual Meeting Abstracts (2005) 106(11):3337 (Abstract).
  • QIAN X, LAROCHELLE WJ, ARA G et al.: Activity of PXD101, a histone deacetylase inhibitor, in preclinical ovarian cancer studies. Mol. Cancer Ther. (2006) 5(8):2086-2095.
  • KUEFER R, HOFER MD, ALTUG V et al.: Sodium butyrate and tributyrin induce in vivo growth inhibition and apoptosis in human prostate cancer. Br. J. Cancer (2004) 90(2):535-541.
  • GIERMASZ A, NOWIS D, JALILI A et al.: Antitumor activity of tributyrin in murine melanoma model. Cancer Lett. (2001) 164(2):143-148.
  • CONLEY BA, EGORIN MJ, TAIT N et al.: Phase I study of the orally administered butyrate prodrug, tributyrin, in patients with solid tumors. Clin. Cancer Res. (1998) 4(3):629-634.
  • EDELMAN MJ, BAUER K, KHANWANI S et al.: Clinical and pharmacologic study of tributyrin: an oral butyrate prodrug. Cancer Chemother. Pharmacol. (2003) 51(5):439-444.
  • REPHAELI A, RABIZADEH E, AVIRAM A et al.: Derivatives of butyric acid as potential anti-neoplastic agents. Int. J. Cancer (1991) 49(1):66-72.
  • AVIRAM A, ZIMRAH Y, SHAKLAI M, NUDELMAN A, REPHAELI A: Comparison between the effect of butyric acid and its prodrug pivaloyloxymethylbutyrate on histones hyperacetylation in an HL-60 leukemic cell line. Int. J. Cancer (1994) 56(6):906-909.
  • RABIZADEH E, SHAKLAI M, NUDELMAN A, EISENBACH L, REPHAELI A: Rapid alteration of c-myc and c-jun expression in leukemic cells induced to differentiate by a butyric acid prodrug. FEBS Lett. (1993) 328(3):225-229.
  • ZIMRA Y, WASSERMAN L, MARON L et al.: Butyric acid and pivaloyloxymethyl butyrate, AN-9, a novel butyric acid derivative, induce apoptosis in HL-60 cells. J. Cancer Res. Clin. Oncol. (1997) 123(3):152-160.
  • SIU LL, VON HOFF DD, REPHAELI A et al.: Activity of pivaloyloxymethyl butyrate, a novel anticancer agent, on primary human tumor colony-forming units. Invest. New Drugs (1998) 16(2):113-119.
  • BATOVA A, SHAO LE, DICCIANNI MB et al.: The histone deacetylase inhibitor AN-9 has selective toxicity to acute leukemia and drug-resistant primary leukemia and cancer cell lines. Blood (2002) 100(9):3319-3324.
  • NUDELMAN A, RUSE M, AVIRAM A et al.: Novel anticancer prodrugs of butyric acid. 2. J. Med. Chem. (1992) 35(4):687-694.
  • KASUKABE T, REPHAELI A, HONMA Y: An anti-cancer derivative of butyric acid (pivalyloxmethyl buterate) and daunorubicin cooperatively prolong survival of mice inoculated with monocytic leukaemia cells. Br. J. Cancer (1997) 75(6):850-854.
  • AVIRAM A, REPHAELI A, SHAKLAI M et al.: Effect of the cytostatic butyric acid pro-drug, pivaloyloxymethyl butyrate, on the tumorigenicity of cancer cells. J. Cancer Res. Clin. Oncol. (1997) 123(5):267-271.
  • PATNAIK A, ROWINSKY EK, VILLALONA MA et al.: A Phase I study of pivaloyloxymethyl butyrate, a prodrug of the differentiating agent butyric acid, in patients with advanced solid malignancies. Clin. Cancer Res. (2002) 8(7):2142-2148.
  • REID T, VALONE F, LIPERA W et al.: Phase II trial of the histone deacetylase inhibitor pivaloyloxymethyl butyrate (pivanex, AN-9) in advanced non-small cell lung cancer. Lung Cancer (2004) 45(3):381-386.
  • BONFILS C, KALITA A, LIU J, BESTERMAN JM, LI Z: Development of whole cell HDAC enzyme assay to analyze inhibitory activity of MGCD0103 in vitro and in vivo. AACR Meeting Abstracts (2005) 2005(1):143.
  • GARCIA-MANERO G, MINDEN M, ESTROV Z et al.: Clinical activity and safety of the histone deacetylase inhibitor MGCD0103: Results of a Phase I study in patients with leukemia or myelodysplastic syndromes (MDS). J. Clin. Oncol. (Meeting Abstracts) (2006) 24(Suppl. 18):6500.
  • CARDUCCI M, SIU LL, SULLIVAN R et al.: Phase I study of isotype-selective histone deacetylase (HDAC) inhibitor MGCD0103 given as three-times weekly oral dose in patients (pts) with advanced solid tumors. J. Clin. Oncol. (Meeting Abstracts) (2006) 24(Suppl. 18):3007.
  • FUINO L, BALI P, WITTMANN S et al.: Histone deacetylase inhibitor LAQ824 down-regulates Her-2 and sensitizes human breast cancer cells to trastuzumab, taxotere, gemcitabine, and epothilone B. Mol. Cancer Ther. (2003) 2(10):971-984.
  • KIM MS, BLAKE M, BAEK JH et al.: Inhibition of histone deacetylase increases cytotoxicity to anticancer drugs targeting DNA. Cancer Res. (2003) 63(21):7291-7300.
  • LOPREVITE M, TISEO M, GROSSI F et al.: In vitro study of CI-994, a histone deacetylase inhibitor, in non-small cell lung cancer cell lines. Oncol. Res. (2005) 15(1):39-48.
  • RUNDALL BK, DENLINGER CE, JONES DR: Suberoylanilide hydroxamic acid combined with gemcitabine enhances apoptosis in non-small cell lung cancer. Surgery (2005) 138(2):360-367.
  • OCKER M, ALAJATI A, GANSLMAYER M et al.: The histone-deacetylase inhibitor SAHA potentiates proapoptotic effects of 5-fluorouracil and irinotecan in hepatoma cells. J. Cancer Res. Clin. Oncol. (2005) 131(6):385-394.
  • SANCHEZ-GONZALEZ B, YANG H, BUESO-RAMOS C et al.: Antileukemia activity of the combination of an anthracycline with a histone deacetylase inhibitor. Blood (2006) 108(4):1174-1182.
  • WIEDMANN M, BLUETHNER T, NIEDERHAGEN M et al.: Two novel histone deacetylase inhibitors NVP-LAQ824 and NVP-LBH589 are active against biliary tract cancer and potentiate the efficacy of gemcitabine. J. Clin. Oncol. (Meeting Abstracts) (2006) 24(Suppl. 18):4149.
  • LOWELL W, WICK MJ, CAMPOS DR et al.: In vivo evaluation of depsipeptide (FK228) alone or in combination with gemcitabine in two human pancreas tumor xenograft models. AACR Meeting Abstracts (2006) 2006(1):900-901.
  • NEMUNAITIS JJ, ORR D, EAGER R et al.: Phase I study of oral CI-994 in combination with gemcitabine in treatment of patients with advanced cancer. Cancer J. (2003) 9(1):58-66.
  • UNDEVIA SD, KINDLER HL, JANISCH L et al.: A Phase I study of the oral combination of CI-994, a putative histone deacetylase inhibitor, and capecitabine. Ann. Oncol. (2004) 15(11):1705-1711.
  • PAUER LR, OLIVARES J, CUNNINGHAM C et al.: Phase I study of oral CI-994 in combination with carboplatin and paclitaxel in the treatment of patients with advanced solid tumors. Cancer Invest. (2004) 22(6):886-896.
  • RICHARDS DA, BOEHM KA, WATERHOUSE DM et al.: Gemcitabine plus CI-994 offers no advantage over gemcitabine alone in the treatment of patients with advanced pancreatic cancer: results of a Phase II randomized, double-blind, placebo-controlled, multicenter study. Ann. Oncol. (2006) 17(7):1096-1102.
  • RAMALINGAM S, PARISE RA, EGORIN MJ et al.: Phase I study of vorinostat, a histone deacetylase (HDAC) inhibitor, in combination with carboplatin (Cb) and paclitaxel (P) for patients with advanced solid malignancies (NCI 6922). J. Clin. Oncol. (Meeting Abstracts) (2006) 24(Suppl. 18):2077.
  • FAKIH MG, PENDYALA L, TOTH K et al.: A Phase I study of vorinostat (suberoylanilide hydroxamic acid, SAHA) in combination with 5-fluorouracil, leucovorin, and oxaliplatin (FOLFOX) in patients with advanced colorectal cancer (CRC). J. Clin. Oncol. (Meeting Abstracts) (2006) 24(Suppl. 18):3592.
  • CAMERON EE, BACHMAN KE, MYOHANEN S, HERMAN JG, BAYLIN SB: Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat. Genet. (1999) 21(1):103-107.
  • YANG X, PHILLIPS DL, FERGUSON AT et al.: Synergistic activation of functional estrogen receptor (ER)-α by DNA methyltransferase and histone deacetylase inhibition in human ER-α-negative breast cancer cells. Cancer Res. (2001) 61(19):7025-7029.
  • YANG H, HOSHINO K, SANCHEZ-GONZALEZ B, KANTARJIAN H, GARCIA-MANERO G: Antileukemia activity of the combination of 5-aza-2′-deoxycytidine with valproic acid. Leuk. Res. (2005) 29(7):739-748.
  • GALM O, HERMAN JG, BAYLIN SB: The fundamental role of epigenetics in hematopoietic malignancies. Blood Rev. (2006) 20(1):1-13.
  • GORE SD, BAYLIN S, SUGAR E et al.: Combined DNA methyltransferase and histone deacetylase inhibition in the treatment of myeloid neoplasms. Cancer Res. (2006) 66(12):6361-6369.
  • MASLAK P, CHANEL S, CAMACHO LH et al.: Pilot study of combination transcriptional modulation therapy with sodium phenylbutyrate and 5-azacytidine in patients with acute myeloid leukemia or myelodysplastic syndrome. Leukemia (2006) 20(2):212-217.
  • GARCIA-MANERO G, KANTARJIAN HM, SANCHEZ-GONZALEZ B et al.: Phase I/2 study of the combination of 5-aza-2′-deoxycytidine with valproic acid in patients with leukemia. Blood (2006) 108(10):3271-3279.
  • LIN RJ, NAGY L, INOUE S et al.: Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature (1998) 391(6669):811-814.
  • GRIGNANI F, DE MATTEIS S, NERVI C et al.: Fusion proteins of the retinoic acid receptor-α recruit histone deacetylase in promyelocytic leukaemia. Nature (1998) 391(6669):815-818.
  • FERRARA FF, FAZI F, BIANCHINI A et al.: Histone deacetylase-targeted treatment restores retinoic acid signaling and differentiation in acute myeloid leukemia. Cancer Res. (2001) 61(1):2-7.
  • KITAMURA K, HOSHI S, KOIKE M et al.: Histone deacetylase inhibitor but not arsenic trioxide differentiates acute promyelocytic leukaemia cells with t(11;17) in combination with all-trans retinoic acid. Br. J. Haematol. (2000) 108(4):696-702.
  • TABE Y, CONTRACTOR R, KONOPLEVA M, IGARI J, ANDREEFF M: Combination of histone deacetylase inhibitor depsipeptide (FK228) and ATRA enhances differentiation in ATRA-sensitive and – resistant APL cells. Blood (2003) 102(11):4758 (Abstract).
  • BUG G, RITTER M, WASSMANN B et al.: Clinical trial of valproic acid and all-trans retinoic acid in patients with poor-risk acute myeloid leukemia. Cancer (2005) 104(12):2717-2725.
  • RAFFOUX E, CHAIBI P, DOMBRET H, DEGOS L: Valproic acid and all-trans retinoic acid for the treatment of elderly patients with acute myeloid leukemia. Haematologica (2005) 90(7):986-988.
  • PILATRINO C, CILLONI D, MESSA E et al.: Increase in platelet count in older, poor-risk patients with acute myeloid leukemia or myelodysplastic syndrome treated with valproic acid and all-trans retinoic acid. Cancer (2005) 104(1):101-109.
  • PILI R, RUDEK M, ALTIOK S et al.: Phase I pharmacokinetic and pharmacodynamic study of the histone deacetylase inhibitor MS-275 in combination with 13-cis retinoic acid in patients with advanced solid tumors. J. Clin. Oncol. (Meeting Abstracts) (2006) 24(Suppl. 18):3055.
  • YU C, RAHMANI M, CONRAD D et al.: The proteasome inhibitor bortezomib interacts synergistically with histone deacetylase inhibitors to induce apoptosis in Bcr/Abl+ cells sensitive and resistant to STI571. Blood (2003) 102(10):3765-3774.
  • PEI XY, DAI Y, GRANT S: Synergistic induction of oxidative injury and apoptosis in human multiple myeloma cells by the proteasome inhibitor bortezomib and histone deacetylase inhibitors. Clin. Cancer Res. (2004) 10(11):3839-3852.
  • CATLEY L, WEISBERG E, KIZILTEPE T et al.: Aggresome induction by proteasome inhibitor bortezomib and α-tubulin hyperacetylation by tubulin deacetylase (TDAC) inhibitor LBH589 are synergistic in myeloma cells. Blood (2006) 108(10):3441-3449.
  • SUTHEESOPHON K, KOBAYASHI Y, TAKATOKU MA et al.: Histone deacetylase inhibitor depsipeptide (FK228) induces apoptosis in leukemic cells by facilitating mitochondrial translocation of Bax, which is enhanced by the proteasome inhibitor bortezomib. Acta Haematol. (2006) 115(1-2):78-90.
  • RAHMANI M, YU C, DAI Y et al.: Coadministration of the heat shock protein 90 antagonist 17-allylamino- 17-demethoxygeldanamycin with suberoylanilide hydroxamic acid or sodium butyrate synergistically induces apoptosis in human leukemia cells. Cancer Res. (2003) 63(23):8420-8427.
  • RAHMANI M, REESE E, DAI Y et al.: Cotreatment with suberanoylanilide hydroxamic acid and 17-allylamino 17-demethoxygeldanamycin synergistically induces apoptosis in Bcr-Abl+ cells sensitive and resistant to STI571 (imatinib mesylate) in association with down-regulation of Bcr-Abl, abrogation of signal transducer and activator of transcription 5 activity, and Bax conformational change. Mol. Pharmacol. (2005) 67(4):1166-1176.
  • YU C, RAHMANI M, ALMENARA J et al.: Histone deacetylase inhibitors promote STI571-mediated apoptosis in STI571-sensitive and -resistant Bcr/Abl+ human myeloid leukemia cells. Cancer Res. (2003) 63(9):2118-2126.
  • NIMMANAPALLI R, FUINO L, STOBAUGH C, RICHON V, BHALLA K: Cotreatment with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) enhances imatinib-induced apoptosis of Bcr-Abl-positive human acute leukemia cells. Blood (2003) 101(8):3236-3239.
  • KAWANO T, HORIGUCHI-YAMADA J, IWASE S et al.: Depsipeptide enhances imatinib mesylate-induced apoptosis of Bcr-Abl-positive cells and ectopic expression of cyclin D1, c-Myc or active MEK abrogates this effect. Anticancer Res. (2004) 24(5A):2705-2712.
  • FISKUS W, PRANPAT M, BALI P et al.: Combined effects of novel tyrosine kinase inhibitor AMN107 and histone deacetylase inhibitor LBH589 against Bcr-Abl-expressing human leukemia cells. Blood (2006) 108(2):645-652.
  • ZHANG Y, JUNG M, DRITSCHILO A: Enhancement of radiation sensitivity of human squamous carcinoma cells by histone deacetylase inhibitors. Radiat. Res. (2004) 161(6):667-674.
  • CAMPHAUSEN K, BURGAN W, CERRA M et al.: Enhanced radiation-induced cell killing and prolongation of γH2AX foci expression by the histone deacetylase inhibitor MS-275. Cancer Res. (2004) 64(1):316-321.
  • MUNSHI A, TANAKA T, HOBBS ML et al.: Vorinostat, a histone deacetylase inhibitor, enhances the response of human tumor cells to ionizing radiation through prolongation of γ-H2AX foci. Mol. Cancer Ther. (2006) 5(8):1967-1974.
  • CAMPHAUSEN K, SCOTT T, SPROULL M, TOFILON PJ: Enhancement of xenograft tumor radiosensitivity by the histone deacetylase inhibitor MS-275 and correlation with histone hyperacetylation. Clin. Cancer Res. (2004) 10(18 Part 1):6066-6071.
  • CAMPHAUSEN K, CERNA D, SCOTT T et al.: Enhancement of in vitro and in vivo tumor cell radiosensitivity by valproic acid. Int. J. Cancer (2005) 114(3):380-386.
  • CHINNAIYAN P, VALLABHANENI G, ARMSTRONG E, HUANG SM, HARARI PM: Modulation of radiation response by histone deacetylase inhibition. Int. J. Radiat. Oncol. Biol. Phys. (2005) 62(1):223-229.
  • MUNSHI A, KURLAND JF, NISHIKAWA T et al.: Histone deacetylase inhibitors radiosensitize human melanoma cells by suppressing DNA repair activity. Clin. Cancer Res. (2005) 11(13):4912-4922.
  • ROPERO S, FRAGA MF, BALLESTAR E et al.: A truncating mutation of HDAC2 in human cancers confers resistance to histone deacetylase inhibition. Nat. Genet. (2006) 38(5):566-569.
  • KRUG LM, CURLEY T, SCHWARTZ L et al.: Potential role of histone deacetylase inhibitors in mesothelioma: clinical experience with suberoylanilide hydroxamic acid. Clin. Lung Cancer (2006) 7(4):257-261.
  • OTTMANN OG, DEANGELO DJ, STONE RM et al.: A Phase I, pharmacokinetic (PK) and pharmacodynamic (PD) study of a novel histone deacetylase inhibitor LAQ824 in patients with hematologic malignancies. J. Clin. Oncol. (Meeting Abstracts) (2004) 22(Suppl. 14):3024.
  • ROWINSKY EK, PACEY S, PATNAIK A et al.: A Phase I, pharmacokinetic (PK) and pharmacodynamic (PD) study of a novel histone deacetylase inhibitor LAQ824 in patients with advanced solid tumours. J. Clin. Oncol. (Meeting Abstracts) (2004) 22(Suppl. 14):3022.
  • ZHOU DC, KIM SH, DING W et al.: Frequent mutations in the ligand-binding domain of PML-RARα after multiple relapses of acute promyelocytic leukemia: analysis for functional relationship to response to all-trans retinoic acid and histone deacetylase inhibitors in vitro and in vivo. Blood (2002) 99(4):1356-1363.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.